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Abstract

The internet has become an essential part of contemporary society, catering to
a variety of human and societal needs—from keeping long-distance relationships
to accessing educational resources and facilitating economic activities. Perhaps
even more significantly, the internet has also proved to be instrumental for
social movements resisting dictatorships, such as in the Arab Spring. However,
this unprecedented level of online activities has also led to a widespread mass
surveillance and privacy violations, making the internet a tool against democratic
values and human rights. Despite the potential of cryptography, it often fails
to counter surveillance effectively by itself. Meanwhile, the exploration and
deployment of Anonymous Communication Networks (ACNs), such as mixnets,
to resist surveillance are still largely unexplored.
A mix network, or mixnet, is an overlay network composed of servers, called
mixes, that anonymously route messages from senders to receivers by mixing the
order of the messages. Despite their potential, their adoption has been slow, due
to challenges such as significant latency, complex configurations, and difficulties
in evaluating anonymity. This thesis investigates mixnets, aiming to tackle
various open research questions. Despite the broad range of techniques and
metrics proposed in the mixnet literature, the diverse array of mixnet building
blocks and design choices, such as routing algorithms, network topologies, and
mixing strategies, makes the evaluation of the anonymity provided by mixnets
a significant challenge.
We first start by identifying the main building blocks of mixnets. We develop a
simulation framework that enables the evaluation of anonymity across various
mixnet configurations, building blocks, and threat models in order to analyze
their impact on anonymity. Then, we explore previously unaddressed research
questions, including mixnet parameterization and how various parameters
influence the anonymity provided by a mixnet-based system. We identify
external parameters, beyond the control of system designers, and we introduce
a methodology that enables the fine-tuning of the remaining parameters.
Furthermore, a significant contribution of our research is the proposal of a
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seemingly straightforward yet complex-to-analyze scheme: blending different
types of traffic within a single mixnet. For instance, enabling a network to handle
diverse traffic from different applications, such as emails, instant messaging
applications, or cryptocurrency transactions, each having a different latency
requirement. This novel approach has an immediate real-world impact on
mixnet-based systems by increasing anonymity and reducing delays. Finally,
we introduce novel methods to evaluate mixnets against unconventional threat
models, local adversaries, which have visibility over only a fraction of the
network.
By meticulously unraveling the complexities inherent in mixnets and offering
novel methods and techniques of anonymity evaluation, this thesis brings
several novel contributions to the field of ACNs, especially aimed at achieving
widespread deployment of mixnets.



Beknopte samenvatting

Het internet is een essentieel onderdeel geworden van de hedendaagse samen-
leving en voorziet in een verscheidenheid aan menselijke en maatschappelijke
behoeften – van het onderhouden van langeafstandsrelaties tot het verkrijgen
van toegang tot onderwijsbronnen en het faciliteren van economische activiteiten.
Misschien nog belangrijker is dat het internet ook een instrument is gebleken voor
sociale bewegingen die zich verzetten tegen dictaturen, zoals tijdens de Arabische
Lente. Dit ongekende niveau van online-activiteiten heeft echter ook geleid tot
wijdverbreide massale surveillance en privacyschendingen, waardoor het internet
een instrument is geworden tegen democratische waarden en mensenrechten.
Ondanks het potentieel van cryptografie slaagt het er vaak niet in om surveillance
op zichzelf effectief tegen te gaan. Ondertussen zijn de verkenning en inzet
van ACNs, zoals mixnets, om surveillance tegen te gaan, nog grotendeels
onontgonnen.
Een mixnetwerk, of mixnet, is een overlay-netwerk dat bestaat uit servers, mixen
genoemd, die berichten anoniem van afzenders naar ontvangers routeren door de
volgorde van de berichten te mengen. Ondanks hun potentieel is de acceptatie
ervan traag verlopen vanwege uitdagingen zoals aanzienlijke latentie, complexe
configuraties en problemen bij het evalueren van anonimiteit. Dit proefschrift
onderzoekt mixnets, met als doel verschillende open onderzoeksvragen te
beantwoorden. Ondanks het brede scala aan technieken en metrieken dat
in de mixnet-literatuur wordt voorgesteld, maakt de uiteenlopende reeks mixnet-
bouwstenen en ontwerpkeuzes, zoals routeringsalgoritmen, netwerktopologieën
en mengstrategieën, de evaluatie van de anonimiteit die door mixnets wordt
geboden, tot een aanzienlijke uitdaging.
We beginnen eerst met het identificeren van de belangrijkste bouwstenen van
mixnets. We ontwikkelen een simulatieraamwerk dat de evaluatie van anonimi-
teit over verschillende mixnet-configuraties, bouwstenen en dreigingsmodellen
mogelijk maakt om hun impact op de anonimiteit te analyseren. Vervolgens
onderzoeken we eerder onopgeloste onderzoeksvragen, waaronder mixnet-
parametrisering en hoe verschillende parameters de anonimiteit beïnvloeden die
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wordt geboden door een op mixnet gebaseerd systeem. We identificeren externe
parameters, buiten de controle van systeemontwerpers, en we introduceren
een methodologie die het verfijnen van de resterende parameters mogelijk
maakt. Bovendien is een belangrijke bijdrage van ons onderzoek het
voorstel van een ogenschijnlijk eenvoudig maar toch complex te analyseren
schema: het samenvoegen van verschillende soorten verkeer binnen één
enkel mixnet. Hierdoor kan een netwerk bijvoorbeeld divers verkeer van
verschillende applicaties verwerken, zoals e-mails, instant messaging-applicaties
of cryptocurrency-transacties, die elk een andere latentievereiste hebben. Deze
nieuwe aanpak heeft een onmiddellijke reële impact op mixnet-gebaseerde
systemen door de anonimiteit te vergroten en vertragingen te verminderen.
Ten slotte introduceren we nieuwe methoden om mixnets te evalueren tegen
onconventionele dreigingsmodellen, lokale tegenstanders, die slechts zicht hebben
op een fractie van het netwerk.
Door de complexiteiten die inherent zijn aan mixnets minutieus te ontrafelen
en nieuwe methoden en technieken voor anonimiteitsevaluatie aan te bieden,
levert dit proefschrift verschillende nieuwe bijdragen op het gebied van ACNs,
vooral gericht op het bereiken van een wijdverbreide inzet van mixnets.
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Chapter 1

Introduction

“Revolutions in technology do not
create new societies but they do
change the terms in which social,
political and economic relations
are played out”

Judy Wajcman - TechnoFeminism

The internet has become an integral part of modern society, shaping our personal
interactions, information access, education, and economic dynamics. Yet, this
widespread adoption comes at the price of increased privacy violations and mass
surveillance. While corporations primarily engage in surveillance for financial
objectives, including targeted advertising, consumer behavior analysis, and
market research, state actors present surveillance practices as a necessity for
identifying potential threats and often justify their systematic monitoring of
communications as a matter of national security [30]. This constant monitoring,
collection, and analysis of data leave individuals vulnerable to self-censorship,
profiling, and manipulation as shown in [6]. The situation often worsens and
becomes a threat to democracy and human rights when surveillance tools are
disproportionately aimed at specific communities, such as activists, journalists,
people of color, and other marginalized groups. This has led to wrongful arrests,
such as in the case of Robert Williams, 1 diminished bodily autonomy for women
as seen in the USA after Roe versus Wade [57], and individuals being included
in various targeted lists, such as the no-fly list, with an extremely low level of
accuracy as highlighted by Sullivan Gavin in her book The Law of the List [80].

1https://www.theguardian.com/us-news/2023/apr/27/california-police-facial-
recognition-software

3

https://www.theguardian.com/us-news/2023/apr/27/california-police-facial-recognition-software
https://www.theguardian.com/us-news/2023/apr/27/california-police-facial-recognition-software
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As a result, academia, free software, and hacker communities have focused
their efforts on developing tools, protocols, and cryptographic schemes aimed
at protecting individuals’ privacy. Open-source libraries like OpenSSL [84],
messaging applications such as Signal [66], and encryption standards such as
OpenPGP [8] have emerged. These Privacy Enhanced Technologies (PETs)
rely on cryptographic mechanisms to encrypt and authenticate data, ensuring
that only the intended recipient can access and read it. However, over the last
decades, there has been a growing concern over the importance of communication
metadata. Metadata is the information that describes data, providing details
about it without disclosing the content. It includes different attributes, for
example a file’s metadata includes the time it was created and modified, its
location, and its size. In the context of communications, metadata includes who
is sending a message, to whom, at what time, of which size and from where.
The Snowden revelations about the global surveillance programs run by the
NSA and its Five Eyes alliance partners—the Government Communications
Headquarters (GCHQ) in the United Kingdom, the Communications Security
Establishment Canada (CSEC), the Australian Signals Directorate (ASD),
and the Government Communications Security Bureau (GCSB) in New
Zealand—showed how these entities collect millions of metadata records on
a daily basis, store them, and analyze them [59]. While legislation is often
vague when it comes to protecting metadata, several studies have shown that
metadata can be used to re-identify users as well as determine highly sensitive
traits about them [23,56,76].
The two main technologies that have been popularized in protecting communi-
cations’ metadata are (i) Virtual Private Networks (VPNs) and (ii) Tor [39].
VPNs employ tunneling protocols to encrypt data transmitted between the user
and the VPN server. This process hides the user’s connection destination from
their Internet Service Provider (ISP) and masks the user’s address from the
destination server, making online tracking and surveillance difficult. However,
two significant issues remain. First, VPN providers have access to, and may
retain records of, identifiable user information, including addresses and card
payment details, along with logs of their online activities. Consequently, the
privacy of the user relies on the trustworthiness of the VPN provider who has
oversight over all the user’s traffic. Instances where a major VPN provider such
as VPN Express being acquired by a data collection company or where VPNs
provided logs to government agencies highlight this risk. 2 3 Second, traffic
analysis research shows that patterns in packet sizes and timing, even when
encrypted, can easily reveal and identify user activities [34].

2https://www.expressvpn.com/blog/expressvpn-officially-joins-kape/
3https://www.wired.co.uk/article/ipvanish-vpn-review

https://www.expressvpn.com/blog/expressvpn-officially-joins-kape/
https://www.wired.co.uk/article/ipvanish-vpn-review
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Tor [39], however, distributes trust between multiples intermediaries such that
no single server is able to link the user’s IP to the destination. Tor is an overlay
network where each user runs a local software called an Onion Proxy (OP) to
fetch directories, establish circuits across the network, and handle connections
from the user to the applications. Users construct circuits preemptively, and
then all traffic passes along 3 hops, commonly referred to as Onion Router
(OR), in fixed-size cells. This prevents local network adversaries, such as an ISP,
from learning the destination of a user’s traffic and prevents the applications
from identifying users’ IP addresses. Provided that at least one OR is honest,
correlating a sender to a receiver becomes challenging. Nevertheless, it is crucial
to note that Tor is designed as a low-latency system, meaning messages are
immediately forwarded to the next OR in the path upon receipt. Additionally,
Tor is circuit-based, meaning that upon sending messages, each user constructs
a circuit of 3 hops, and all messages traverse these three hops. Although these
design strategies minimize end-to-end latency—thereby improving the system
usability—it makes Tor users vulnerable against sophisticated traffic analysis.
Adversaries are able to monitor the user’s and the server’s connection and
establish communications patterns in order to re-identify users [2,48,60,78,87,88].
While Tor serves as an effective countermeasure, it often falls short against
sophisticated traffic analysis techniques used by adversaries who can monitor
all network traffic. Recognizing the limitations of the existing privacy tools, we
need to pivot our focus towards more robust technologies, such as mix networks
or mixnets.
Mixnets significantly enhance network-level privacy, particularly against what
is known in the literature as a Global Passive Adversary (GPA), who can
monitor all network links. Similar to Tor [39], the network is composed of
multiple servers called mixes. Messages of fixed sizes, traverse multiple mixes
before reaching the final destination. However, there are two main differences
between mixnets and Tor. First, unlike Tor’s circuit-based routing, mixnets
use packet-based routing, meaning that each packet is routed independently.
Second, messages are delayed inside each mix for a certain period of time
before being forwarded to the next hop or the final destination. This strategy
prevents an adversary from correlating the input with the output messages based
on their timing and order. The earliest mixnet design by David Chaum [10]
used threshold mixing, where each mix accumulates messages until a certain
threshold is reached. Upon reaching this threshold, the mix decrypts, reorders
and sends the messages to the next entity in the path of the message. Following
Chaum’s design, a variety of mixnet-based systems have been introduced,
such as Vuvuzela [46], Mixminion [18], Loopix [69], and XRD [54]. However,
despite the deployment of several mixnet-based systems, achieving widespread
adoption has proven challenging. While the inherent latency within mixnets
represents a critical barrier, additional challenges also contribute to the difficulty
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of deploying them on a large scale. Crucial research questions, such as tuning
mixnet parameters—for example, the optimal path length or the total number
of mixes—have often been left out of scope in various mixnet papers. Cross-
comparison between the different mixnet-based systems is challenging due to
the extensive variety of design decisions in the literature, making end-to-end
anonymity evaluation difficult.
The goal of this thesis is twofold: first, to empirically and analytically evaluate
the anonymity provided by different mixnet configurations across various threat
models, and second, to develop and propose methods that can effectively
inform and guide the design decisions in a way that optimizes anonymity. This
work addresses open research questions in mixnets, hoping to facilitate the
development and deployment at a large scale of a mixnet-based system.

1.1 Contributions

To introduce the topic we first summarize the main building blocks of mixnet-
based systems that have been proposed in the literature. This overview includes
different mixing strategies, topologies, routing algorithms and dummy traffic
strategies. Moreover, we introduce a methodology and provide a network
simulator, MiXiM, that evaluates the anonymity provided by different mixnet
configurations. This contribution was published in:

• Iness Ben Guirat, Devashish Gosain and Claudia Diaz (2021), “Mixim:
Mixnet Design Decisions and Empirical Evaluation”. In Proceedings of
the 20th Workshop on Privacy in the Electronic Society (WPES’ 21).

We expand on our evaluation methods in order to be able to parameterize
mixnets. This research question has often been left out of scope in previous
work. Proposed mixnet-based systems [1,11,46,54,69] have not only overlooked
the detailed parameterization of the network, such as the total number of mixes,
the number of layers, and the dummy traffic rates but also the rationale behind
choosing these parameters and their impacts on anonymity. Our proposed
methodology enables the selection of mixnet parameters in a way that maximizes
the anonymity provided by the network. This approach introduces an analytical
metric—the fraction of fully compromised paths— and uses empirical evaluations
conducted using the network simulator MiXiM. Finally, our methodology takes
into account various threat models. This contribution was published in:

• Iness Ben Guirat and Claudia Diaz (2022), “Mixnet optimization methods”.
In Proceedings on Privacy Enhancing Technologies (PoPETs 2022).

Additionally, we analyze and evaluate the anonymity provided by mixnets when
blending two or more traffic types. This scenario is exemplified by the Nym
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network [25], where different applications, such as instant messaging applications
(Telegram) and cryptocurrency transactions, can use the same mixnet. In this
context, Telegram users might tolerate smaller delays compared to those sending
cryptocurrency transactions, leading to distinct traffic types. We first provide
a theoretical analysis in order to be able to quantify the anonymity in such
scenarios. Then, we proceed with empirical evaluations to study the impact
of different parameters values on anonymity. These parameters include the
message generation rates of different applications, the average delay per traffic
type, and the mixnet’s parameters, such as the number of layers and the number
of mixes per layer. I equally contributed to this work with Debajyoti Das in
the following publication:

• Iness Ben Guirat, Debajyoti Das and Claudia Diaz (2024), “Blending
Different Latency Traffic With Beta Mixing”. In Proceedings on Privacy
Enhancing Technologies (PoPETs 2024).

Finally, we address a critical concern often cited by critics of mixnets regarding
the default threat model: GPA. Syverson [82] has argued that the concept of a
GPA is, first, unrealistic and, second, renders this threat model paradoxically
both too powerful and too limited; the GPA can monitor all network links but
cannot delay messages on those links. Additionally, Syverson argues that security
measures should always account for the resources available to an attacker and
hence the evaluation of ACN is not “’a question of uncertainty in identifying
a large set of senders and/or recipients, it is an issue of available resources
and their expected effectiveness” [82]. However, the inherent delays, the packet-
based routing, and the diverse design choices in mixnets make the analytical
calculation of event probability against an adversary with limited resources
virtually impossible due to the large space of possibilities. We therefore introduce
a traffic analysis method that allows us to empirically quantify the probability
of an event under a rather weaker adversary which we call an Adversary with
Partial Visibility (APV). I am the principal author of this contribution which
was published in:

• Iness Ben Guirat, Karim Eldafrawi, Claudia Diaz and Hadas Zeilberger
(2023), “Traffic Analysis by Adversaries with Partial Visibility”. In
European Symposium on Research in Computer Security (ESORICS
2023)

This thesis is structured into two main parts. Part I starts with an introduction
to the topic, followed by Chapter 2, which offers the necessary background
information needed for understanding the contributions of this thesis. Chapter 3
contextualizes these contributions, and Chapter 4 concludes with a synthesis
of our work, highlighting potential avenues for future research. Part II includes
the publications that have contributed to this thesis.





Chapter 2

Preliminaries

“I think people know at an
instinctual level that a life in
which our thoughts, discourse,
and interactions are subjected to
constant algorithmic or human
monitoring is no life at all”

Phillip Rogaway

In his seminal work [10], David Chaum introduced a technique that used
public key cryptography to enable both anonymous message sending and
voting. This has led to a rich literature on two types of mixnets: decryption
mixnets, primarily used for messaging, and re-encryption mixnets, used for
voting. In decryption mixnets, messages are source routed, where the sender
of a message selects the route through the network until it reaches the final
destination. To prepare messages, senders encrypt messages with the public
keys of the mixes in the path of the message in reverse order. Upon receiving
a message, mixes use their private keys to strip a layer of encryption and
discover the next hop in the route. Messages are then forwarded, following a
specified delay determined by the mixing algorithm, to the next hop, which
is either another intermediary mix or the recipient. In re-encryption mixnets,
messages are re-randomized and provably shuffled by a fixed sequence of mixes
called cascade before being flushed [7, 40, 53, 61]. Such mixnets are ideal for
voting applications since, unlike messaging applications, they have limited
and predictable traffic volume, very high latency tolerance, and strict public
verifiability requirements. However, given their limited range of applications
and well-understood anonymity tradeoffs, we consider re-encryption mixnets as

9
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Figure 2.1: A Simplified Mixnet.

out of scope in this thesis. We instead focus on decryption mixnets that are
mainly designed for message-based communications [25]. In decryption mixnets,
there exist many design decisions and parameters such as the mixing algorithms,
routing policies, and dummy traffic strategies, where each of these components
and its parameters can have a significant influence on the anonymity and latency
tradeoffs provided. Therefore, in order to be able to evaluate the anonymity
they provide as well as the best way to choose these parameters, we first need
to understand, the main building blocks of mixnets.

2.1 Mixnet’s Building Blocks1

Mixes are servers that cryptographically transform and reorder messages,
such that input messages are unlinkable to outputs both in terms of message
appearance and timing. The transformation of message appearance is based on
a cryptographic packet format, such as the Sphinx packet [19], while message
re-ordering is achieved with different mixing algorithms [27]. We highlight the
main mixing strategies:

• Threshold Mix: A threshold mix [10] buffers messages in an internal
memory until a number T (threshold parameter) is reached. The mix,
then, decrypts and permutes the T messages and forwards them in a
random order.

• Timed Mix: A timed mix buffers messages for a period of time t. When
the timeout is expired, the mix decrypts and permutes the messages it
has collected and flushes them in a random order.

• Pool Mix: A pool mix [75] can flush either when hitting a threshold
number of messages or upon expiration of a timeout. Pool mixes however
do not flush all the messages they have collected. Instead, a subset of
messages is flushed in a random order while the rest is kept in an internal
memory called pool until the next flushing event. The pool algorithm

1This section reuses some of the texts from our two publications [4, 5].
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defines the number of messages that are sent and kept. The choice of
which messages to send and which to keep is made uniformly at random.

• Stop-and-Go Mix: Contrary to the previous types of mixes which are often
referred to as batch mixing, a Stop-and-Go mix [50] does not send batches
of messages at discrete flushing events, but rather processes messages
individually and continuously in time. Each message received by the mix
is decrypted and kept for a random amount of time and sent out when its
timeout has elapsed. Mixnet-based systems that are based on this mixing
strategy typically use the exponential distribution for generating these
message delays [25, 69]. As shown in [17], the memory-less property of
exponential distributions makes this mixing strategy not only simple and
straightforward but also capable of achieving an anonymity level similar
to other mixing strategies such as pool mixes.

Mixnet topology refers to the interconnection of mixes within the network.
The topology outlines the possible routes (sequences of mixes) that messages
can traverse. We distinguish the following types of mixnet topologies, each
defined by its unique arrangement and the strategic placement of mixes:

• Cascade: In this topology, shown in Figure 2.2a all messages pass through
a fixed sequence of mixes in a predetermined order, creating a chain where
each mix forwards all its messages to the next mix [10]. The scalability of a
single cascade is limited by the throughput of its least capable mix. Thus,
if more capacity is required, multiple cascades can run in parallel [11, 38].

• Stratified: In this topology, also known as layered topology, mixes are
organized into a fixed number of layers as shown in Figure 2.2b. Each
mix in layer i receives messages from mixes in layer i− 1 and forwards
messages to mixes in layer i + 1. Each mix is assigned to one layer at
any given time. Mixes in the first layer receive messages directly from
senders, while those in the last layer send messages to the end recipients.
Stratified topologies are shown to provide optimal anonymity as well as
being efficient to analyze [29]. Variations of stratified topology exist:
Fully connected topologies mean that the mixes in layer i can receive
messages from all mixes in layer i− 1 and can send messages to all mixes
in layer i + 1, whereas not fully connected may only receive (respectively
forward) messages from/to a subset of mixes in layer i− 1 (respectively
i + 1). Furthermore, the number of mixes across layers can be the same
(a balanced network) or can vary (imbalanced network), impacting both
network throughput and anonymity. For example, having a single mix in
one layer not only affects the throughput of the network but also increases
the risk of compromise, affecting the overall likelihood of the compromise
of a path. Detailed analysis and evaluations on these considerations are
discussed in Part II, Publication 2.
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(a) Multiple cascades (b) Stratified (c) Free routes

Figure 2.2: Mixnets’ Topologies.

• Free routes: Free route networks are composed of mixes that are fully
connected, i.e. they have a network graph in which mixes are connected
to all other mixes (Figure 2.2c). Free routes allow maximum freedom
in terms of choosing messages’ paths and unlike in cascades or stratified
networks that implicitly fix the number of hops. With free routing,
message path lengths may be variable [33], though they may also be fixed
by the routing algorithm. While free routes offer good anonymity and
scalability properties, they are extremely complex to analyze [83] and
are also known to perform worse than stratified networks in terms of
anonymity [26], without any discernible advantage.

Dummy traffic strategies: Dummy or cover traffic comprises fake messages
sent through the mixnet, devoid of any real data payload and intended to be
discarded by the ultimate recipient. Thus, they not only increase the network’s
traffic volume, enhancing the system’s anonymity, but also serve as an essential
defense against certain active attacks, e.g., the n-1 attack [75]. The parameters
defining a dummy traffic strategy include:

• Who generates the dummies and when. Dummy messages can be produced
by end-users, mixes, or both. The generation algorithm should specify
the timing and frequency of dummy creation, such as at fixed intervals,
during flushing events, when traffic load is minimal, etc.

• Dummy message routing and destination: The dummy traffic algorithm
must delineate the routing process, including the selection of intermediate
hops and the final destination. For instance, dummy messages might be
dropped at the next hop, routed in a loop back to their origin, or directed
to a user’s mailbox.

Figure 2.3 shows three examples of dummy strategies. Client-based dummies
are dummies that are generated and sent and received by clients. This strategy
is used in systems like Vuvuzela and Loopix [46, 69] in order to achieve the
unobservability property [67], meaning that it is not possible to tell whether a
user is idle or actively communicating. Mix-based dummies are generated in the
mixes and can either be sent to multiple mixes in the network or can be dropped
at the next hop. When dummy messages traverse multiple mixes, the amount
of traffic in the network increases after each hop resulting in an increased level



THREAT MODEL 13

Client-based Dummies Mix-based Dummies: Dropped at L+1

Mix-based Dummies: Dropped at Last Layer

Figure 2.3: Different Dummy Strategies.

of anonymity. However, the approach of dropping dummy messages at the
next hop is more cost-effective because the network performs significantly fewer
public key cryptography operations. In multi-hop paths, whether generated
by clients or mixes, dummies are indistinguishable from actual messages at
intermediate hops and towards the GPA; only the source and destination know
that it is a dummy message. We discuss the impact of the different generation
rates and the types of dummy traffic types on anonymity in Part II, Publication
2.

2.2 Threat Model

Mixnets are designed to protect against a GPA, a powerful network adversary
with visibility over the whole network. The primary goal of the adversary is
to identify the sender or the receiver of a specific message. This adversary’s
capability is however limited to the monitoring of messages as they traverse the
network. The adversary lacks the capability to see inside the mixes, meaning it
cannot trivially know the mapping between inputs and outputs. Furthermore,
the GPA abstains from any active attacks, including the dropping, modifying or
injecting messages. Typically, in mixnet literature, it is assumed that message
format throughout the transmission remains unaltered, meaning that attacks
where the adversary tags messages in order to follow them are prevented.
This is achieved through cryptographic schemes, using packet formats such as
Sphinx [20], which are designed to provide various security features such as
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bitwise unlinkability, meaning that an adversary who is observing a mix cannot
link the incoming messages to the outgoing messages based on the format. In
addition, Sphinx hides the route’s length and the message’s position within the
path. Finally, it is assumed that the adversary cannot break secure encryption,
ensuring the confidentiality of the data transmitted through the mixnet.
Throughout this work, we also consider adversaries that have the capability
to compromise a subset of mixes. These mixes provide no anonymity to the
messages routed through them. Contrarily to honest mixes, where the adversary
can only probabilistically correlate between the inputs and outputs based on
its observation of message arrivals and departures [17, 49], a compromising
adversary has knowledge of the mapping between the inputs and outputs of
these malicious mixes. In volunteer-based networks like the Nym network [25],
where participants offer their servers to function as mixes, there is an inherent
risk of malicious behavior. It is crucial to highlight that the anonymity of
messages passing through the network relies on the presence of at least one
honest mix in its path. Assuming the existence of a number of malicious mixes
within the network can, depending on the network’s topology, result in certain
message paths being entirely compromised by the adversary. The topology of
the mixnet as well as other parameters such as the number of layers and the
number of mixes per layer play a critical role in determining the likelihood of a
message traversing a fully compromised path. This is further explained in Part
II, Publication 2.
Lastly, we additionally consider adversaries that can only monitor or compromise
a portion of the network, which we call an APV. Such adversaries could include
an ISP, Autonomous System (AS), or state actors that collaborate without full
network observation. Despite their significant capabilities, these entities may
have blind spots unlike the GPA. Given the complexity of mixnets, considering
such an adversary is a challenging task. We detail our approach in modeling the
APV, with its prior knowledge, capabilities, and goals in Part II, Publication 4.

2.3 Metrics and Evaluation in mixnets

Metrics are quantifiable measures of privacy that enable us to evaluate and
compare various systems. We outline in this section some of the common metrics
used in mixnet-based systems.

2.3.1 Entropy

Entropy provides an average measure of the number of candidate messages that
the adversary confuses with a target message [29, 74]. For instance, an entropy



METRICS AND EVALUATION IN MIXNETS 15

of 8 bits suggests a message’s anonymity is equivalent to its indistinguishability
among 28 = 256 messages, and 9 bits to 29 = 512 messages. This logarithmic
scale implies that each increase of one bit in entropy doubles the set size for
perfect indistinguishability, whereas a decrease halves it. The entropy metric
accounts for the probabilistic information obtained by network adversaries in
addition to corrupt adversarial nodes. To calculate this metric, the adversary
chooses a target message, mtarget, and monitors all the network links. Upon
a message mi exiting a mix, it is assigned a probability Pr[mi = mtarget] of
being the target message. H is then computed as follows:

H = −
N∑

n=1
Pr[mi = mtarget] · log2(Pr[mi = mtarget]) (2.1)

Note that, the computation of the entropy metric, a crucial measure in evaluating
the anonymity provided by mixnets, relies on determining the probability
distribution that associates a given target message with all potential output
messages, or vice versa. This distribution’s calculation depends on the specific
mixing strategy employed by the mix, as detailed in [24]. For instance, for
a threshold mix with a parameter T , the likelihood of any output message
being a particular target input message is 1

T since all collected and flushed
messages by the mix are equally likely to be a specific target message. For
a Poisson mixing strategy, we make use of the memory-less property of the
exponential distribution. Thus, for the first message exiting the mix after a
target input arrives, the probability is 1

N , where N represents the total number
of messages inside the mix at the time of the message leaving. The calculation
for the probability of the next messages exiting the mix needs additional steps
to account for the residual probability of the target message still being inside
the mix. However, we lose the memory-less property when the mix delays
messages with samples drawn from exponential distributions with different
parameters. Such a scenario can happen in networks like such as the Nym
network [25] that accommodates diverse traffic types, such as instant messaging
applications and cryptocurrency transactions, each requiring different latency
considerations. Consequently, messages may be delayed considering the latency
tolerance of their applications, leading to a mix routing messages with delays
drawn from multiple distributions. The challenge then becomes computing the
probability of a message being the target without the simplification afforded by
the memory-less property. We outline this analysis in Part II, Publication 3.
Given the complexity of mixnets when considering multiple mixes in the network
arranged in a specified topology, obtaining the relevant distributions cannot
be done in a straightforward analytical form. Prior work [26, 28, 69, 77], has
therefore resorted to empirical evaluation by developing their own network
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simulators such as in Loopix 2 and Vuvuzela 3. However, these simulators
typically include unique design choices of their respective systems, for example
verifiable shuffle or mailboxes. While they do address specific challenges, these
design choices can be peripheral to core mixnet concerns especially with regard
to anonymity. We therefore need to develop a generic mixnet simulator that
helps us evaluate the above building blocks and their intersections together. We
describe this work in Part II, Publication 1.

2.3.2 Differential Privacy (DP)

Differential Privacy (DP) [35] is a mathematical definition of privacy commonly
used in analyzing datasets. It guarantees that by adding noise using distributions
such as Laplace or Gaussian, the output of a query does not allow distinguishing
whether or not a specific record is part of the dataset [35]. Dwork emphasizes
that bad disclosures can still occur, however the user is guaranteed that the
presence of their individual data is not leaked [35]. Differential Privacy has been
adapted and used in some mixnet-based systems such as Vuvuzela [46] to achieve
precise privacy guarantees and bound the privacy leakage. This guarantees that
even if only two users are communicating, by adding noise, the adversary is not
able to determine whether or not these two users are communicating with each
other. However, the privacy budget is a well-known problem in the differential
privacy literature. As the authors of XRD argue in [54], this is especially a
problem when applying this technique to message-based systems. The budget
could run out quickly if a user sends messages frequently, and once their privacy
budget is exhausted, it is unclear how to proceed.

2.3.3 Fraction of Fully Compromised Paths

A network consisting of a single mix would offer optimal anonymity if it remains
honest, as this would maximize the number of messages mixed together and
hence the anonymity set. Additionally, unlike a cascade topology, this reduces
the propagation delays and the per-mix delays, resulting in a smaller end-to-end
latency. However, trusting a single mix is not ideal. Therefore, having multiple
mixes in the network is crucial so that even if some are compromised, the
anonymity of the message is preserved as long as there is at least one honest
mix in the path. Computing the fraction of compromised paths is a critical
metric for evaluating a mixnet. This metric indicates the fraction of messages
going through an entirely compromised route. To compute this metric, we need
to take into consideration the topology, the number of mixes in the network,

2https://github.com/UCL-InfoSec/loopix
3https://github.com/vuvuzela/vuvuzela/tree/master/mixnet
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and the number of compromised mixes. A detailed analysis is presented in Part
II, Publication 2.

2.3.4 Expected Difference in Likelihood

The authors of Loopix [69] introduce the Expected Difference in Likelihood
metric which aims to quantify the knowledge of the adversary in learning
whether a received message is sent by a sender compared to another’s. Given
the probabilities p1 (respectively p2) of a message being sent by S1 (respectively
S2), this metric is given by:

ϵ =
∣∣∣∣log2(p1

p2
)
∣∣∣∣ (2.2)

Similar to the entropy metric, this metric also needs to be computed empirically
using a network simulator: Users generate messages and send them to their
corresponding recipients. Messages leaving the different mixes have three
probabilities of being sent by S1, S2 or others. At the end of the simulation,
using these probabilities the expected likelihood metric is computed using
Equation (2.2).

2.3.5 Traffic Analysis in Mixnets4

In order to calculate the probability of a certain event in mixnets, for example
linking a sender to a receiver, previous work has used several traffic analysis
techniques that primarily examine patterns of messages [16,51,52,72]. In [21],
Danezis and Troncoso argue that at the heart of traffic analysis lies an inference
problem. Applying Bayesian techniques provides a framework on which to build
attacks and algorithms to estimate different probabilities of events of interest.
Their significant contribution lies in introducing Bayesian inference to traffic
analysis. They introduce an inference engine that samples from the distribution
of network states consistent with a given set of observations to estimate the
probability of an event of interest, such as the probability of a specific sender
communicating with a specific receiver. Given that the core defense of mixnets
to hide metadata lies in the mixing strategies that disable an adversary from
mapping the inputs of mixes with their outputs, these studies have focused
on the edges of mixnets where messages are sent and received. In our work,
we have extended the default mixnet threat model to adversaries with partial
visibility who can compromise and/or monitor only a portion of the network. By
modeling the portions of the network that the adversary cannot see by a set of

4This sections reuses some texts from our publication 4.
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Hidden States, we introduce a novel mixnet model capable of capturing various
mixnets with distinct design choices and adversaries with different capabilities.
This methodology is further detailed in Part II, Publication 4.

2.4 Mixnet-based systems

In this section, we introduce various mixnet-based systems that have been
proposed in the literature, focusing on the main design decisions they each
employ.

2.4.1 Mixmaster and Mixminion

One of the first mixnet-based systems to achieve widespread deployment was
Mixmaster [58]. This system uses a Timed Dynamic Pool Mix strategy [75], in
which received messages are stored in a pool. Periodically, each mix (referred to
as a remailer in Mixmaster) randomly selects and forwards a percentage of these
messages to the next mix in the network or to their final destination. Each user
selects a path through up to 20 different mixes, and messages are of equal sizes.
In version 3.0, Mixmaster uses dummy traffic. Mixes generate dummy messages
whenever a new message enters the pool, and the number of dummy messages is
drawn from a geometric distribution. Additionally, Mixmaster’s documentation
suggests that senders should also send dummy traffic. To avoid statistical traffic
analysis by observing the timing of sending and receiving messages (and hence
correlating senders to receivers), users should send messages at regular intervals
and include dummy messages whenever appropriate.
Mixminion [18] builds upon Mixmaster and addresses some of its limitations.
Notably, it introduces support for anonymous reply messages, with the same
processing as forward messages, thus making them indistinguishable from one
another and part of the same anonymity set. Reply blocks in Mixminion are of
single use and enable recipients to respond without knowledge of the sender’s
identity. When sending an anonymous message, senders can include a reply
block, outlining a pre-constructed path but in reverse. Upon receipt of a message
with a reply block, the recipient, can respond using this block as the reply’s
route back to the sender. Mixminion accommodates three anonymity scenarios:
sender-only anonymity, recipient-only anonymity, or both.

2.4.2 cMix

cMix [11] is based on batch mixes [75]. Mixes are arranged in a fixed cascade.
cMix introduces dummy messages to prevent indefinite delays due to the
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threshold mixes’ firing condition, especially when there are few active users. The
authors argue that a significant drawback of mixnets is the delay introduced by
real-time public key cryptography, required each time a mix receives a message.
cMix addresses this by introducing a pre-computation phase, thereby avoiding
the need for users to perform public key cryptography operations and allowing
lightweight mixnet applications to be deployed on small Android devices. Public
key cryptography is replaced by a pre-computation phase and symmetric key
cryptography in the real-time phase. Users only need to establish a shared secret
with each mix during the enrollment phase, a process performed infrequently.
While this strategy enhances cost efficiency and reduces latency, the per-mix
delays in mixnets remain a fundamental challenge. These delays arise from
the waiting time for mixes to reach the firing condition, which depends on the
network traffic load. Details on the precomputation phase are omitted as they
are orthogonal to our research questions.

2.4.3 Vuvuzela

Vuvuzela [46] is a mixnet-based system that prevents an adversary from
determining which pairs of users are communicating. Vuvuzela’s topology
is a cascade with a timed mixing algorithm. Messages, whether real or fake,
are encrypted sequentially with the public key of each mix in the cascade.
Vuvuzela’s threat model considers an adversary capable of controlling all servers
except one, with the ability to monitor, delay, or inject traffic. It uses two main
protocols: First, the dialing protocol enables users to send invitations to other
users for communication. An invitation includes the sender’s public key and is
deposited at the recipient’s dead drop (a virtual location on a server). During
the dialing phase, users check their dead drops by downloading and decrypting
the messages to find any invitations. Upon accepting an invitation, the user
uses the public key they found on the dead drop for communication. The
conversation protocol follows, where both users, having agreed to communicate,
establish a shared secret and select a new dead drop for message exchange
during the session. Each mix decrypts incoming messages and forwards them in
a randomized order. The final mix decrypts all messages, matches the access to
each dead drop, and then sends messages back through the chain in reverse order,
ensuring the first mix delivers them to the intended recipients. Additionally,
each server introduces cover traffic, leveraging DP to provide precise privacy
guarantees. This cover traffic accesses random dead drops at the last mix,
obscuring the distinction between active messaging and one-way communication
(e.g., Alice sending messages without receiving any from Bob, possibly due to
his offline status).
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The two main drawbacks of Vuvuzela are: first, Vuvuzela assumes that users
must be online all the time in order to be able to communicate, which is
unrealistic. Second, it allows users to send only one message per round.

2.4.4 XRD

XRD, short for Crossroads, is a round-based protocol that consists of parallel
cascades. XRD uses an algorithm that ensures that every user pair shares
at least one common cascade. When a sender wants to send a message to
a recipient, they encrypt the message using the public keys of the mixes in
the shared cascade and the recipient’s key in reverse order, routing it through
this cascade. Additionally, the sender sends dummy messages to all other
cascades assigned to them, directing these to its own mailbox. Should a user
choose not to engage in communication, they send dummy messages through
all cascades. Similar to Vuvuzela, XRD works in synchronous rounds where
each user submits only one message per round. Upon receiving all the messages
from the users, each chain shuffles, decrypts, and then routes the messages to
the correct mailboxes. Recipients then collect their messages from their own
mailboxes. The number of messages each user receives in a round is equal to the
number of cascades assigned to them, hiding whether or not a user is actively
communicating, as shown in Figure 2.4a.
The privacy guarantees of XRD, mainly due to how each user selects the
cascades, hold if there’s at least one honest server at each cascade. During each
round XRD mixes provably shuffle the messages in order to prevent malicious
mixes from dropping messages which would not only impact the usability of
the system but also the anonymity provided by the system; while provable
shuffle is cryptographically expensive, it prevents the adversary from learning
if a user is in conversation with another user or not. In Figure 2.4, we depict
three scenarios where Alice and Bob each belong to three cascades, sharing
one. A GPA cannot know whether Alice and Bob are conversing in Figure 2.4a.
However, if an adversary compromises the input mix of the shared cascade,
drops Alice’s message, and notes from the output mix that Alice received a
message (Figure 2.4b), it indicates Bob is conversing with Alice. Conversely, if
no message is forwarded to Alice’s mailbox, the adversary deduces that Alice is
not in conversation with anyone (Figure 2.4c).

2.4.5 Karaoke

Similar to Vuvuzela and XRD, Karaoke is a synchronous round-based protocol.
Karaoke’s topology is a layered topology that provides horizontal scalability.
There is a coordinator server that is not trusted for privacy but rather its role is
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Figure 2.4: XRD: Three scenarios illustrated: In the first scenario, the adversary
is a GPA and he cannot distinguish whether Alice is communicating with Bob.
In the second and third scenarios, the adversary additionally compromises the
first mix in the common chain of Alice and Bob and drops Alice’s message. In
the second scenario, the adversary knows that Alice is communicating with Bob
while in the third scenario, the adversary knows that Alice is not communicating
with Bob.

to announce the start of a new round. At each round’s start, users send a real
or fake message. Mixes collect these messages and forward them to the next
mix in the path which is chosen randomly by the senders. Echoing Vuvuzela,
Karaoke uses a dialing protocol for users to establish a shared secret, used to
agree on dead drops located in the last mix for message exchange. However,
each pair of users communicating in Karaoke agrees on two dead drops where
they send duplicate messages. If a user is not actively communicating, she
sends two dummy messages which meet at a single dead drop. This strategy of
sending two messages, whether real or fake, during each round guards against an
adversary monitoring dead drop accesses and distinguishing scenarios where two
dead drops are accessed by only one message each (bottom left in Figure 2.5)
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Figure 2.5: Karaoke: Two scenarios depicted: On the left, each user sends two
messages per round and on the right each user sends only one message.

from those accessed by two messages, indicating communication between users
(top right in Figure 2.5). As shown on the left of Figure 2.5, when users send
two messages each, a GPA cannot differentiate between cases where Alice is
communicating with Bob or when both users are sending two dummy messages
to a random dead drop. However, as shown in the [22], by observing the number
of messages in each link the adversary can still achieve a significant leakage and
thus able to distinguish between the scenarios shown in Figure 2.5.
Karaoke also uses dummy traffic not only to increase the overall number of
messages in the system but also to mask dead drop access patterns in the case of
message dropping by an active adversary, meaning that legitimate user messages
did not form a pair of accesses to the same dead drop. Furthermore, each mix
generates and routes dummy messages through random paths to random dead
drops. Dummy traffic messages are generated via a Poisson distribution and
the amount of dummy traffic is determined by the desired DP parameters.

2.4.6 Loopix

The topology of Loopix [69] is a layered topology where each mix is assigned
a position at each layer and can only receive messages from the mixes in the
previous layers and send messages to mixes in the next layer. Messages are
source-routed, with the sender uniformly choosing a mix from each layer and
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wrapping the messages in layers of encryption, starting with the public key of
the final destination. Loopix is a continuous time mixnet, meaning that the
per-mix delays are drawn from an exponential distribution, allowing for tunable
latency. Unlike similar mixnet-based systems, messages in Loopix do not need
to wait for a threshold number to be collected by the mixes before delivery, a
strategy that enhances usability. Loopix introduces service providers as offline
message storage for users. There are three types of dummy traffic: drop cover
traffic, similar to real messages but discarded by the service provider; loop cover
traffic, sent by clients to themselves through the mixnet to detect N − 1 attacks,
where the adversary drops all messages but one message. This attack can be
detected by the client. The last dummy traffic introduced in Loopix is the loops
generated by the mixes, and their final destination is the same mix. Senders
store messages in a buffer and periodically check, following a Poisson process, if
there is a scheduled message to send. If so, the message is sent; otherwise, a
drop cover message is generated and sent. Similarly, when recipients retrieve
messages, providers send messages to the clients following a Poisson process,
introducing dummy traffic if no real message is available.
These strategies of dummy traffic, along with the Poisson process-based sending
and receiving by users, prevent adversaries from linking a sender to a recipient.
Loopix’s anonymity is evaluated using the entropy and the likelihood difference
metrics across various delay rates, layers, and traffic volumes, showing the
system’s ability to balance latency, anonymity, and bandwidth by adjusting
latency and dummy traffic generation rates.



Chapter 3

Contributions

“We will be victorious if we have
not forgotten how to learn.”

Rosa Luxembourg

In this chapter we contextualize and summarize the contributions of the work
compiled in this thesis.

3.1 MiXiM

Our first objective in this thesis is to comprehensively explore the various
building blocks of mixnets, as well as their parameters in order to analyze and
evaluate their impact on anonymity. To achieve this objective, we primarily
rely on the entropy metric as it offers a measure of the average anonymity
provided by the mixnet. For our analysis, we have implemented MiXiM, a
mixnet simulator that incorporates the core building blocks of mixnets. This
simulator enables us to construct mixnets with different combinations of building
blocks and calculate the entropy metric accordingly. While there are existing
network simulators available [46,54,68], they are often tailored for evaluating
specific systems, which complicates comparisons between systems and makes
systematic evaluation of anonymity challenging.
Figure 3.1, shows an overview of the mixnet simulator MiXiM. We start by
defining the network’s building blocks and parameters. This includes setting the
number of users and message sending rates, selecting the number of mixes, the
mixing strategy and its parameters (e.g.threshold for threshold mixing, timeout

24
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for time mixing), and deciding on the mixnet topology and associated parameters,
such as the number of parallel cascades or number of layers. Additionally, we
specify the simulation duration and any optional features such as dummy
traffic types and parameters. Upon configuration, the simulator launches the
network, with clients sending messages to recipients over a specified period. The
simulation finishes by providing the distribution of entropy results, indicating
the mixnet’s average anonymity.

1 process per core

Logs

Simulator

Graphs metrics.txt

Empirical evaluation

Figure 3.1: MiXiM architecture.

To compute the entropy metric under our default GPA threat model, we track
all message information accessible to a GPA as messages traverse the network,
logging input and output times at honest mixes, while compromised mixes
function merely as links. Upon reaching a stable state, the simulator marks a
target message and tracks it and any message that was mixed with it in the
honest mixes, updating their probability of being the target message. At the end
of the simulation, each message has a probability of being the target message.
We use these probabilities to compute the entropy metric. To mitigate corner
cases, such as messages traversing fully compromised paths, we choose N target
messages, and we average the resulting entropy values.
Using this methodology, we are able to analyze various mixing strategies under
similar traffic conditions, showing that Poisson mixing provides the highest
degree of anonymity. Additionally, we evaluated the anonymity levels of different
mixnet topologies—including Fully connected stratified, Restricted proposed
in [15], and the topology proposed by the XRD mixnet-based system [54].
It is important to note, however, that our focus on XRD was specifically
on its proposed topology rather than the full characteristics and features.
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This comparative analysis was made possible by our custom-built simulator,
designed to accommodate the different parameters and building blocks of
mixnets. Furthermore, we explore how the number of layers in a mixnet impacts
anonymity when having a compromising adversary. We show that increasing
the number of layers beyond three does not significantly enhance anonymity
as measured by entropy when there are no compromised mixes. However, in
scenarios where a substantial portion of mixes (up to 40%) are compromised,
adding more layers within a stratified topology can effectively reduce the
likelihood of messages traversing through compromised routes. Additionally,
our evaluation of mix-based dummy strategies, with different generation rates,
shows that dummy traffic can indeed improve anonymity in low-traffic conditions,
however, in high-traffic scenarios, the introduction of dummy messages does
not provide substantial additional anonymity benefits. Further details on these
contributions are discussed in Part II, Publication 1.

3.2 Parameterization of Mixnets

Building on our previous findings, we focus on mixnets that use a Poisson
mixing strategy and a stratified topology. One of the main challenges in mixnet
design is the optimal selection of mixnet parameters in a way that optimizes
anonymity. We first need to differentiate between adjustable parameters and
those that are imposed by external constraints. We start by identifying external
constraints: First, the traffic load is defined by the number of users and their
message generation rates. Other systems such as Karaoke and XRD [54, 55]
increase the amount of traffic by forcing users to send dummy messages at
each round if they are not sending real messages. This method is not ideal due
to potential user offline status and bandwidth costs. User tolerance for delay
influences system use, for example, users may stop using a messaging app if
the end-to-end latency is too large and hence, end-to-end latency, dictated by
user preferences, is an external factor. Similarly, the number of compromised
mixes is considered beyond the designer’s control, especially in volunteer-based
networks such as Nym [25], where individuals contribute to the network with
their own servers raising the potential malicious behavior. On the other hand,
the parameters that can be chosen include the number of mixes, the number of
layers, the width of the network (the number of mixes per layer), and the rate
of dummy traffic generation.

3.2.1 Mixnet’s external factors

Given a traffic load, a rate of mix compromise, and latency requirements, we
provide a methodology aimed at systematically exploring mixnet parameters
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in a way that allows selecting mixnet parameters that optimize the anonymity
provided by the network. We first explain these external constraints.
Mix Compromise: When an adversary compromises a portion of the mixes of
the network, it not only reduces the average level of anonymity provided by the
mixnet, but also may lead to certain unlucky messages passing through entirely
compromised paths, thereby loosing all anonymity for those messages. However,
it is important to note, that the number of compromised mixes as well as their
individual positions are significant factors in de-anonymizing messages. For
instance, if the compromised mixes are all in one layer in a topology of let’s
say 3 layers, this adversary’s strategy does not lead to any message having zero
anonymity. Therefore we use in our methodology another metric besides entropy,
which is the fraction of fully compromised routes which we denote by αF . The
fraction αF of fully compromised routes focuses on worst-case scenarios, i.e.
messages for which all anonymity is lost as the adversary can determine with
certainty the <sender, time, receiver> of the message. We analytically compute
αF in a mixnet with L layers of width W and N = LW mixes, of which A
mixes are honest and B mixes are adversarial. αF is a weighted average of the
fraction of compromised routes over all possible valid topologies Tv:

αF =
∑
Tv

Pr(F|Tv) Pr(Tv) (3.1)

A valid topology Tv = (A,B) is defined by the number of honest and malicious
mixes present in each layer, A = {a1, a2, .., aL} and B = {b1, b2, .., bL} such that
it meets the following constraints:

∀i 0 ≤ ai ≤ A, 0 ≤ bi ≤ B

L∑
i=1

ai = A,

L∑
i=1

bi = B

We evaluate this metric for different values of L as well as different ratios of
compromise for two types of network balanced networks are those where the
number of mixes per layer is the same for all layers while imbalanced network
are those where the number of mixes per layer can be different. We show that
Pr(F|Topt) = ( B

N )L is a close approximation to αF and that increasing the
number L of layers exponentially decreases the fraction of compromised routes
for both types of network. The full analysis is explained in Part II, Publication
2. We emphasize that the inverse 1

αF
expresses the average number of messages

that need to be sent to choose one fully compromised route. Combined with the
message-sending rate of users, αF determines the de-anonymization of messages
over time. For example, if αF = 0.0001 and λu = 10 messages per second for a
user, it will take on average 1

αF ·λu
= 1000 seconds for one of the user’s messages
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to be routed via a fully compromised route.
Non-uniform mix capacities: While we chose to focus on uniform routing (all
mixes in each layer are equally likely to be chosen in a path of a message) when
computing αF , we also consider the case when mixes have different capacities.
When users choose the mixes to be included in the path of each message, these
mixes have an assigned probability of being chosen. This ‘biased (capacity-
based) routing’ can reflect the throughput each mix has or the reputation of
mixes. We compare anonymity for both types of routing (uniform and biased)
using the entropy metric and αF and adversaries with 0% and 10% corruption
rates. For example, we consider an adversary who is able to introduce mixes
with 6x more capacity than the average honest mix, meaning in each layer of
W = 10 mixes the adversarial mix has 40% of the layer’s capacity and is thus
chosen for 40% of the routes. This is in contrast to the uniform routing scenario
where each mix routes on average 10% of the messages. With a biased routing,
the adversary is able to fully compromise αF = 6.4% of routes, in contrast to
αF = 0.1% of routes in the case of uniform routing. We then evaluate the effect
of uniform vs biased routing on average anonymity using the entropy metric. We
show that biased routing enables the adversary to not only compromise many
more routes but also diminish average anonymity for the remaining messages.
Based on these results we conclude that uniform routing is the best choice from
an anonymity perspective.
End-To-End Latency: The average end-to-end latency in a multi-hop overlay
routing aggregates the latencies at each layer the message traverses. Given that
the latency at each hop is composed of network propagation time τ , packet
processing time δ, and the additional time µ the message spends in the mix for
anonymity—where µ is the mean of an exponential distribution representing
the mix delay— the overall latency can be calculated as follows:

De2e = µL + (τ + δ)(L + 1) (3.2)

We, therefore, need to adjust the per-mix latency µ when choosing the number
of layers L, in order to have a fair comparison of mixnets configurations all
providing the same average end-to-end latency De2e. The time τ required for
messages to traverse the internet at each hop can vary significantly. Mixes within
an overlay network can be distributed globally, making network propagation
latency subject to various factors, including characteristics of the geographical
distance, transmission medium, routing devices, and network congestion. We
study the anonymity impact of propagation latency variability by comparing
three scenarios with the same average τ : (i) constant propagation latency of
τ = 50ms for all links; (ii) variable latency per link sampled from a uniform
distribution U [10, 90]ms; and (iii) a different propagation delay per mix. These
three simplified network propagation models provide a sense of the impact of
inter-mix propagation variability on anonymity. We refer to other work that
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provides a thorough model of network propagation latency and its impact on
anonymity in mixnets [71]. We show that when µ is larger than the propagation
latency τ the average anonymity is the same regardless of whether network
propagation times are considered fixed or variable. On the other hand, if µ
is orders of magnitude smaller than τ (Figure 5b), the variation of τ has an
anonymity impact that makes message tracing harder for an adversary, and
this impact is exacerbated with the number of layers in the mixnet.

3.2.2 Methodology1

Optimizing the number of layers and the width of the mixnet: Our
proposed method for optimizing mixnet design parameters consists of three
main steps. First, we set the deployment scenario and the external constraints
(average end-to-end latency De2e and traffic volume λU ). Second, we set a
threshold β (0 < β < 1) that defines the maximum tolerable fraction of
compromised routes. Note that 1

β represents the average number of messages
that need to be sent to have one fully compromised route: if we set the worst
case threshold at ‘one in a thousand’ messages then β = 0.001, while lowering
the tolerance to ‘one in a million’ messages corresponds to β = 10−6. Given
the range of values of the number L of layers and the number W of mixes
per layer , we want to optimize, we compute αF for each of the values. We
then discard parameter values that result in αF > β, while keeping those that
result in αF ≤ β as candidates for the next step. The third and final step
computes entropy-based anonymity, in order to find the value that maximizes
average anonymity in addition to satisfying worst-case anonymity constraints.
For this third step, we consider two adversaries of interest: the constant fraction
adversary and the constant budget adversary. The constant fraction adversary
controls a subset of B mixes that is a constant fraction b of the total number of
mixes N . When considering this adversary, the number B of malicious mixes
grows proportionally to network size. The constant budget adversary on the
other hand controls a constant number B of malicious mixes that do not change
when the network grows, with adversarial mixes therefore becoming a smaller
fraction of the total network as it scales up. This adversary is of interest for
systems such as the Nym network where competition among mixes for finite
resources may impose a practical cap on the number of new mixes the adversary
can introduce when the network grows. In a nutshell, our methodology is as
follows: given the deployment scenario (average end-to-end latency De2e and
traffic volume λU ), we find the number of layers and the number of mixes
that optimize anonymity (according to the entropy and the fraction of fully
compromised routes metrics) under different threat models.

1This section reuses text from our publication [4].
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Our method includes (i) an analytical framework to compute the rate of fully
corrupted paths given a level of adversarial compromise, which defines worst-
case anonymity; (ii) an empirical method for selecting the network width and
number of layers to maximize average anonymity, and (iii) an evaluation of
the effectiveness of mix-based dummy traffic strategies to support anonymity
levels in low-traffic scenarios. Our results show that the optimal number L
of mixnet layers depends on the combination of adversarial compromise and
end-to-end latency. Tighter latency constraints lower L, while higher adversarial
compromise increases L. We note that L remains small (maximum six layers)
in all considered scenarios, due to the harmful effect of thinning traffic per mix
when layers are added as end-to-end latency remains constrained.
In terms of network width, narrower networks are better towards adversaries
that compromise a fraction of the network, while slightly wider networks
become optimal when adversaries are limited in the number of mixes they
can compromise.
Dummy traffic: Throughout this work, we emphasized that the volume
of traffic, determined by the number of users and their message generation
rates, is considered an external factor, and hence mixnet size should be chosen
accordingly. However, it is important to note that in most applications, users
do not send messages at a constant rate. Instead, the flow of traffic varies
according to users’ habits and is influenced by the specific application in use,
leading to fluctuations in traffic volume. These fluctuations can cause traffic
to either peak or significantly decrease at different times throughout the day.
Although mixnet size, including the number of layers and number of mixes per
layer, can be updated regularly, these adjustments typically occur in epochs
rather than on an ad-hoc basis in order to avoid problems such as message loss
and overhead of distributing updated network information to all clients.
To address the challenge of maintaining anonymity during periods of sudden
low traffic in an oversized network, we explore the strategies of dummy traffic.
We evaluate two simple mix-based dummy traffic strategies, the first involves
dummies that travel just one hop, offering a cost-effective solution, while
the second strategy involves dummies that follow multi-hop routes and are
discarded at the final hop. We evaluate these two strategies under a GPA
with no corruption and with various rates of corruption (10%, 20% and 30%).
We find that under rather small rates of corruption, inexpensive link-based
dummies significantly improve anonymity up to the same level as the multi-hop
dummies. However, when adversarial control of the mixnet is expected to
be more than 20%, the more computationally expensive multi-hop dummies
offer more anonymity. Our contributions are further elaborated in Part II,
Publication 2.
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3.3 Different traffic types

The current state-of-the-art in mixnet research focuses on individual use cases for
each mixnet. This approach results in traffic from particular applications, such
as email clients, remaining separate from traffic originating from other types
of applications, for example, messaging apps. Alternatively, when blending
different traffic from different applications does occur, all messages’ delays
are adjusted to have the same average end-to-end latency. However, this
approach is not ideal. For applications that can tolerate latency, reducing
delay might decrease their anonymity. Conversely, applications with strict
latency requirements may suffer from excessive end-to-end latency, affecting
the usability of the system. It is evident that users exhibit varying levels of
latency tolerance depending on the application. For instance, users display
higher latency tolerance for cryptocurrency transactions, with a transaction
reaching up to 10 minutes for Bitcoin.2 On the other hand, users demand lower
latency for instant messages, emails, and are even more strict when it comes to
web page loading, where response times should not exceed 2 seconds [37]. While
studies indicate that other factors beyond speed, such as user experience and
the different application features [63], influence users’ choice of one application
over another, the delivery speed of messages remains a critical factor of users’
satisfaction [12,65].
In [32], Dingledine et al. suggest that users can choose between security and
speed when they send messages. The scheme that the authors propose works for
round-based protocols by giving users a parameter α which they can increase
if they want more anonymity and decrease it if they want more speed. This
parameter will determine the number of rounds each message stays inside the
mix before it is being flushed. The authors show that by assigning different α
values, the overall anonymity of the system increases. This work was not initially
proposed to blend various traffic types from different applications. However,
this method closely resembles a scheme in which messages originating from
different applications have distinct average delays. These different delays would
not stem from users selecting a specific security score (and hence a different
delay) for each message they send, but rather, would occur naturally because
the messages originate from different applications. Within continuous mixnets,
this approach can be implemented by sampling the per-mix delays from different
exponential distributions, each having a different parameter.
The primary challenge in blending different traffic types within continuous
mixnets is that the anonymity evaluation becomes complex. As discussed
previously, with a single traffic type, all messages exiting a mix are equally

2https://medium.com/klaytn/a-comparison-of-blockchain-network-latencies-
7508509b8460.
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likely of being an input target message [4, 5, 24, 69]. However, blending multiple
traffic types disrupts the memoryless property of the exponential distribution,
complicating the computation of probabilities. Thus, we need a novel analytical
method in order to be able to calculate the probability that links a target input
to an output message. While the complete theoretical analysis is detailed in
Part II, Publication [3], we provide an overview of the intuition behind deriving
these probabilities using a simplified example of a single mix in the network in
the following section.

3.3.1 Analysis for one mix:

In this work, we assume that the adversary knows the number of traffic types
blended together within the mixnet, which we denote by d. It is also assumed
that the adversary is able to identify the types of input messages from the
client side. Although it might seem counterintuitive, given that mixnet-based
systems typically employ cryptographic schemes to obscure such details, user
behavior and traffic patterns could still inadvertently reveal the traffic types.
Let’s consider a scenario where the adversary observes two messages, m1 and
m2, entering the mixnet at different times, with m1 being the target message. If
we assume both messages belong to the same traffic type, the probability of the
first message leaving the mix is 1

2 = 0.5, due to the exponential distribution’s
memoryless property. However, if we introduce two distinct traffic types, where
each message belongs to a different traffic type the memoryless property does
not apply. This needs a new method to calculate the probability of an output
message being the targeted input which is given by:

Pr[m′
1 = m1|mtarget ∈ T1 ∧ O] = λ1∑d

j=1 kjλj
(3.3)

Given that the adversary knows the type of traffic of all incoming messages,
this means that he also knows that there are kj input messages of each type
Tj , j ∈ {1, 2, . . . , d} inside the mix. The numerator denotes the rate delay λ1
of the type of traffic the target input belongs to (T1) and the denominator is
the aggregate of the number of messages from different types of traffic (kj)
weighted by their respective delay rates. This means that there is a bias for
the message m′

1 to be a specific incoming message depending on the per-mix
delay values of the different traffic types. For instance, let’s say we have two
types of traffic: T1 with an average delay d1 = 1 (meaning that λ1 = 1) and
the second message belongs to the second type of traffic T2 with an average
delay d2 = 100 (meaning that λ2 = 0.01). Suppose that these two messages
arrive at the same time, intuitively the first message is more likely to leave first
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due to its shorter delay rate compared to the second, which is reflected by the
probability calculation of Pr[m1 = mtarget] = 0.99 using Equation (3.3).
Generalisation: After the first message leaves the mix, we need to calculate
the probability of the next outgoing message being the target message. At this
phase, the adversary lacks information about the remaining number of messages
that belong to each traffic type (kj). Additionally, any message arriving after
the first departure influences these quantities and, consequently, the probability
calculations. Hence, we account for every possible combination of the different
kj . Moreover, when the network includes multiple mixes, the adversary lacks
knowledge about the type of traffic of each message, resulting in probabilistic
methods to estimate the probability of each outgoing message being a certain
traffic type. Furthermore, we explore situations where the adversary does not
know the traffic type of incoming messages, as well as cases where the traffic
type is identifiable at the recipient’s end. Upon completing our probability
analysis, we investigate the anonymity implications of blending traffic types
with various latency requirements in a single mixnet, as opposed to dedicating
a different network per traffic type.

3.3.2 Impact of Blending Different Traffic Types

We updated the simulator from [5] by including the above probability derivations.
We evaluate the impact of blending traffic types, each characterized by a
distinct average end-to-end latency, with per-mix delays sampled from different
exponential distributions, on the overall anonymity provided by the mixnet.
Additionally, users generate and send these messages according to different
generation parameters each corresponding to a different traffic type. Following
the approach of previous work in this thesis, our anonymity evaluation uses the
entropy metric, selecting a target message, mtarget, from each traffic type. At
the end of the simulation, every received message is assigned a probability of
being mtarget, which is then used in the entropy metric.
In our evaluations, we explored the impact of various generation rates per
traffic type, delay parameters, threat models, and mixnet configurations on
the anonymity provided by the mixnets for messages from each traffic type.
We found that mixing different types of traffic within one mixnet improves
anonymity compared to using separate mixnets each dedicated to one traffic
type; in other words, adding messages with longer delays to a mixnet already
handling messages with short delays enhances the anonymity for both types of
traffic. We also examined the impact of changing traffic volumes. For example,
reducing the amount of one type of traffic and replacing it with another type that
has a longer average delay generally increases the anonymity for the first type
of traffic. However, the degree of improvement in anonymity varies, especially
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as the difference in delays between the traffic types grows. When the delay
difference is very large, the benefit in terms of anonymity to the traffic with
shorter delays decreases. This is due to the adversary’s near ability to distinguish
between the two traffic types solely based on the differences in the per-mix
delays. While the anonymity for any traffic type never falls below what it would
be in a mixnet dedicated to just that type of traffic, the optimal anonymity
needs to be evaluated accordingly as the increase of anonymity for each type
of traffic depend on various factors such as the amount of traffic of each type,
the rate delays and the number of layers. The delay parameter assigned to a
particular traffic type influences not just the anonymity of messages within that
type, but also the messages from different traffic types. Finally, our analysis
included scenarios where a single message from one traffic type is mixed with
messages exclusively from another type. In such cases, this solitary message
gains a notable increase in anonymity, an important difference from having no
anonymity at all when it remains unblended.

3.4 Adversaries with Partial Visibility

So far our threat model exclusively considered a GPA that may additionally
compromise mixes. However, as Syverson argues, in security analysis most
adversaries are subject to some constraints and the success of an adversary’s
attack depends on their available resources and effectiveness [81]. Currently,
there is a notable gap in the literature regarding methods to model and analyze
anonymity properties with respect to an adversary who has partial visibility
of the network. For instance, consider the case of Nym [25] in its current
deployment. Even though the majority of ISPs may share information among
themselves, some might not.3 Hence the questions of how to analyze the
anonymity properties in scenarios where specific message paths partially go
through uncovered areas remain open. One challenge in evaluating anonymity
under such an adversary is that their advantages in inferring information about
messages in a network vary greatly depending on which portions of the network
they have visibility over. Deriving the probability of an event analytically,
considering such an adversary, requires the use of conditional probabilities based
on the different assumptions about the portions of the network visible to the
adversary. Even in the case of a simple network, the complexity of deriving
such probabilities increases substantially.

3https://www.dailydot.com/debug/sonic-isp-privacy/.

https://www.dailydot.com/debug/sonic-isp-privacy/.
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3.4.1 A matrix-based model

In order to perform traffic analysis under an APV, we first need to model
the mixnet in a way that captures this adversary. As explained earlier the
adversary is modeled by its goal, prior knowledge and capacity. In other words,
the adversary, having a prior knowledge about the network and its constraints,
observes the network for an amount of time t, and tries to infer a probability
of an event she is interested in and which happened either entirely or partially
outside of her visibility. We denote the prior knowledge of the adversary about
the network constraints by C, by O its observation (the parts of the network
where the adversary has the ground truth) and by HS the Hidden State which
is the part of the network the adversary does not have under its visibility. The
probability that the adversary is trying to estimate is therefore the probability
Pr[HS|O, C]. We then need to model the entire trace of the network which
is the full set of paths of all messages that traversed the network during the
adversary’s observation in a way that allows us to perform traffic analysis from
the perspective of adversaries with partial visibility.
We note that (HS,O) represents the full trace of the network. We split each
message path into segments so that we can differentiate between the parts of each
path that an adversary can see and the parts that they cannot see. We model
each mix mixi by two set of vertices; VI(mixi) represents the input messages
and VO(mixi) represents the output messages. The connections between these
inputs and outputs provide a matrix that represents the mix mapping of input
and output messages. Additionally, we must also represent the connections
between mixes where messages are routed, since the adversary is a partial
adversary and hence may not be able to see the full path. Therefore we also use
the two sets of vertices VI(mixi) and VO(mixi) to represent the connections
between the different entities (which can be either a mix, a sender or a receiver)
of the network. In other words, we consider two types of matrices (i) inner-mix
matrices that represent the inside of the mix and (ii) the inter-entities matrices
that represent the connections between two entities. The full network trace is
then represented by a set of adjacency matrices.

Definition 3.4.1 (Adjacency Matrix). Let G = (V, E) be a graph, where V is
the set of vertices and E is the set of edges. Then an adjacency matrix Mx is
a matrix with |V| columns and |V| rows, where row i and column i are both
labeled by vertex vi ∈ V, for i ∈ [1, |V|]. Element (i, j) of Mx is 1 if the edge
(vi, vj) ∈ E and 0 otherwise.

The motivation behind this modeling is two-fold: First, using this model we
are able to trace any message by simply following the matrices with value
1 that connects the edges in the different matrices. Second, it allows us to
accommodate the adversary in our model; the inter-entity matrices represent
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monitoring capability of the adversary and the inner-mix matrices represent
compromising capability. For example if an adversary is corrupting a mix, we
put the corresponding matrix in the observation O and the rest of the matrices
representing other mixes in the hidden state HS. For the inter-entity matrices
however, depending on which portions of the network the adversary monitors,
the same matrix has to be split into O and HS.

3.4.2 Methodology

We explain in this section how to conduct traffic analysis in mixnets under an
APV.
Metropolis Hastings: The Metropolis–Hastings method samples states by
conducting a random walk across a state space. In our context, a state is the
Hidden State HS of the trace. The main component of the Metropolis–Hastings
method is the ratio αnext_move with which we decide whether or not to accept
the proposed state HSp. αnext_move is given by:

αnext_move = Pr[HSc|O, C] ∗Q(HSp|HSc)
Pr[HSp | O, C] ∗Q[HSc|HSp] (3.4)

In order to move from a current Hidden State HSc to a proposed Hidden State,
HSp we first choose a matrix from the modeled trace at random. This matrix
can be an inner-entity matrix (a mix) or an inter-entity matrix. Then we choose
two columns from this matrix (which corresponds to vertices in the network) at
random to swap. This provides a new Hidden State HSp which we then use to
compute αnext_move.
Network Representation: Recall that the adversary’s goal is to be able
to estimate Pr[HS | O, C]. However, this is not obvious. We need to rewrite
rationext_move as follows:

αnext_move = Pr[HSc | O, C] ∗Q(HSp | HSc)
Pr[HSp | O, C] ∗Q[HSc | HSp] ▷ Bayes’s rule

= Pr[HSc,O | C]/Pr[O | C] ∗Q(HSp | HSc)
Pr[HSp,O | C]/Pr[O | C] ∗Q[HSc | HSp]

= Pr[HSc,O | C] ∗Q(HSp | HSc)
Pr[HSp,O | C] ∗Q[HSc | HSp]

= Pr[T Rc | C] ∗Q(HSp | HSc)
Pr[T Rp | C] ∗Q[HSc | HSp]

(3.5)

Computing the αnext_move is therefore reduced to computing the probabilities
of the different traces T R given the network constraints C.
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In a simplified stratified mixnet assuming uniform routing, each network trace
is simply the set of message paths:

Pr[T R|C] =
∏

P ∈T r

Pr[P |C] (3.6)

Any system can have a variety of constraints, such as paths lengths [83], user
constraints in choosing nodes based on geo-locations, having a biased routing,
etc. These constraints need to be accounted for when computing Pr[T R|C]. We
compute this probability for various network constraints in Part II, Publication
4.
Traffic analysis in mixnets under an APV: Putting everything together,
we update the simulator used throughout this work to include this method. We
start by defining the network constraints, number of mixes, type of routing etc.
Users send messages to their corresponding receivers using these constraints
which result into the ground truth. We translate these messages’ paths into
a set of inner-entity and inter-entity matrices. We define the adversary by its
goal (for example, if sender S1 is communicating with receiver R1) as well as
the parts of the network the adversary has visibility over and the parts of the
network that belong to the hidden state. We divide the matrices into two sets O
and HS accordingly and finally we execute the Metropolis Hastings algorithm
in order to sample the different hidden states. Each time a hidden state is
accepted by the algorithm we check if the goal of the adversary is reached.
We evaluate our model for two types of adversaries, one with compromising
capabilities and one with monitoring capabilities. Unlike the previous work
presented in this thesis, this is the first time we do not consider a GPA, rather
the adversary is able to control only a portion of the network.
We assess the accuracy by running the Metropolis Hastings algorithm on Ntr

number of traces for the same adversary each time using a different ground truth
trace. After each run of the algorithm, we record the probability ptr to the event
of interest and P (T RGT ) as an occurrence. We call an occurrence positive when
P (T RG) = 1 and we call an occurrence negative when P (T RG) = 0. Once
we have our full data set (ptri

, occurrences) tuples, we compare the average
inferred probability to the confidence score on the occurrences. We use the
Wilson score interval [89], as it has been shown to be the most accurate [85] of
binomial confidence intervals. The Wilson score takes a number of successes
and a number of failures as inputs, and outputs the probability of success along
with the 95% confidence interval. We show that our model is effective when the
adversary is rather strong, meaning have access to a large portion of the network.
However when the adversary is very weak, the probabilities of a given goal
depend greatly on where the event happened. In this case, these probabilities
are no different from the a priori knowledge. We elaborate on this analysis
in Part II, Publication 4.





Chapter 4

Conclusion and Future Work

“It may be necessary to have
unanswered questions in order to
continue living, struggling, and
searching.”

Ghada Al-Samman

4.1 Conclusion

Online activities have become essential to society’s needs; however, unfortunately,
to meet these needs, technology has been developed in a way that has escalated
privacy violations and surveillance to a critical level. This reliance on privacy-
invasive technologies is likely to worsen, particularly with proposals like
eIDAS [13] and CSAM [14].
Shoshana Zuboff in [90] argues that this level of surveillance is driven by what she
calls surveillance capitalism, where major companies such as Google, Amazon,
and Facebook created an economic model based on the collection, analysis,
and commercialization of data. We have reached a point where even the NSA
acknowledges that users are essentially paying for their own surveillance.1

Gürses et al. in [43] go beyond software consumption and emphasize that to
better understand privacy, we should also examine the software production
processes. The authors argue that the introduction of agile methods has resulted

1https://billmoyers.com/story/smartphone-users-paying-for-own-surveillance/
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in software production being carried out in shorter iterations with continuous
code reviews making software increasingly data-intensive.
The discussion around technology and surveillance however should not revolve
around the binary choice of living without technology or accepting it as it
currently stands. Instead, the critical question we must address is: how can we
ensure privacy?
While we have managed to write the first part of this thesis without defining
privacy, it is now time to conclude with an attempt to explain what privacy
means and entails. As noted by Fiebig in [36] “Privacy is an elusive term with
myriad facets and interpretations”. Solove emphasizes that the definition of
privacy evolves with technological advancements and cultural contexts [79].
To accurately define privacy is hard, however, researchers, lawyers, and
policymakers have developed several principles that constitute what we call
“privacy by design” [9,42,45,73]. While there is not, and perhaps should not
be, a definitive checklist of what privacy by design is, Seda Gürses in [41]
identifies three paradigms: privacy as contextual integrity, privacy as control,
and privacy as confidentiality. Privacy as contextual integrity, articulated by
Helen Nissenbaum in [62], focuses on the appropriateness of information flows
within specific contexts. She argues that privacy is maintained when personal
information is shared according to the norms governing various social contexts
and violations occur when information is shared in ways that deviate from these
established norms. Privacy as control suggests that when there are mechanisms
such as transparency and accountability in place, users can make informed
decisions and have greater control over the collection and flow of their personal
information. However, as Jaap-Henk Hoepman notes in [45], this paradigm
implies that personal information is binary, suggesting that some data is either
personal information or not, which is a misconception often held by lawyers.
The confidentiality paradigm considers any exposure of information as a loss
of privacy. Privacy is holistic, meaning that where information leaks in one
part of a system it can violate the privacy expectations of different parts of the
system [44]. We note two main principles in this paradigm: (i) no single point
of failure, meaning trust minimization and (ii) data minimization, meaning that
the system design should only include data that is strictly necessary for it to
function. This paradigm highlights the intrinsic connection between privacy
and security; when systems centralize trust and collect data on a single entity,
it is assumed that a data breach will occur at some point, compromising both
security and privacy. As Preneel emphasizes “privacy is a security property” [70].
ACNs are an important part of this paradigm and represent a crucial step
forward. ACNs, such as mixnets, hide metadata, which is essential for providing
privacy and protecting against mass surveillance.
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The work presented in this thesis contributes to the systematic evaluation
of mixnets across various configurations, design choices, and threat models.
We have explored research questions in mixnets by developing empirical and
analytical methods. We started our work by creating a network simulator that
evaluates the anonymity provided by various mixnets, each characterized by
distinct design choices. This tool facilitated a deeper understanding of how these
design decisions intersect. Furthermore, using this simulator, we introduced a
methodology that enables us to choose mixnet parameters, such as the number
of layers, the total number of nodes, and the rates of dummy traffic, in a way
that optimizes anonymity. This approach is grounded in two metrics: entropy
and the fraction of fully compromised paths.
We also provided the first study of the anonymity provided by continuous mixnets
when blending multiple traffic types. We calculate the probabilities of linking
an input message to an output message under different threat models including
an adversary who has knowledge about incoming messages, outgoing messages,
and compromising a portion of the mixnet. This method was incorporated into
our simulator to evaluate the anonymity under varying traffic distributions,
delay averages, and network setups.
Lastly, we presented a generic matrix-based model for mixnets suitable for traffic
analysis against adversaries with partial visibility over the network. Using a
Bayesian approach and the Metropolis-Hastings algorithm, we presented the
first traffic analysis technique that captures such an adversary. It is our hope
that these contributions lay a foundational framework that informs the future
design of mixnets and deployment on a large scale.

4.2 Future Work

Building upon the contributions of our research, we present below a list of
potential avenues for further exploration and investigation. We propose two
short-term projects and two long-term projects, acknowledging that privacy is
holistic and should consider technological, ethical, and legal aspects.
Bridging Theoretical Assumptions with Practical Implementations:
In this thesis, we made several simplifying assumptions in order to concentrate
on core unanswered questions of mixnets. Nonetheless, future research should
aim to bridge the gap between theory and practice by incorporating real-
world scenarios into mixnet evaluations. This would enhance their practical
applicability and scalability. Specifically, investigating the impact of traffic
distribution patterns and geographic diversity on mixnet performance and
anonymity is crucial. Additionally, examining usage patterns of data could
inform more accurate mixnet parameterization. To accomplish this, future
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work could involve collecting and analyzing traffic data from diverse sources to
gain a deeper understanding of actual traffic behaviors. Although we believe
our findings will remain valid, integrating real-world scenarios could provide
additional insights.
Towards an Advanced Network Emulator: Enhancing MiXiM for
Advanced Research in Mixnets: Shadow [47] is a tool for Tor [39] research,
blending simulation and emulation by executing applications as Linux processes
and running them as a discrete-event network simulation. Released in 2011,
it has since then been endorsed by the Tor community for research and
experimentation, to facilitate the testing of design proposals and attacks.
Without such a simulator, experimenting on the live Tor network can be
problematic due to deployment complexities and especially privacy concerns.
Having such a tool prevents the redundancy of each researcher creating their
own Tor network simulator. However, given that Tor is fundamentally different
from mixnets, adapting Shadow for mixnet simulations is a difficult task. Our
research began with the development of MiXiM, incorporating mixnet building
blocks while abstracting away several network layers, such as cryptographic
operations, message buffering, and network protocols. Future work on mixnets
should further develop MiXiM, aspiring for it to become a tool akin to Shadow.
Such an effort would require effort from the broader community.
AI and Mixnets: In the era of AI and deep learning, the need for privacy
is more critical than ever. Despite the data-intensive nature of AI algorithms,
we argue that these technologies can also be leveraged to enhance privacy.
In [64], the authors provide the authors demonstrate one of the first AI attacks
against mixnets, by using deep learning algorithms in correlating packet flows
as well as proposing countermeasures to such attacks. Given that mixnets
were initially developed before the widespread adoption of AI, it is crucial to
further enhance their effectiveness and resilience in the face of sophisticated deep
learning analyses and attacks. This line of research is essential for advancing the
integration of powerful AI algorithms with mixnet research, aiming for clearer
and more impactful outcomes.
ACNs for At-Risk Communities: The lessons learned in this thesis are
valuable for improving mixnets in general scenarios; however, we need to
consider specific use cases to truly enhance their anonymity, utility, and future
deployment. Exploring the use of ACNs for vulnerable groups is crucial. This
includes evaluating how mixnets and ACNs can serve activists, individuals in
women’s shelters, and other at-risk populations, whose privacy needs and threat
models may differ significantly from the broader public. It is essential to develop
PETs tailored to unique contexts, emphasizing user-friendly designs, strong
anonymity, and defenses against specific threats. By organizing workshops
with various activists and human rights organizations as well as engaging in
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multidisciplinary fields we can have a better understanding of the various
unique privacy needs and challenges. Wang et al. set the standard for future
designs in PETs [86]. By combining rigorous research and collaborations with
key organizations active in the field, they present a safe and secure digital
aid-distribution system, demonstrating the practical application of privacy by
design principles. Similarly, Tor has exemplified how to build a project for
at-risk communities such as activists and journalists by organizing workshops,
publishing blogs, and continuously enhancing usability so that it does not differ
significantly from other major browsers. These efforts have made Tor more
accessible and user-friendly, thereby increasing its adoption and effectiveness in
providing privacy on the network level against local adversaries.
“Anonymity loves company” as put by Dingledine et al. in [31] and hence for a
mixnet-based system to be deployed and used at a large scale, lessons should be
learned from several projects. Privacy on the network level achieved by ACNs
is only one piece of the puzzle to achieve privacy and resist mass surveillance,
nevertheless a crucial one. In almost every privacy and security conference,
the importance of metadata is frequently discussed, highlighting the challenges
for deploying ACNs. We hope that this thesis has answered several important
questions and that future research will build upon it.
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MiXiM: Mixnet Design Decisions and Empirical
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Iness Ben Guirat1, Devashish Gosain2, and Claudia Diaz1
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Abstract. In this paper we present MiXiM, a simulation
framework for mixnets that allows researchers to evaluate different
design options and their tradeoffs. This framework is flexible
and allows to quickly run experiments to assess combinations of
mixnet building blocks, such as mixing strategies and network
topologies, as well as study the effect of different parameters
related to each component. The framework provides results for a
number of metrics including anonymity, end-to-end latency and
traffic overhead.

1 Introduction

In the last decades, a variety of overlay networks [2, 12, 15, 18, 20] have been
proposed to provide communication anonymity, meaning that in these networks
it is not possible to find out who is communicating with whom. Mixnets are
a type of anonymous communication network that aims to be secure against
global network adversaries, who observe all communications in the underlying
network. Even though the concept of mixnets [1] predates onion routing [10]
by more than a decade, and early mixnet deployments [3, 16] were operative
before Tor, their uptake has remained far behind for years, mainly due to their
higher computational requirements, added latency, and lack of industrial-quality
implementations. In recent years however a number of mixnet designs have
been proposed [12, 15, 18] and currently the Nym network is implementing a
mixnet-based anonymity network already deployed as a testnet prototype [6].
Like other types of anonymity networks, mixnets are complex systems with
many components and parameters, including mixing strategies, routing policies,
and dummy traffic strategies. Questions like—what is the best combination of
mixing strategies and topologies, or what is the impact of the number of mixes
per layer on anonymity, etc. have not been explored systematically.
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Each of these components and its parametrization can have a significant impact
on the anonymity provided by a network. In order to select components and
tune the parameters of a mixnet configuration, designers need to be able to
evaluate the anonymity resulting from possible design decisions in different
conditions. Simulation is commonly used in research studies on the Tor network,
particularly in instances where the experiments that need to be conducted would
endanger actual users if they were deployed in the live network. Instead, many
attacks on Tor can be evaluated with Shadow [13] in a safe manner. Shadow
provides an isolated environment for simulating Tor network communications.
It produces traces and logs that can be further analyzed to assess what an
adversary would be able to learn with access to different subsets of the logged
data.
In this paper we introduce MiXiM, a generic mixnet simulation framework to
evaluate anonymity in different designs and configurations. MiXiM’s level of
abstraction focuses on elements core to anonymous routing, including mixnet
topology, routing policy, mixing algorithms, cover traffic and mix corruption.
We focus on documenting the metadata such as packets sources, destinations and
timings exposed by the mixnet, while making abstraction of data payloads and
cryptographic operations. In addition, MiXiM captures a number of relevant
metrics (latency, bandwidth overhead etc.) that can be used to study tradeoffs
between anonymity, performance and cost. The simulator and all related tooling
are publicly available.3

2 Background and related work

A mixnet is an overlay network of mixes. Mixes are servers that
cryptographically transform and reorder messages, such that inputs are
unlinkable to outputs both in terms of message appearance and timing—even
by an adversary who can monitor all the messages going in and out of the
mix. Message reordering can be achieved with different “mixing” strategies [8].
MiXiM presently supports four popular algorithms:

• Threshold Mix: A threshold mix [1] buffers messages in the queue until a
set number T (threshold parameter) is reached. At that point the mix
permutes the T messages, flushing them in a random order.

• Timed Mix: A timed mix buffers messages in the queue for a set time
interval (timeout). When the time is elapsed, the mix permutes the
messages it has collected in the interval, flushing them in a random order.

• Pool Mix: These are a variation of both threshold and timed mixes where,
instead of flushing all messages, a fraction of messages is kept [3]. MiXim

3https://gitlab.esat.kuleuven.be/Iness.BenGuirat/mixim

https://gitlab.esat.kuleuven.be/Iness.BenGuirat/mixim
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supports pool mixes but they are left out of the experiments presented
here due to space limitations.

• Stop-and-Go Mix: a SG-mix [14] processes messages individually and
continuously in time. Each received message is kept for a random amount
of time (sampled from an exponential distribution) and sent out when
the time has elapsed. Due to the memory-less properties of exponential
distributions, individual delays result in a reordering of the sequence of
messages that has high entropy [4].

Mixnet topology is the arrangement that defines how mixes are inter-
connected in the mixnet and thus which routes (sequences of mixes) exist
for messages to follow.

• Cascade: In this topology, all messages traverse a fixed sequence of mixes
forming a chain with a predetermined order: each mix sends messages to
the next mix in the cascade [1]. A single cascade cannot scale to handle
more throughput than that of a single mix. Thus, if more capacity is
required, multiple cascades can run in parallel [2, 11].

• Stratified: In stratified or layered topologies mixes are arranged in a fixed
number of layers where each mix, at any given time, is assigned to only
one specific layer. The layers are interconnected such that each mix in
layer i receives messages from mixes in layer i − 1 and sends messages
to mixes in layer i + 1. There are two variants of stratified topology, (i)
Fully connected where mixes in layer i can send messages to all mixes in
layer i + 1, and (ii) Not Fully connected where mixes in layer i can send
messages to only a subset of mixes in layer i + 1.

3 MiXiM Framework

The MiXiM framework consists of configuration files that define the mixnet
environment, a discrete-event simulator that instantiates and executes the
network, producing observations that are logged to files, and analysis scripts to
process the log files and extract empirical results.

3.1 Configuration

Configuration files define the topology of the mixnet, routing policy, client and
network traffic characteristics, and optional features such as cover traffic and
mix corruption. These configuration values are input to the simulator that
instantiates the network and its components (as processes) and then simulates
its execution by generating and processing events.
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C Total number of clients
λC Mean rate of message generation per client

mix-type Timed, threshold, pool, or Poisson
T0 Timeout between mix flushes (Timed mix)
T Threshold parameter (Threshold mix)
µ Mean message delay (Poisson mix)

net-type Cascades, Stratified Fully Connected (FC) or Restricted
l Path length

NM Number of mixes
λD Mean rate of dummy traffic per mix
α Fraction of corrupted mixes

Table 1: Summary of notation for Publication 1.

Client information: Sets the total number of clients C, the message generation
rate per client λC , and the duration of the simulation.
Mixing information: Sets the mix types with their parameters e.g., µ for
Poisson mix, timeout for Timed mix, and threshold for Threshold mix.
Topology information: Sets the topology with its parameters e.g., number
of layers, the number of mixes per layer, the number of cascades, etc.
Optional information: If desired, a system designer can also generate dummy
traffic. In MiXiM, dummy traffic is generated according to a Poisson process
with parameter λD. In addition, MiXiM supports mix corruption where α is
the fraction of corrupted mixes. Table 1 provides a handy reference for all the
parameters.

3.2 Implementation

The MiXiM simulator is a discrete event simulator. It is built with SimPy4

and models all the building blocks of a mixnet as described in Section 2. The
components (mixes, clients, and messages) are processes that exist in the
same environment. Once the mixnet parameters are chosen, MiXiM loads
the configuration file and instantiates the simulation environment where all
processes live in. They interact with the environment and with each other via
events.
The simulator instantiates the mixnet as follows: first it creates the Network
process according to the configuration, including the number of mixes, the
topology, the types of mixes and the number and positions of corrupt mixes.
Then MiXiM instantiates each of the Mixes with their specific descriptions

4A python discrete event simulation library, https://simpy.readthedocs.io/en/latest/
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(types and parameters). After this step, Client processes are created that in
turn generate and send Messages. We model client message sending behaviour
as a Poisson process5 with the parameter λC . MiXiM can be extended to
implement alternative distributions to model other client sending behaviours
that may be of interest.
The simulator runs for the specified time and then computes the evaluation
metrics from the log files. Since MiXiM is a discrete event simulator, simulation
time and "wall-clock" time do not progress in-step. We denote the simulation
time unit of SimPy as tu. Furthermore, upon start-up the network requires a
burn-in period time to become stable. Stability means that each mix in the
mixnet is receiving and transmitting the expected number of messages following
the specified parameters in the configurations files.
MiXiM evaluates the anonymity of messages that are transiting the network once
it is stable. The simulator logs all relevant information (probability distributions
over messages, latencies, etc.) to files. The final stage of the workflow is the
analysis step where scripts6 parse these log files to compute the results. We use
entropy as metric for anonymity [9].

3.3 Entropy

Entropy is an information theoretic measure of the uncertainty associated
with a random variable. In anonymous communications, entropy captures
the uncertainty of an adversary about which is the target message of interest
amongst all of the other messages in the network that it could be confused
with. The larger the size of this set and the more uniform the probability
distribution of being the target among all the messages, the more anonymous is
the target [9, 19].
In MiXiM when all the mixes are stable, the simulator automatically chooses a
target message mt. The simulated adversary starts to track all the M messages
in the network, including the target. Because the target message, as well as
all the messages in the network, goes through multiple mixes—where they are
delayed and shuffled with other messages—the adversary assigns a probability,
0 ≤ Pr[mi = mt] ≤ 1, to each message of being the target message, with
i = 1 . . . M . After the experiment ends, the simulator computes the entropy of

5Poisson processes are extensively used to model natural phenomena, such as user message
sending habits.

6The framework provides scripts for all the analysis conducted in this paper. However, the
logging feature is extensible and can allow additional evaluations with new scripts.
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the probability distributions defined by Pr[mi = mt] to evaluate anonymity, as:

−
M∑

i=1
Pr[mi = mt] · log2(Pr[mi = mt])

4 Mixnet building blocks

In this section, we demonstrate the usefulness of the simulator by walking
through a rather simple yet complete mixnet-based system assessing the different
parameters and design decisions.

4.1 Mixing

In this experiment we study the impact of different mixing strategies on
anonymity (ref. Section2 for more details on mixing strategies).
Experimental setup: We set the average end-to-end latency Le = 1s, the
number of clients C = 100 and two values of λC i.e., λC = 1 and λC = 10. In a
Poisson mix Le = 1s translates to µ = 1, while in a timed mix it corresponds
to a timeout T0 = 2s. Given the considered message rates λC , we adjust the
threshold parameter T to achieve Le = 1s and perform a fair comparison. This
results in the following parameter values:
For C · λC = 100: µ = 1, T0 = 2s, T = 200.
For C · λC = 1000: µ = 1, T0 = 2s, T = 2000.

Figure 1: Impact of mixing strategies on entropy.

Result: In Figure 1 it is evident that the three types of mixing provide
approximately the same entropy, with a slight advantage for Poisson mixing.
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4.2 Topologies

Mix cascades are a classical design [1] that has been used in many proposals,
such as XRD [15], Vuvuzela [12], and cMix [2]. Stratified topologies have been
recommended as optimal topologies for anonymous routing in prior studies [7]
and are used in systems such as Loopix [18]. Although XRD [15] and Loopix [18]
seem different, they are both designed for scalability, aim at hiding metadata,
and are capable of storing messages. The main differences between the two
types of designs are (1) topology: Vuvuzela, cMix and XRD’s topology consists
of organizing the mixes into small chains (cascades) each acting as a local
mixnet, while Loopix is a fully connected stratified network; and (2) mix types:
Threshold vs Poisson. Inspired by these designs, we experimentally compare
three types of topologies i.e., fully connected stratified, not fully connected
stratified, and multiple cascades.
Multiple cascades have the drawback of splitting the anonymity set: users who
are connected to one cascade are completely distinguishable from users who are
connected to another cascade. To avoid this problem, XRD [15] implements a
rather sophisticated scheme of cascade selection. The scheme guarantees that
every pair of users have at least one cascade in common, as shown in Figure 3.
Since our aim is to analyze the impact of underlying topology on anonymity,
we do not include all the features of Loopix and XRD, and only compare their
topologies. For example in XRD, every client connected to Nc cascades, sends
Nc − 1 dummy messages each time they send a real message. Moreover, every
message (either real or dummy) goes through a different chain. This is very
expensive in terms of bandwidth and thus we chose to ignore this feature.

Figure 2: Impact of different topologies on entropy.

Experimental setup: Since we already studied the impact of different mixing
strategies and our aim in this experiment is to analyze the impact of topologies
on anonymity, we consider Poisson mixing for all the experiments and only
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vary the network topology. We evaluate the following network topologies for
C = 100 and two values of λC = 1 and λC = 10:

• Fully connected (FC) stratified: 3 layers of 6 mixes each.
• Restricted (not fully connected) stratified: 3 layers of 6 mixes each, but

each mix is only connected to 2 mixes in the adjacent layers.
• XRD (multiple cascades): 6 cascades of 3 mixes each.

Figure 3: Arrangement of cascades in XRD.

Figure 3 represents the scenario where we simulate C = 100 clients, that results
in 4 sets of 25 users each (as per XRD scheme). Every set is connected to one
group of 3 cascades. Suppose we have 6 cascades Ci, i = 1 . . . 6, then users’
sets are connected to the following cascades respectively: Set1 = {C1, C2, C3},
Set2 = {C1, C4, C5}, Set3 = {C2, C4, C6}, Set4 = {C3, C5, C6}. It must be
noted that each pair of user sets intersects with every other set in at least one
cascade. This scheme guarantees that the set of users is not split into disjoint
subsets.
Results: Figure 2 shows that even though we have the same amount of traffic,
same mix types and same number of nodes, the network topology greatly
influences the level of anonymity: stratified topologies, and in particular fully
connected, provide more anonymity than multiple cascades. This is due to
the fact that the second layer of mixing aggregates all messages in one large
anonymity set, while in cascades the users of each cascade remain partitioned.

4.3 Layers and Average Delay

To build a mixnet based system, another important parameter to decide on is
the the number of layers. On one hand adding layers will make the messages
mix with each other more therefore anonymity will increase, but on the other
hand adding layers increases the risk of packet loss. Additionally, to increase
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anonymity one might also opt for increasing the average delay of each message
per mix [5].
Experimental setup: In Figure 4, we show results for C = 100 with λC = 10,
a stratified topology of 10 mixes per layer, with all mixes as Poisson mixes. We
study the impact of the number layers l and the average delay for each message
per mix µ on anonymity.

Figure 4: Variation of entropy depending on the number of layers and the
average delay of each message per mix.

Result: Increasing the latency of messages in each mix has a higher impact
on anonymity than adding layers. In fact, after 4 layers the entropy barely
increases. However going from an average delay of 0.1tu to 10tu per mix in 3
by 10 topology will increase anonymity by more than 6 bits which means an
increase of anonymity set size that is 26 = 64-fold.

4.4 Mix Corruption

We now evaluate anonymity for different fractions mixes that are controlled
by the adversary. For these mixes the adversary knows with full certainty the
correspondence between inputs and outputs, rather than having probabilistic
information on possible correspondences.
Experimental setup: In Figure 5 we show results for a fully connected
stratified topology with 10 Poisson mixes per layer with µ = 0.1, and C = 100
clients with sending rate λC = 10. We increase the number of layers and study
the impact of different fractions of mix corruption on anonymity.
In the previous subsection we showed that, with zero corruption, anonymity
does not substantially increase after 3 layers. However, when considering mix
corruption, we observe that more layers results in better anonymity. For instance
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Figure 5: Impact of fraction of corruption (α) on entropy.

in Figure 5, for 40% corruption, anonymity in a three layer topology has a high
standard deviation compared to a four or five layer topology. This is because
the chances of a message traversing a fully corrupted path (i.e., encountering
a corrupted mix in each layer) are higher when the number of layers is small.
With three layers a non-negligible fraction of messages (6%) traverse a fully
corrupted path.

4.5 Cover Traffic

Oya et al. [17] described two types of cover traffic: (i) Client-based dummy
traffic and (ii) Mix-based dummy traffic. Since we assume that all messages are
cryptographically indistinguishable, client-based dummy traffic is considered
the same as real traffic. Therefore any change in the amount of traffic, real
or client-based dummy, will impact the anonymity in exactly the same way.
Mix-based dummy traffic has a different effect, and next we evaluate its impact
on anonymity.
Experimental setup: We evaluate anonymity while varying the rate of client
traffic λC (for C = 100 clients) and mix-based dummy traffic λD. In Figure 6
we show results for a 4 (layers) by 10 (mixes) fully connected stratified topology
of 40 Poisson mixes with µ = 0.1.
We observe in Figure 6 that dummy traffic significantly increases anonymity
when the amount of real traffic is low. E.g., when λC = 0.1 (real traffic is
C ·λC , i.e., 10 messages/tu), the median entropy increases from 0 to 5 bits with
sufficient dummy traffic. However, when the amount of real traffic is high (when
λC = 10) adding dummies does not have any major impact on anonymity.
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Figure 6: Impact of mix dummy traffic on entropy.

5 Conclusion

Mixnets are anonymous communication networks that provide anonymity
against a passive global network adversary. Mixnets have many parameters,
e.g., number of layers, types of mixes, underlying topological structure, real
and cover traffic rates, number of clients, etc. These parameters interplay
in complex ways to provide a certain level of anonymity to routed messages.
Thus, in this paper we proposed MiXiM, a framework with which one can
i) efficiently understand the interplay of these parameters and, ii) evaluate
and design mixnet configurations. MiXiM already supports a variety of design
options and configurations that can be easily extended to conduct further studies
and perform systematic evaluations of mixnet designs.

Acknowledgments

We would like to thank Tariq Elahi for early discussions and feedback on this
work. This research is partially supported by the Research Council KU Leuven
under the grant C24/18/049, by CyberSecurity Research Flanders with reference
number VR20192203, and by DARPA FA8750-19-C-0502. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of any of the funders.



70 MIXIM: MIXNET DESIGN DECISIONS AND EMPIRICAL EVALUATION

References

[1] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–88, 1981.

[2] David Chaum, Farid Javani, Aniket Kate, Anna Krasnova, Joeri Ruiter,
Alan T Sherman, and Debajyoti Das. cMix: Anonymization by high-
performance scalable mixing. Technical report, 2016.

[3] Lance Cottrell. Mixmaster and remailer attacks, 1995.

[4] George Danezis. The traffic analysis of continuous-time mixes. In
International Workshop on Privacy Enhancing Technologies, pages 35–50,
Berlin, Heidelberg, 2004. Springer.

[5] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate.
Anonymity Trilemma: Strong anonymity, Low Bandwidth Overhead, Low
latency - Choose two. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 108–126, 2018.

[6] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. The Nym Network.
https://nymtech.net/nym-whitepaper.pdf, February 2021.

[7] Claudia Diaz, Steven J. Murdoch, and Carmela Troncoso. Impact of
network topology on anonymity and overhead in low-latency anonymity
networks. In Proceedings of the 10th International Conference on Privacy
Enhancing Technologies, PETS’10, pages 184–201, Berlin, Heidelberg, 2010.
Springer-Verlag.

[8] Claudia Diaz and Bart Preneel. Taxonomy of mixes and dummy traffic. In
Information Security Management, Education and Privacy, pages 217–232.
Springer, 2004.

[9] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards
Measuring Anonymity. In Proceedings of the 2nd International Conference
on Privacy Enhancing Technologies, PET’02, pages 54–68, Berlin,
Heidelberg, 2002. Springer-Verlag.

[10] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13, SSYM’04, page 21, USA, 2004. USENIX
Association.

[11] Nethanel Gelernter, Amir Herzberg, and Hemi Leibowitz. Two cents for
strong anonymity: The anonymous post-office protocol. In International
Conference on Cryptology and Network Security, pages 390–412. Springer,
2017.

https://nymtech.net/nym-whitepaper.pdf


REFERENCES 71

[12] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich.
Vuvuzela: Scalable private messaging resistant to traffic analysis. In
Proceedings of the 25th Symposium on Operating Systems Principles, pages
137–152, 2015.

[13] Rob Jansen and Nicholas Hopper. Shadow: Running Tor in a Box
for Accurate and Efficient Experimentation. In Proceedings of the 19th
Symposium on Network and Distributed System Security (NDSS). Internet
Society, February 2012.

[14] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-And-Go-MIXes
Providing Probabilistic Anonymity in an Open System. In International
Workshop on Information Hiding, pages 83–98. Springer, 1998.

[15] Albert Kwon, David Lu, and Srinivas Devadas. XRD: Scalable Messaging
System with Cryptographic Privacy. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pages 759–776,
Santa Clara, CA, February 2020. USENIX Association.

[16] Nick Mathewson and Roger Dingledine. Mixminion: Strong anonymity for
financial cryptography. In Proceedings of Financial Cryptography (FC ’04),
pages 227–232. Springer-Verlag, LNCS 3110, February 2004.

[17] Simon Oya, Carmela Troncoso, and Fernando Pérez-González. Do
dummies pay off? limits of dummy traffic protection in anonymous
communications. In International Symposium on Privacy Enhancing
Technologies Symposium, pages 204–223. Springer, 2014.

[18] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and
George Danezis. The loopix Anonymity System. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1199–1216, Vancouver, BC,
August 2017. USENIX Association.

[19] Andrei Serjantov and George Danezis. Towards an information theoretic
metric for anonymity. In Proceedings of the 2nd International Conference on
Privacy Enhancing Technologies, PET’02, pages 41–53, Berlin, Heidelberg,
2002. Springer-Verlag.

[20] Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar,
Michael Backes, and Claudia Diaz. A survey on routing in anonymous
communication protocols. ACM Computing Surveys (CSUR), 51(3):1–39,
2018.





Publication

Mixnet Optimization Methods

Publication Data

Ben Guirat, I., and Diaz, C. Mixnet optimization methods.
Proceedings on Privacy Enhancing Technologies (2022), 456–477

Contributions
• Principal author.

73





Mixnet Optimization Methods

Iness Ben Guirat and Claudia Diaz

COSIC, KU Leuven, Belgium

Abstract. We propose a method to optimally select mix network
parameters for a given deployment context and adversarial model.
Our method considers both worst-case and average-case anonymity
and selects configurations that meet worst-case constraints while
maximizing average anonymity. We apply our methods to mixnet
size optimization to determine the number and width of mixnet
layers, and provide results for various deployment and adversarial
scenarios. For cases where the deployment context suddenly
changes (drop in user traffic) we evaluate countermeasures based
on mix-generated dummy traffic and show that inexpensive link
dummies can significantly boost protection in some of these cases.

1 Introduction

A mix network, or mixnet, is an overlay network of mix nodes that routes
messages anonymously from senders to receivers [7, 8, 15, 21, 31, 37, 40, 45].
Messages are encrypted by senders multiple times using, e.g., the Sphinx packet
format [16], and then routed through a sequence of mix nodes. Each of the
mix nodes decrypts, pads and re-randomizes messages to make its output
messages cryptographically unlinkable to its input messages. Mix nodes also
retain messages for a randomized amount of time to alter their flow and make
node inputs and outputs probabilistically unlinkable with respect to message
order and timing.
Even though the concept of mixnets [7] predates onion routing [26,28,29] by
more than a decade, and early mixnet deployments [10, 40] were operative
before Tor,1 their uptake has remained far behind for years, mainly due to
their higher computational requirements, added latency, and lack of industrial-
quality implementations. In recent years however, given a renewed interest in
anonymity systems that resist global network adversaries, novel mixnet-based
anonymity network designs have been proposed [31, 35, 45] and currently Nym2

1https://www.torproject.org
2https://nymtech.net
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is developing a mixnet-based anonymity network [21], already deployed as a
testnet prototype that counts thousands of nodes.3

Traffic analysis is a collection of statistical methods to make inferences from
available metadata, in particular: a data transmission’s source, destination, size
and timing [14]. The traffic analysis of mixnets yields probabilistic information
that describes the likelihood of input messages corresponding to outputs [12,
20, 32, 45, 47, 48, 51, 52, 53]. This likelihood is greatly affected by the mixnet
parameters, with some configurations providing significantly better protection
from traffic analysis than others. Notably, this includes the network topology
parameters, which describe the network size, how nodes are connected, and
how multi-hop routes are selected [4,50]. A suboptimal design can provide very
poor privacy – or even no protection at all: while the anonymity trilemma [19]
is informative of the theoretical upper bound on the anonymity that an abstract
system can offer given conditions of traffic volume and end-to-end latency,
the practical lower bound for those very same traffic and latency conditions is
actually zero anonymity if the network is inadequately parametrized, e.g., if it
is grossly oversized.
Given an expected volume of user traffic, constraints on end-to-end latency,
and a threat model of concern, we currently lack methods to optimally select
mixnet parameters, e.g., to decide how many nodes the mixnet should have
and how they should be arranged to maximize protection from traffic analysis.
The observation that a limited network size is desirable so that traffic density
per mix node is sufficient for the mixing to be effective has been made in
prior work [11, 51]. We are however the first to propose a methodology to
systematically select mixnet parameter values given deployment and adversarial
constraints, which results in configurations that respect worst-case anonymity
bounds while maximizing average anonymity.
Our methods apply to a class of mixnets broadly defined by continuous-time
mixes [32] arranged in a layered network topology [21,45], considering adversaries
that observe all network connections in addition to controlling a subset of mixes.
We specify and justify our system model in Section 2, where we also describe
the considered adversarial capabilities.
We consider two anonymity metrics: (i) worst-case anonymity (expressed as
the probability of selecting a fully compromised route), and average anonymity
(given by the entropy of the probability distribution that relates a target input
to the mixnet outputs [25, 49]). In Section 3 we provide analytical methods
to compute worst-case anonymity and empirical methods to compute average
anonymity. Given these two metrics, we propose a mixnet parametrization
methodology in Section 4 that maximizes average anonymity while respecting
worst-case anonymity constraints.

3https://github.com/nymtech/

https://github.com/nymtech/
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We discuss our experimental setup in Section 5. We first show that variability in
network propagation delays and multi-core message processing can help prevent
message tracing in practice when the per-mix added latency is very small (these
effects become negligible as per-mix added latency grows larger). We then
show that uniform node selection per layer offers better anonymity than biased
capacity-based selection, which allows modest-budget adversaries to arbitrarily
increase the fraction of fully compromised routes.
Section 4 presents our optimization results. We first apply our methods to
optimizing the number of mixnet layers and show results for various end-to-end
latency constraints, considering different adversarial capabilities and worst-
case anonymity thresholds. We then apply the method to the mixnet width,
again considering various adversarial models. We finally consider scenarios
where a network optimized for a certain level of user traffic suffers a large
and sudden drop in traffic volume. We study two countermeasures based on
mix-generated dummy traffic. We find that link-based dummies are a cheap
yet effective strategy to support anonymity levels in scenarios with moderate
mixnet compromise. We expand by considering scenarios with higher levels of
adversarial compromise. Finally, we review prior work on mixnet optimization
in Section 7 and offer our conclusions in Section 8.

2 System and threat model

2.1 System model

There are two basic types of entities in a mixnet: end users who anonymously
send and receive messages, and mix nodes that act as intermediaries, routing
messages between senders and receivers. We model the user population as
sending messages with a rate that follows a Poisson process, considering high
and low traffic load scenarios. We consider source-routed decryption mixnets
of continuous-time mixes, with fully connected layered network topologies, and
three strategies for dummy traffic. The rest of this section explains and justifies
these choices.

2.1.1 Source routing

We consider decryption mixnets that are source routed, i.e., where the sender of
a message selects the route through the network until it reaches the receiver.
Preparing a message for sending requires encrypting it with public key material
of the mix nodes selected by the sender as intermediaries in the route. The
encryption is done in reverse order: starting with the recipient, adding a layer
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of encryption for each predecessor in the route, ending with the first mix node
that receives the message directly from the sender. Upon receiving a message,
mix nodes use their private keys to strip a layer of encryption and discover the
next hop in the route. After a randomized delay, the message is forwarded to
the next hop, which is either another intermediary mix node or the end receiver.
Sphinx [16] is the best known cryptographic packet format for source-routed
mixnet messages [21,45,46].
An alternative to decryption mixnets is re-encryption mixnets, which are
typically cascades where batches of encrypted messages are re-randomized and
provably shuffled multiple times before being threshold-decrypted [5, 30, 33, 38].
Such mixnets are specially tailored to voting applications as use cases that have
limited and predictable traffic volume, very high latency tolerance, and strict
public verifiability requirements. The anonymity provided by such re-encryption
cascades is essentially proportional to the size of the batch where a message
is mixed, considering the number of voting choices and distribution of votes
(e.g., if all voters vote for the same candidate, then there is no voting privacy
for anyone as everyone’s voting choice is revealed by the tally). Given their
limited range of application and straightforward anonymity tradeoffs (simply
dependent on batch size), we consider re-encryption mixnets as out of scope in
this paper, which focuses on the optimization of decryption mixnets for scalable,
general-purpose message-based communications [21].

2.1.2 Topology

The topology of a mixnet defines how mix nodes are inter-connected and which
routes (sequences of mixes) messages can follow. The earliest mixnet proposals
considered mix cascades, where a batch of messages goes through a fixed
sequence of mixes [7,43]. Cascades have however two main drawbacks: scalability
and fault tolerance. A single server has a performance limit, and thus parallel
cascades must be created in order to serve more users. As parallel cascades are
disjoint, they do not combine all users in one large anonymity set, failing to
take advantage of user growth to offer better anonymity [11,22]. This makes
cascades rather uninteresting for anonymity optimization. Furthermore, the
failure of a single node invalidates the whole cascade, making cascades very
vulnerable to server failures compared to other topologies [4, 27].
The other traditional anonymity network topology is free routes [10,26,36],
where nodes form a fully connected graph and any random walk in the path
(up to a maximum path length) is a valid message route. The evaluation
of anonymity in free route networks requires complex and inefficient analysis
methods, even for simple threshold-mix based mixnet designs [52]. Moreover,
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Figure 1: Layered mixnet with N = 15, L = 5, W = 3.

free route networks have been shown to offer worse anonymity than layered (or
stratified) topologies when compared in the same conditions [22,51].
In layered topologies mixes are arranged in a number of layers where each mix,
at any given time, is assigned to exactly one layer. The layers are interconnected
such that each mix in layer i receives messages from mixes in layer i− 1 and
sends messages to mixes in layer i + 1, as shown in Figure 1. Mixes in the first
layer receive messages from senders, while those in the last layer send messages
to end recipients. The path length of message routes is fixed and determined
by the number of layers. Valid message routes traverse a mix of each layer in
the correct order. Layers can be fully connected, meaning that all nodes of a
layer are connected to all predecessors in the previous layer and all successors
in the next layer, or restricted, i.e. subject to constraints where nodes connect
to a subset of predecessors and successors rather than all of them. Prior work
has found no significant difference between the anonymity provided by fully
connected and restricted layers [22].
In this paper we focus on layered networks with fully connected layers of the
same size. We assume the topology is periodically reshuffled to allow for churn
and adjust to changes in network scale. We also assume the assignment is
neither predictable nor biasable by an adversary, who cannot influence the
placement of malicious nodes in the layers. This can be achieved for example
by relying on a public random beacon and a verifiable random function as
proposed in [21]. We say a layered network has balanced layers if all L layers
have the same number of nodes or width W , with the total number of nodes
being N = LW . We choose networks with balanced layers as our baseline for
their better load balancing properties. For completeness, we also include results
for imbalanced layers, where some layers may have more nodes than others.

2.1.3 Mixing

In our model we consider continuous-time mixes with exponential delay [32]
as they are known to offer excellent anonymity properties [13] and also allow
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fine-tuning the added latency per mix node to offer predictable end-to-end
latency [21, 45]. This is in contrast to threshold and pool mixes [7, 37] where
latency varies with the traffic volume per mix (the more traffic, the less latency),
making them impractical for use cases that require latency to be within certain
bounds [23]. The per-mix delays are sampled by the message sender and encoded
in the Sphinx headers. Upon receiving and decrypting a message, a mix extracts
the delay from the header, keeps the message in its internal memory for that
amount of time, and then forwards it to its next destination.

2.1.4 Dummy traffic

Dummy or cover traffic are automatically generated messages introduced for
privacy purposes. Dummy messages contain no data payload and are discarded
by their final recipient. If the dummy messages follow multi-hop paths, they
are considered indistinguishable from actual messages at intermediate hops as
well as towards the underlying network, i.e., only the source and destination
of a dummy message know that it is a dummy message. Intuitively dummy
traffic enables unobservability properties [42], meaning that it is not possible to
tell whether a user is idle or actively communicating. In addition, by virtue of
increasing the mixnet traffic dummies also contribute to higher anonymity for
actual messages.
In this paper we consider three types of cover traffic, illustrated in Figure 2.
First, user-generated dummies destined to themselves (loops, as in Loopix [45])
or to others. We note that for all network purposes this traffic is equivalent
to real user traffic. Second, link-based dummies, this type of dummy traffic
is generated by mixes and it is dropped at the next hop. Third, partial-route
dummies are also generated by the mixes in all but the last layer, and dropped at
the last mixnet layer. This dummy traffic causes a linear increase of traffic load
transiting the network after each layer. Other dummy strategies are possible,
e.g., dummies can be generated by mixes and dropped by end users [39]. We
however consider this impractical as it requires mixes to maintain a list of end
user keys and addresses.

2.1.5 User traffic

We consider a user population U that, as a whole, generates messages following
a Poisson process with parameter λU messages per second, i.e., messages arrive
to the mixnet at intervals that follow an exponential distribution of mean 1

λU
seconds. We note that only messages generated by honest users (not controlled
by the adversary) are relevant to anonymity, and thus U and λU exclude
malicious users. Furthermore, users may generate end-to-end dummy traffic
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Client-based Dummies Mix-based Dummies: Dropped at L+1

Mix-based Dummies: Dropped at Last Layer

Figure 2: Types of Dummy Traffic.

destined to themselves or to other users. Since this end-to-end traffic follows the
same mixnet routes as real traffic and it is fully indistinguishable, we consider
that λU accounts for all honest-user-generated traffic, whether real or dummy.
Internet traffic varies per day and per hour of the day and large variations in
the amount of user traffic arriving to a mixnet are possible. We consider two
scenarios: (i) High volume user traffic (λU = 5000 messages per second) and
(ii) Low Volume user traffic (λU = 100 messages per second). We note that λU
is an external deployment constraint (not a parameter chosen by the mixnet
designer), and our methodology can be applied to any concrete value of λU .

2.2 Threat model

We consider global passive network adversaries that have a global view
on the network, meaning that they can observe all network links and take into
account all messages sent between any two participants (end users or mixes)
with their timing information. We assume messages have the same size, and thus
only timing information is exploitable to correlate a node’s inputs to outputs.
If the adversary in addition controls a set of malicious users, any messages
generated by those users are excluded from λU .
In addition, the adversary controls a subset of mix nodes. Mix nodes controlled
by the adversary provide no anonymity to the messages they route, as the
adversary knows the mapping between the inputs and outputs of malicious
nodes. This is contrast to honest mixes, for which the adversary can only obtain
probabilistic information linking their inputs and outputs based on message
arrival and departure observations [13, 32]. We consider two adversaries of
interest: the constant fraction adversary and the constant budget adversary.



82 MIXNET OPTIMIZATION METHODS

The constant fraction adversary controls a subset of B mix nodes that
is a constant fraction b of the total number of nodes N , i.e., B = bN , while
A = N − B denotes the number of honest nodes. When considering this
adversary, the number B of malicious mixes grows proportionally to network
size N . The constant budget adversary on the other hand controls a
constant number B of malicious mix nodes that does not change when the
network grows, with adversarial nodes therefore becoming a smaller fraction
of the total network as it scales up. This adversary is of interest for systems
such as the Nym network [21], where competition among mix nodes for finite
resources (representing node reputation) may impose a practical cap on the
number of new nodes the adversary is able to introduce when the network
grows.

3 Anonymity metrics

We evaluate anonymity in mixnets using two metrics: (i) fraction of fully
compromised routes [1, 6], and (ii) entropy [25, 49]. The metrics express
different aspects of anonymity, with the first focusing on worst-case scenarios
and the second on average-case scenarios. Table 1 provides a summary of the
notation used for the various relevant parameters.

3.1 Fraction of fully compromised routes

The fraction αF of fully compromised routes focuses on worst-case scenarios,
i.e. messages for which all anonymity is lost as the adversary can determine
with certainty the <sender, time, receiver> of the message. This happens when
the message passes through a fully compromised route, meaning that at every
mixnet layer, the node in the message’s route is adversarial. Note that the
inverse 1

αF
expresses the average number of messages that need to be sent to

choose one fully compromised route.
We analytically compute the expected fraction αF of fully compromised message
routes in a mixnet with L layers of width W and N = LW mix nodes, of
which A nodes are honest and B nodes are adversarial (A + B = N). We
consider networks of equal-capacity mix nodes where the topology is periodically
reshuffled, so that the adversary cannot choose where malicious nodes are placed
(in which layer). Let F denote the event of a fully compromised route. We
compute αF as a weighted average of the fraction of compromised routes over
all possible valid topologies Tv:
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Notation Description
N Total number of nodes
L Number of layers
W Width of the network

Wmin Minimum width of the network
b Fraction of adversarial nodes ( B

N )
De2e Average end-to-end latency

µ Average per-mix delay
τ Link propagation time
δ Per-mix processing time

λU Rate of user-generated traffic
λM Rate of mix-generated dummy traffic
A Number of honest nodes
ai Number of honest nodes in layer i
B Number of corrupted nodes
bj Number of corrupted nodes in layer j
F Event of fully compromised route
αF Fraction of fully compromised routes
β Maximum tolerated αF
Tv Valid topology
Te Topology with at least one empty layer
Topt Optimal adversarial topology
mi i−th message
mt Target message

PrL[mi = mt] Probability that output mi is the target
PrMix[mt] Probability that mt is in the mix

Table 1: Summary of notation for Publication 2.

αF =
∑
Tv

Pr(F|Tv) Pr(Tv) (1)

A valid topology Tv = (A,B) is defined by the number of honest and malicious
nodes present in each layer, A = {a1, a2, .., aL} and B = {b1, b2, .., bL} such that
it meets the following constraints:

∀i 0 ≤ ai ≤ A, 0 ≤ bi ≤ B (2)
L∑

i=1
ai = A,

L∑
i=1

bi = B (3)

∀i ai + bi = W (4)
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N = A + B = LW (5)

Pr(Tv) expresses the likelihood of occurrence of a certain valid topology Tv, and
given Tv, Pr(F|Tv) expresses the probability of choosing a fully compromised
route in that topology. In layered networks this means choosing a malicious mix
node at every layer. The choice of nodes in a message’s route is made uniformly
at random and independently per layer, and thus Pr(F|Tv) corresponds to the
product of the fraction of compromised nodes in each layer:

Pr(F|Tv) =
L∏

i=1

bi

ai + bi
(6)

Note that the adversary does not compromise any full route if he fails to populate
one of the mixnet layers, i.e. if bi = 0 for any layer i. At the other end of the
spectrum, the optimal topology Topt for the adversary (with highest fraction of
compromised routes) is when adversarial nodes are equally distributed across
layers, i.e. when bi = B

L , i = 1..L. In this adversarial best case, the fraction of
fully compromised routes is:

Pr(F|Topt) =
L∏

i=1

B
L

W
= ( B

N
)L (7)

3.1.1 Balanced layers

To compute the likelihood Pr(Tv) of a valid topology Tv = (A,B), we note
that in networks with balanced layers A and B are not independent. The
mapping of honest nodes A = {a1, a2, .., aL} is deterministic with respect to B
as ai = W − bi, and thus Pr(B) fully determines the likelihood of a topology
Pr(Tv) (the inverse is equivalent: fixing A fully determines B as bi = W − ai).
Pr(B) is modeled by a hypergeometric distribution that initially has a population
of size N , with B objects of interest, and W draws without replacement. The
number b1 of malicious nodes selected for the the first layer is given by:

Pr(b1) =
(

B
b1

)(
N−B
W −b1

)(
N
W

) (8)

The number bj of malicious nodes in the subsequent layers j = 2 . . . L − 1 is
given by a hypergeometric distribution with updated parameters to account for
the (honest and malicious) nodes already assigned to the previous layers:
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Nj = N −W (j − 1) (9)

Bj = B −
j−1∑
k=1

bk (10)

Pr(bj |b1, ..bj−1) =
(

Bj

bj

)(
Nj−Bj

W −bj

)(
Nj

W

) (11)

The last layer is deterministically composed by the leftover nodes:

bL = B −
L−1∑
k=1

bk (12)

Thus, the probability of a valid topology Tv = (A,B) with an assignment of
nodes to layers B = {b1, b2, .., bL} and A = {a1, a2, .., aL} with ai = W − bi ∀i
is given by:

Pr(Tv) = Pr(B) =
L−1∏
j=1

(
Bj

bj

)(
Nj−Bj

W −bj

)(
Nj

W

) (13)

Putting everything together, we obtain:

αF =
∑

B
(

L∏
i=1

bi

W
)

L−1∏
j=1

(
Bj

bj

)(
Nj−Bj

W −bj

)(
Nj

W

) (14)

Figure 3 shows αF in networks of a hundred nodes organized in two to five
layers, considering 10% to 30% adversarial nodes. We depict with stars the
value given by Pr(F|Topt) = ( B

N )L and find that it is a close approximation of
αF due to the small variance of the distribution (by the law of big numbers,
the variance of αF becomes smaller as the network size grows). Given that
B
N < 1, increasing the number L of layers exponentially decreases the fraction
of compromised routes, e.g., in a network where the adversary controls 10% of
the nodes, 1% of messages are compromised with 2 layers, one in a thousand
messages with 3 layers, one in ten thousand with 4 layers, and so on. Combined
with the message sending rate of users, αF determines the de-anonymisation
of messages over time. For example, if αF = 0.001 and λu = 5 messages per
second for a user u, it will take on average 1

αF ·λu
= 200 seconds for one of u’s

messages to be routed via a fully compromised route.
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Figure 3: Fraction αF for different values of L and B in a network of a hundred
nodes.

3.1.2 Imbalanced layers

In this section we develop an analysis analogous to the one in Section 3.1 for
the case of layered mixnets with imbalanced layers, i.e., mixnets where layers
have variable width. This is the case if the algorithm assigns nodes to layers
independently for each node, e.g., deriving the layer from the node’s public
key and a public random beacon [21]. We represent layer widths with a vector
(w1, w2, ..., wL), where wi is the width of layer i. Since the choice of layer is
made independently per node, the assignment is modeled by a multinomial
distribution with N trials, L categories and uniform probability 1

L over the
categories. The probability of having a layer size distribution (w1, w2, ..., wL) is
subject to the constraint that

∑L
i=1 wi = N and given by:

Pr(w1, w2, ..., wL) = N !∏L
i=1 wi!

( 1
L

)N (15)

We consider that only mixnet topologies with at least one node per layer are
considered valid, i.e., we require that ∀i wi > 0, to ensure that messages always
go through L mixes. If a topology selection results in a mixnet where wi = 0
for any layer i, the selection is discarded and the assignment is re-sampled with
updated randomness.
We consider that the N nodes are split into A honest nodes and B malicious
nodes, N = A + B, with distribution over the layers given by vectors A =
{a1, a2, .., aL} and B = {b1, b2, .., bL}, where wi = ai + bi. The fraction of
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compromised routes αF is computed with Eq. (1), subject to the constraints
expressed in Eq. (2), Eq. (3), and Eq. (5). The difference in node assignment
however does invalidate the constraint in Eq. (4), which is instead substituted
by:

∀i, ai + bi > 0 (16)

Given a valid mixnet topology Tv = (A,B), the fraction Pr(F|Tv) is computed
with Eq. (6). We now derive the distribution Pr(Tv) of valid topologies Tv =
(A,B), defined by the number of honest and malicious nodes in each layer,
A = {a1, a2, .., aL} and B = {b1, b2, .., bL}, subject to the already mentioned
constraints.
In imbalanced networks each node’s layer assignment is done independently,
and thus the probability Pr(A,B) of a topology (A,B) can be computed as
the probability of two independent assignments A and B, i.e., Pr(A,B) =
Pr(A) Pr(B). Pr(A) and Pr(B) are each described by a multinomial:

Pr(A = {a1, a2, .., aL}) = A!∏L
i=1 ai!

( 1
L

)
∑L

i=1
ai (17)

Pr(A = {a1, a2, .., aL}) = A!
LA

∏L
i=1 ai!

(18)

Pr(B = {b1, b2, . . . , bL}) = B!
LB ·

∏L
i=1 bi!

(19)

We recall that topologies with empty layers are discarded. We define Te as
the set of topologies with at least one empty layer, i.e., topologies that meet
the constraints in Eq. (2), Eq. (3), and Eq. (5), but violate the constraint in
Eq. (16) for at least one layer. We define a normalization factor Z that accounts
for the aggregate probability of choosing a topology that is discarded due to
empty layers:

Z = A!B!
LN

∑
(A,B)∈Te

(
L∏

j=1
aj !

L∏
k=1

bk!)−1 (20)

The probability of selecting a valid topology Tv = (A,B) that meets all
constraints is re-normalized considering (1 − Z), to account for discarded
topologies Te:
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Pr(A,B) = A!B!
(1− Z)LN

∑
(A,B)∈Tv

(
L∏

j=1
aj !

L∏
k=1

bk!)−1 (21)

Putting everything together we obtain:

αF = A!B!
(1− Z)LN

∑
(A,B)∈Tv

L∏
i=1

bi

ai + bi
(

L∏
j=1

aj !
L∏

k=1
bk!)−1 (22)

The results for αF in this case are nearly identical to those obtained for balanced
networks and shown in Figure 3, meaning that the expected fraction of fully
corrupt paths is the same regardless of whether layers are balanced or imbalanced.
Furthermore, in networks of a hundred nodes the variance is so low that αF
can be safely approximated by ( B

N )L.
As side observation, note that the optimal topology for the adversary in
imbalanced networks is a corner case where all mixnet layers but one have
a single node, which happens to be adversarial, with a lone layer containing all
the rest of nodes. The fraction of compromise in this case would be B−(L−1)

N−(L−1) .
Such scenarios are rare but possible in toy-sized networks but their likelihood
quickly becomes negligible for any realistic network sizes. Large networks have
overwhelming probability of being close to balanced for the same reason that
casting a fair die many times yields roughly the same counts for each side, with
relative variance only affecting small sample sizes.
We finally note that imbalanced layers do not present any advantage over
balanced layers, and as disadvantage they typically incur in a small loss of
overall mixnet throughput, which is bounded by the layer with the least capacity.
Furthermore, particularly in small networks, imbalanced layers present worst-
cases that provide more advantage to the adversary than the worst-case of
balanced networks. Therefore, we argue that network topologies with balanced
layers should be preferred when designing a mixnet, as they minimize capacity
waste caused by imbalances in the sizes of different layers and avoid scenarios
that could give outsize advantage to the adversary.

3.2 Entropy

Instead of a worst-case metric, entropy provides an average measure of the
number of candidate messages that the adversary confuses with a target
message [25,49]. Entropy metrics capture network scaling as their maximum
possible value grows with the number of users. An entropy of, e.g., 10 bits,
indicates that a message is as anonymous as if it was perfectly indistinguishable
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among about a thousand (210 = 1024) other messages, while 11 bits correspond
to perfect indistinguishability among 211 = 2048 messages. Note that the scale
is logarithmic, and that an increase of one bit of entropy doubles the size of the
equivalent perfect indistinguishability set, while a drop of one bit halves it.
Compared to worst-case metrics that only account for rates of fully compromised
routes, entropy metrics account for anonymity in all possible scenarios, weighted
by their likelihood of occurrence. For example, from a worst-case perspective it
does not matter whether the adversary can guess the sender of an anonymous
message with probability 1% or 99.9%; it only matters whether the adversary
can fully determine the sender (100% certainty), or not. Entropy metrics are not
as blunt as this binary determination and instead consider that messages can be
more or less anonymous depending on the uncertainty of the adversary about
the real sender. Thus, with entropy metrics a message for which the adversary
is almost certain of the sender is considered very similarly to a message for
which the adversary is completely certain of the sender – in contrast to worst
case metrics where the ‘almost’ case is considered adversarial failure and the
‘completely’ case adversarial success. Furthermore, entropy metrics account
for the probabilistic information obtained by network adversaries in addition
to corrupt adversarial nodes, while the worst-case metric is only dependent
on adversarial nodes and disregards probabilistic inferences made by network
adversaries (because nothing short of full route compromise is relevant to the
worst case).
Computing entropy metrics requires obtaining the probability distribution that
links a target input message to all possible output messages, or conversely
one target output to all possible inputs. Given the complexity of mixnets,
obtaining the relevant distributions cannot be done in a closed analytical form.
In line with prior work [22,23,45,51], we resort to using a discrete-event mixnet
simulator [2] that given an experimental setup generates message traces, defines
a subset of the traces as adversarial observations, and computes anonymity
given those observations.
We consider a user population that generates messages following a Poisson
process with rate λU messages per second sent to the mixnet. Messages are
routed through the mixnet until they reach their destination, and in the process
they leave traces that are used for anonymity evaluation. The simulation
environment allows the adversary to choose a target message mt and compute
the probability 0 ≤ PrL[mi = mt] ≤ 1 linking that target input to all possible
outputs mi after the last mixnet layer L, as illustrated in Figure 4.
For each target input mt, we are interested in the probability that each output
message mi may correspond to that target. We do so by associating a probability
Prl[mi = mt] to each message at layer l. Message probabilities are computed
iteratively per layer and updated each time a message enters and leaves a
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Figure 4: Probability distribution PrL[mi = mt] for a target input mt and all
output messages mi.

non-adversarial mix, as described in Algorithm 1. Messages that go through an
adversarial mix do not alter their associated probability, i.e., Prl[mi = mt] =
Prl−1[mi = mt] if the mix at layer l is adversarial.

Algorithm 1: Per-mix entropy update for mix at layer l = 1 . . . L

Result: Updated Prl[mi = mt].
Initialize:
PrMix[mt] = 0;
Pr0[mi = mt] = 1 if mi = mt;
Pr0[mi = mt] = 0 if mi ̸= mt;
while Simulation running do

if event(receive(mi)) then
PrMix[mt]+ = Prl−1[mi = mt];
pool+ = 1;

end
if event(send(mi)) then

Prl[mi = mt] = P rMix[mt]
pool ;

PrMix[mt]− = Prl[mi = mt] ;
pool− = 1;
Forward Message (mi)

end
end

Before entering the first layer, Pr0[mi = mt] is one for the target input mt

and zero for the rest of the input messages sent by users. PrMix[mt] denotes
the probability that the target is one of the messages in the current internal
memory (pool) of the mix and its initial value (before receiving messages that
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may be the target) is zero. The pool variable simply denotes the number of
messages that are currently inside a mix, waiting to be forwarded.
When a message mi is received by a mix in layer l, its associated probability
Prl−1[mi = mt] is added to PrMix[mt] to account for the increased probability
of mt being now in that mix. When a message mi leaves the mix, its updated
Prl[mi = mt] is a fraction of PrMix[mt], which is evenly divided by the number
of messages currently in the mix’s internal pool. This is because in continuous-
time mixes with exponential delays all of the messages inside a mix are equally
likely to be sent next, and thus the probability that a message in the pool
is the target, is uniformly distributed across all messages in the mix at any
given time [13]. The outputs of a mix in layer l have an associated updated
probability Prl[mi = mt] that is the input probability of mi for the receiving
mix in the next layer l +1. If the message is being delivered to its final recipient,
the probability PrL[mi = mt] is the value needed for the entropy calculation.
The anonymity of the target message is computed considering the probabilities
associated to the mixnet outputs mi sent to final recipients, as:

H = −
∑

i

PrL[mi = mt] ∗ log2(PrL[mi = mt]) (23)

We generate message traces using the open source MiXiM discrete event
simulator [3] (run on an Intel(R) Core(TM) i9-9920X with 3.50GHz CPU
and 132 GB RAM) and compute entropy for hundreds of targets mt. We
treat each target as an anonymity sample and then show average values or full
distributions (as boxplots). The number of targets depends on the scenario: for
pure network adversaries (b = 0) we choose 200 targets, while for adversaries
that corrupt a fraction of the mixnet (b > 0) we increase to 1000 targets. This is
because scenarios with corrupted nodes have outliers for messages going through
corrupt nodes that need to be properly sampled.

4 Methodology

Our proposed method for optimizing mixnet design parameters consists of three
main steps. First, we set the variables that define the considered adversary
(selection of b corrupted fraction or B corrupted nodes) and the deployment
scenario (average end-to-end latency De2e and traffic volume λU ). These
variables represent external constraints that the system design needs to optimize
for. Second, we set a threshold β (0 < β < 1) that defines the maximum
tolerable fraction of compromised routes. Note that 1

β represents the average
number of messages that need to be sent to have one fully compromised route: if
we set the worst case threshold at ‘one in a thousand’ messages then β = 0.001,
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while lowering the tolerance to ‘one in a million’ messages corresponds to
β = 10−6. Given the range of values for a mixnet design parameter we want to
optimize, we compute αF for each of the values. We then discard parameter
values that result in αF > β, while keeping those that result in αF ≤ β as
candidates for the next step. The third and final step computes entropy-based
anonymity, in order to find the value that maximizes average anonymity in
addition to satisfying worst-case anonymity constraints.

5 Experimental setup

5.1 Baseline parameters

As part of the first step of the methodology previously outlined, we select
baseline values for the adversary and deployment models as follows:

• As baseline, we consider scenarios where adversaries control 10% of the
nodes, i.e., where b = 0.1. In specific experiments, we also consider
scenarios where adversaries do not control any nodes (b = 0), scenarios
with larger fraction of corrupted nodes (b = 0.2 and b = 0.3), and scenarios
with a constant number of corrupted nodes (B = 9, B = 15 and B = 30).

• In terms of end-to-end latency, we consider as baseline that De2e = 1
second. In specific experiments however we also consider end-to-end
latencies of 2, 5, 0.5, and 0.25 seconds.

• In terms of traffic load, the baseline scenario considers λU = 5000 messages
per second. When evaluating dummy traffic we also study scenarios where
the traffic suddenly drops to just λU = 100 messages per second.

In terms of parameter choices, we argue that De2e = 1 second is a tolerable
end-to-end average latency for, e.g., broadcasting transactions to be included in
a blockchain or for email applications. In terms of volume, Mastercard processes
5000 transactions per second,4 which gives a sense of the volume that could
be expected in a broadly used payment application if transactions would be
routed via a mixnet. Besides these baseline parameters we test other values for
comparison (e.g., lower traffic volumes of just 100 m/s, and latencies between
0.25s and 5s). We note that our main contribution is a method that can be
used for any latency and volume constraints of interest in concrete deployments,
rather than specific results for a specific configuration.

4https://applevisaservices.com/blog/faq-how-many-visa-transactions-per-second.html
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5.2 Per-mix exponential delay

In multi-hop overlay routing, the end-to-end latency is the aggregation of the
latencies incurred at the intermediate hops in the route, each corresponding to
a layer in the mixnet. In turn, the latency at each hop is composed of three
elements: the network propagation time τ , the packet processing time δ, and
the time that the packet dwells in the mix for anonymity purposes, which is
sampled from an exponential distribution with mean µ seconds. Given a mixnet
with L layers, the message passes by L mix nodes and L + 1 links, and needs
to be processed by L mixes in addition to the final recipient. The average
end-to-end latency can be expressed as:

De2e = µL + (τ + δ)(L + 1) (24)

In Section 6.1 we adjust the per-mix latency µ when comparing mixnets with
different number of layers L, to fairly compare configurations that provide the
same average end-to-end latency De2e. For this we consider average network
propagation and packet processing times τ + δ = 50ms, and set µ as:

µ = De2e − (τ + δ)(L + 1)
L

(25)

In the next two sections we study the impact of variable propagation and packet
processing times on anonymity calculations.

5.3 Network propagation delay

In practice, the time τ taken by messages to travel through the internet in each
hop may be highly variable. Nodes in an overlay network may be located
all around the world, and network propagation times are proportional to
geographical distance (ultimately bounded by the speed of light and in practice
by a fraction of that speed). For example, distances of 500 Km can be covered in
just 10ms while intercontinental distances may take over 100ms [34]. Thus, the
propagation latency of a route is dependent on the relative geolocations of the
nodes in the route. Furthermore, varying transmission medium characteristics,
asymmetric and dynamic routing, congestion, and other effects introduce
further variance in network propagation latency. Building a model of network
propagation latency into a simulator that accurately predicts specific real-world
deployment scenarios is a challenging task. Thus, we study the anonymity
impact of propagation latency variability by comparing three scenarios with
the same average τ : (i) constant propagation latency of τ = 50ms for all links;
(ii) variable latency per link sampled from a uniform distribution U [10, 90] ms;
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and (iii) a different propagation delay per mix that is randomly assigned but
kept constant for all the received messages throughout the simulation. These
three simplified network propagation models provide a sense of the impact of
inter-mix propagation variability on anonymity.

(a) Fixed vs variable propagation delay
when µ = 100ms

(b) Fixed vs variable propagation delay
when µ = 0.1ms

Figure 5: Anonymity with fixed vs variable propagation delays τ .

Our results are shown in Figure 5 for mixnets with different per-mix average
latency µ and number of layers L (and thus various De2e latencies). When µ is
larger than the propagation latency τ (Fig. 5a) the average anonymity measured
in simulations is the same regardless of whether network propagation times are
considered fixed or variable. On the other hand, if µ is orders of magnitude
smaller than τ (Fig. 5b), the variation of τ has an anonymity impact that makes
message tracing harder for an adversary, and this impact is exacerbated with
the number of layers in the mixnet. The main effect leading to this anonymity
increase when considering variable propagation times whether changing per
message or just per mix, is that more output messages are possible matches for
a target input, since the window of likely output matches starts earlier (the
message could have been lucky to travel via links with low propagation delay)
and ends later (the message could have been unlucky and travel via links with
a lot of delay).
Based on these results, we conclude that considering constant propagation delays
is a conservative assumption that seems to provide a lower bound on anonymity.
Considering variable τ risks overestimating anonymity if the modelled variance
is larger than the actual variance present in a concrete real-world mixnet
deployment.
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5.4 Non-uniform mix capacities

So far we have assumed ‘uniform routing’, i.e., that routing choices per layer
are uniform in the number of nodes W in the layer, spreading the traffic
load equally over all mix nodes in the network. In this section we consider
networks with ‘biased (capacity-based) routing’, i.e., that allow for different
node capacities and that select nodes for a route proportionally to the share of
capacity that each node contributes to its mixnet layer. Capacity-based routing
has two advantages: first, it is more inclusive, as even participants with limited
resources can contribute to the network; and second, it better utilizes available
resources, as some mix nodes are able to process more packets than others, and
their extra capacity is wasted with uniform routing.
We compare anonymity for both types of routing (uniform and biased) in a small
mixnet of N = 30 nodes organized as a WxL = 10x3 network, considering the
baseline parameters provided in Section 5.1: λU = 5000 messages per second,
De2e = 1 second, and b = 0.1 fraction of corrupted nodes, i.e., B = 3 adversarial
nodes.
Regardless of the type of routing, from a worst-case anonymity perspective the
adversary compromises zero routes whenever no adversarial nodes are present in
a layer. In this example αF = 0 whenever the network topology is different from
the optimal adversarial topology Topt = (A,B) that corresponds to A = {9, 9, 9}
and B = {1, 1, 1}. We thus focus our comparison on topologies Topt.
Next, we observe that adversaries can be expected to introduce high-capacity
nodes in order to maximize route captures (αF ). Introducing many nodes in
a staking-based system such as the Nym network can be very costly, as the
adversary may need to spend millions of dollars to acquire enough stake to control
a high percentage of nodes, or otherwise build enough reputation to persuade
other stakeholders to delegate millions to support adversarial nodes [21]. In
contrast, the additional cost of computing and bandwidth resources that provide
significantly larger-than-average node capacity is in the range of thousands of
dollars, orders of magnitude less and within the budget of a broader set of
adversaries.
We consider that the adversary introduces nodes with 6x more capacity than the
average honest node. Thus, in each layer of W = 10 nodes the adversarial node
has 40% of the layer’s capacity and is thus chosen for 40% of the routes. This
is in contrast to the uniform routing scenario where each node, including the
adversary’s, routes 10% of the messages. Using Eq. (7), we can see that in this
example biased routing allows the adversary to fully compromise αF = 6.4% of
routes, in contrast to αF = 0.1% of routes in the case of uniform routing; i.e.,
a 6-fold increase in adversarial bandwidth and computing resources yields a
64-fold increase in the rate of worst-case compromise.
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As final step we examine the effect of uniform vs biased routing on average
anonymity, and show the results in Figure 6. The red bloxplots show the entropy
distribution when considering a network adversary that does not control any
mixnet nodes. In this case both uniform and biased routing provide the same
level of average anonymity. The blue boxplots show results when the mixnet
contains three adversarial nodes, which route 10% of messages per layer in
the uniform case and 40% in the biased case. In this case we can see that
compared to uniform routing, biased routing enables the adversary to not only
compromise many more routes (worst-case anonymity) but also diminish average
anonymity for the remaining messages. Based on these results we conclude
that uniform routing is the best choice from an anonymity perspective and
consider uniform routing policies in our remaining experiments. We note that
volunteer-based networks like Tor [29] benefit from flexibility as that allows
everyone to contribute even if they have limited capacity – and thus enforcing
uniform routing in such networks comes with the cost of excluding prospective
node operators with capacity limitations. In commercial networks like Nym [21]
however, nodes are rewarded for operating the network, and it is thus possible
to set a minimum capacity requirements and penalize with lower rewards the
nodes that fail to perform.

Figure 6: Anonymity with uniform vs biased routing considering no adversarial
nodes (red) and 10% of adversarial nodes (blue).
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6 Optimization results

6.1 Optimizing the number of layers L

We first apply the methodology outlined in Section 4 to address the question:
given a deployment scenario and adversary model, what is the optimal number
L of mixnet layers? We consider a mixnet that routes λU = 5000 messages per
second and that has a width of W = 10 mixes per layer, meaning that each
mix routes on average 500 messages per second.5 We consider that the average
end-to-end latency De2e is fixed per optimization experiment and evaluate
anonymity for a range of possible De2e values, from 0.25 to 5 seconds. We first
consider a global network adversary that can observe all links but does not
control any mix nodes, i.e., B = b = 0. Next, we consider an adversary that, in
addition to globally observing the network, also controls b = 10% of nodes in
the mixnet.

6.1.1 Global network adversary

In the case of adversaries that do not control any nodes in the mixnet (B = 0),
the fraction of fully compromised routes αF is zero for any number of mixnet
layers L ≥ 1. Worst-case anonymity constraints are therefore satisfied for all
possible values of β.
Next we turn to examining average anonymity. Figure 7a shows the mean
entropy as a function of the number of layers L for different values of De2e. As
we can see in the results, when B = 0 the optimal number of layers is L = 2 for
all values of the end-to-end latency De2e. As expected, anonymity values are
higher for higher De2e [19]. Note that for L = 1, messages are partitioned in W
subsets with disjoint anonymity sets (similarly to how they would be in parallel
cascades), and thus the anonymity of L = 1 is naturally inferior to L = 2, which
aggregates all messages in one large anonymity set. This effect would be further
exacerbated with higher W , as W increases the partitioning.
Thus, assuming that all mix nodes are honest, a second mixnet layer achieves
the best possible mixing for any end-to-end latency. Adding more layers implies
wasting more time in propagation between layers, and leaving less latency
budget for delaying messages inside the nodes (and thus mixing them in bigger
pools). Entropy drops to zero and messages are fully distinguishable when
all the latency is wasted on propagation and mixes simply forward messages
without adding any random latency to reorder them. Considering a propagation

5The currently available Nym implementation is benchmarked at 3125 Sphinx packet
decryptions per second per processing core. An average node load of 500 messages per second
enables mix nodes to tolerate traffic peaks of up to 6x the average load.
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(a) Global network adversary, b = 0,
B = 0 (b) Corruption level b = 0.1, B = bLW

Figure 7: Mean Entropy wrt number of layers L for various De2e, considering
λU = 5000 and mixnet width W = 10.

latency per link of 50ms, this happens at L = 4 for De2e = 0.25s, L = 9 for
De2e = 0.5s, and L = 19 for De2e = 1s. When entropy drops to zero this means
that the adversary can identify which output message corresponds to a target
input and the system provides no anonymity – though recall that, as shown in
Section 5.3, variations of propagation time may make message tracing more
uncertain in practical scenarios.

6.1.2 Fraction of corrupted nodes

We now examine scenarios where, in addition to observing all links, the adversary
corrupts a fraction b = 0.1 of the nodes.
First, from a worst-case perspective the fraction of fully compromised messages in
a mixnet with L layers can be approximated as αF = bL (Eq. (7)). Considering
b = 0.1, a worst-case threshold β = 0.001 (one in a thousand messages is
compromised by adversaries controlling 10% of the mixnet) implies that the
minimum number of mixnet layers is L = 3. Setting a requirement of β = 10−6

(just one in a million messages is compromised) raises the minimum number of
layers to L = 6.
We then evaluate average anonymity for various end-to-end latencies De2e and
layers L. Figure 7b shows the results, where we can observe that from an
average anonymity perspective, the optimal number of layers L is dependent
on the end-to-end latency De2e. For the more relaxed latency constraints
De2e ≥ 1s (yellow, blue and red lines), the optimal L is now L = 3; while
scenarios with stricter latency constraints De2e < 1s (green and black lines)
have their maximum at L = 2.
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For De2e ≥ 1s, the new optimum at L = 3 instead of L = 2 (as in the
scenario without corrupted nodes) is consistent with the worst-case effect of
node corruption, which brings anonymity to zero for a fraction of samples, and
is mitigated by increasing L. Adding layers not only exponentially reduces the
number of cases where anonymity is zero due to full route compromise, but also
the number of outlier cases where anonymity is very low due to messages passing
through a single honest mix. Beyond a certain point however, adding layers is
more detrimental than beneficial, since the fraction of fully compromised routes
is already too negligible for any further reduction to make a difference in the
average, while the smaller mixing time (due to adding layers) takes a toll on
anonymity.
When the latency De2e is more constrained, the optimal L still maxes out at
a lower L = 2. This is explainable because for De2e = 0.25s, L = 3 implies
that 80% of the available end-to-end latency budget is wasted on propagation
across four links, leaving less than 17ms for mixing at each of the three nodes in
the route. The fact that little mixing takes place per node facilitates message
tracking for network adversaries and makes this configuration offer worse average
anonymity than L = 2, where only 60% of latency budget is spent on propagation
leaving 50ms for mixing at each of the two nodes.
For our optimization we consider β = 0.001 for adversaries that control a
fraction b = 0.1 of the mixnet, and thus we discard mixnet configurations with
L < 3. We select L = 3 and consider this number of mixnet layers in the
remaining experiments. We note that L = 3 is commonly used in deployed
anonymity networks [21, 26] as well as default experimental setting in prior
literature [22, 45]. We are however the first to show that L = 3 is the choice
that optimizes anonymity for layered mixnets in conditions of moderate rate of
compromise (b = 10% and β = 0.001) for end-to-end latency tolerances of up to
five seconds.
Lowering the worst-case threshold to β = 10−6 while considering b = 0.1 sets
the minimum number of layers at L = 6. In networks with end-to-end latency
De2e of half a second or more this sets the optimal number of layers at L = 6
(since this offers better average anonymity than networks with L > 6). For
networks with De2e = 0.25s there is no solution that can meet both the latency
(De2e = 0.25s) and anonymity (β = 10−6) requirements. We also note that in
practical terms, adding layers to a mixnet comes with significant costs, as it
requires additional resources per message (servers, computation and bandwidth)
as well as incurring in increased rates of message loss (since it is enough for one
node in the route to fail for the message to be lost).
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(a) Average entropy for b = 0.2 (b) Average entropy for b = 0.3

Figure 8: Mean Entropy wrt number of layers L for various De2e, with W = 10
and λU = 5000.

6.1.3 Higher fraction of corrupted nodes

We examine results for selecting the optimal number of layers L with a high
corruption rate b. In terms of worst-case anonymity, the same threshold β =
0.001 imposes a higher L than in the cases with lower b shown in Section 6.1:
while L ≥ 1 was enough for b = 0 and L ≥ 3 for b = 0.1, b = 0.2 raises
the minimum required layers to L ≥ 5 and b = 0.3 to L ≥ 6. Increasing the
worst-case tolerance to β = 0.01 (on average one message out of 100 has a fully
compromised route) allows for configurations where L ≥ 3 for b = 0.2 and L ≥ 4
for b = 0.3.
We then examine average anonymity in these scenarios, showing the results for
b = 0.2 and b = 0.3 in Figure 8. As we can see in the figure, higher corruption
rates b increase the optimal L for a given end-to-end latency De2e. For example,
for De2e = 5s and De2e = 2s, the optimal L increases from L = 4 for b = 0.2
to L = 5 for b = 0.3; while, as shown in Figure 7, b = 0 had the optimum at
L = 2 and b = 0.1 at L = 3. Increasing the number of mixnet layers beyond
the optimal L makes the average anonymity, up to the point where it drops
to zero because all available latency budget is spent on propagation delays.
For the more constraining latency De2e = 0.25s, increasing the corruption rate
to b = 0.3 makes L = 3 become the optimum instead of L = 2, which is the
optimum for lower rates of corruption.
Combining worst-case anonymity constraints and average anonymity optima
for the different scenarios, we conclude that for β = 0.001 the minimum layers
required by the worst-case dominate, determining that the number of layers
should be L = 5 for b = 0.2 and L = 6 for b = 0.3. This choice is the same
for all De2e ≥ 0.5s, while no solution exists for De2e = 0.25s that can satisfy
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both anonymity and latency constraints. Considering a more relaxed worst-case
anonymity constraint β = 0.01 for b = 0.2 would lead to selecting the L that
maximizes average anonymity, which is L = 3 for De2e ≤ 0.5s and L = 4 for
larger De2e. In the case of b = 0.3, the choices would be L = 4 for De2e = 0.5s
and De2e = 1s, and L = 5 for larger De2e; while again no solution exists for
De2e = 0.25s that satisfies both worst-case anonymity and latency constraints.

6.2 Optimizing the network width W

Once we have fixed the number of layers L, we proceed to the next question:
how does the width W of the mixnet impact anonymity? We consider a mean
end-to-end latency De2e = 1 second, mixnets with L = 3 layers, and a worst-case
compromise threshold β = 0.001. As before, we consider λU = 5000 messages
per second and a minimum width Wmin = 10 nodes, each routing 500 messages
per second on average. We consider three threat models: network adversaries
that do not control any nodes (b = B = 0), adversaries that control a fraction
b = 0.1 of nodes regardless of network size, and adversaries that control a fixed
number of nodes B = {9, 15, 30} regardless of network size.

Figure 9: Mean entropy as a function of the mixnet width W for various b and
B (L = 3, λU = 5000, De2e = 1s).
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6.2.1 Constant fraction of corrupted nodes

We first consider adversaries that control a constant fraction b of the total nodes.
This means that as the network grows in width W , the number of adversarial
nodes B increases proportionally to W , as B = bLW .
In terms of worst-case anonymity, note that the fraction αF of fully compromised
routes remains constant as W grows, because the probability of selecting fully
corrupted routes is given by αF = bL and thus remains constant. For b = 0.1
and L = 3 this corresponds to αF = 0.001, which matches the worst-case
threshold β. For b = 0, all L ≥ 1 meet any possible value for the β threshold.
Figure 9 shows average anonymity for various scenarios, with the blue and
black solid lines representing the cases where b = 0 and b = 0.1, respectively.
As we can see in the figure, anonymity slowly but steadily decreases as the
network width W increases. For b = 0.1, anonymity decreases by one bit when
the width is W = 100 compared to the minimum Wmin = 10, meaning that
anonymity sets are halved due to the 10-fold width increase. This (modest)
decrease happens because higher width means thinner traffic per mix, and thus
lower level of mixing at each node. This result indicates that when considering
a constant fraction adversary, the optimal network width is the minimum W
that is sufficient to route the required traffic volume.

6.2.2 Constant number of corrupted nodes

Next we consider adversaries that can corrupt a fixed number B of nodes.
In this case, the fraction b = B

LW of adversarial nodes diminishes when the
network grows in width W . Therefore, from a worst-case perspective, increasing
W can be a strategy to meet constraints on worst-case rates. For example,
considering β = 0.001 and B = 15, a mixnet of L = 3 with the minimum
width Wmin = 10 fails to meet worst-case constraints, as αF = ( 15

30 )3 = 0.125 is
orders of magnitude larger than the threshold β. The width W that satisfies β
constraints is given by W = B

L L
√

β
. Applying this analysis to B = 9, B = 15

and B = 30 malicious nodes, results in minimum widths of W = 10, W = 50
and W = 100, respectively.
We then evaluate average anonymity in the same scenarios as a function of mixnet
width. The results are shown with dashed lines in Figure 9 for 3 corrupted nodes
per layer (B = 9), 5 corrupted nodes per layer (B = 15) and 10 corrupted nodes
per layer (B = 30). Note that B = 30 at width W = 10 is a corner case where
the entire network is controlled by the adversary, and thus all messages are fully
traceable and average anonymity is zero. Compared to the previous adversary
defined by b = 0.1, anonymity levels are lower for small W because relative
corruption levels are higher. Overall, in scenarios with constant levels of node
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corruption we see that increasing W is initially beneficial for anonymity, as the
diminishing share b of corrupted nodes dominates an anonymity improvement.
After some point however, further increasing W begins to lower anonymity, as
the dominant factor becomes the overall thinning of traffic (exploitable by a
network adversary) rather than the fraction of compromised routes (which has
already reached negligible levels). Based on these results we choose W = 50 for
our remaining experiments.

6.2.3 Higher fraction of corrupted nodes

We now examine the effects of mixnet width W with increasing percentages b
of adversarial node corruption. As mentioned in Section 6.2, a fixed b and L
determine the worst-case anonymity rate as αF = bL, regardless of the mixnet
width W . We thus examine average anonymity in scenarios with higher values
of b, and show the results in Figure 10. As expected, an increased b lowers
the average anonymity for any width W , and the decline of average anonymity
caused by traffic thinning with larger W is slightly faster for higher b. Overall,
the decline in average anonymity is noticeable but moderate: between one
and two bits of decline when the mixnet width W is increased by an order of
magnitude from W = 10 to W = 100.

Figure 10: Mean entropy as a function of the mixnet width W for various levels
of corruption b (L = 3, λU = 5000, De2e = 1s).
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6.3 Mix-based dummy strategies to compensate for low traffic
volume

We finally turn our attention to the question of what happens when a network
that has been optimized for an average traffic volume suddenly sees input traffic
drop by more than an order of magnitude. A steep drop in traffic rate λU ,
particularly in networks with a large width W , can significantly reduce average
anonymity levels due to thin traffic effects (note that αF is independent of
overall traffic volume, and thus worst-case anonymity is unaffected by traffic
load fluctuations). Mixnet parameter adjustments that can counter the drop
in user traffic include increasing the end-to-end latency De2e and reducing the
network width W . Increasing latency however may not be possible without
seriously undermining the usability of the system. As for network resizing,
typically information on active mixnet nodes is updated every hour or few
hours [21, 26], and thus structural changes to the network width may not be
possible to effect immediately, or fast enough to follow fluctuations in the traffic
volume coming from users.
Designs such as Loopix [45] and Vuvuzela [31] rely on client-based dummy
traffic to ensure that traffic volumes are sustained and provide an adequate level
of anonymity. Client-based dummies are a very effective solution to users going
idle while staying online. If end users go offline however, all their traffic ceases,
and it becomes unreasonable to expect that they will continue to generate
dummy traffic.
Upon detection of low traffic volumes, mix nodes may intervene by generating
an increased volume of dummy traffic to support anonymity levels. We note that
various prior works propose mix-based dummies with more or less sophisticated
strategies for generation and routing [17, 31, 45]. Here we consider two very
simple strategies introduced in Section 2.1.4: link-based dummies and partial-
route dummies.
Link-based dummies are generated by a mix and discarded by the successor.
Assuming that mixes in adjacent layers communicate via a link-encrypted
connection (e.g., TLS), link-based dummies need not be actual Sphinx packets
that require expensive public key operations, but simply random data blocks the
size of a Sphinx message that can be detected and discarded by the receiving mix
node with just symmetric key operations. Link-based dummies are thus very
cheap to implement for mixes, which makes them a low-cost countermeasure to
use on-demand in case of decreased user traffic. On the downside, link-based
dummies only protect towards network adversaries. If any of the two nodes
sharing a link is compromised, the adversary can trivially filter out all the
link-based dummy messages, rendering the protection ineffective for that link.



OPTIMIZATION RESULTS 105

Partial-route dummies are generated by mixes in all but the last layer, routed
through the mixnet and discarded by mixes in the last layer. In a network of
L = 3 layers, compared to link-based dummies, partial-route dummies increase
protection against adversarial nodes in the middle layer, who can no longer
distinguish user messages from dummy messages generated and discarded by
honest mixes. Note that this sort of indistinguishability towards middle-layer
nodes requires that dummies are encoded as Sphinx packets, which significantly
increases the cost of the dummy strategy compared to link-based dummies, as
the processing of a Sphinx message requires senders, receivers and intermediaries
to perform expensive public key operations.

Figure 11: Average anonymity in low-traffic conditions (λU = 100 m/s) with
link-based and partial-route dummy strategies towards network adversaries
corrupting b = 0 and b = 0.1 of a mixnet with L = 3, W = 50, and De2e = 1s.

Contrary to link-based dummies, partial-route dummies are not evenly
distributed across layers but instead increase linearly with the layers, because
the dummies generated by each layer of mixes are added to the dummies from
earlier layers being forwarded, until they are all discarded by the last layer. In
order to enable a fair comparison between both dummy strategies we compare
scenarios that have the same overall dummy rate. Considering L = 3, a network
where each mix generates λM = 1 partial-route dummy message per second
is equivalent in terms of dummy traffic volume to a network where each mix
generates λM = 1.5 link-dummies per second. In the former case, one third of
the dummies is sent from the first to the second layer and two thirds are sent
from the second to the third layer, where they are discarded. In the latter case,
half the dummies are sent from the first to the second layer and the other half
from the second to the third. No dummies are generated by the last layer in
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either case. We compare scenarios considering the same network-wide level of
dummy traffic.
Our evaluation of both dummy strategies is shown in Figure 11 for various
dummy rates, considering both network adversaries (b = 0) and adversaries that
corrupt 10% of the mixnet (b = 0.1). Section 6.4 includes additional results
for adversaries with higher corruption rates (b = 0.2 and b = 0.3). The x axis
in the figure corresponds to the overall dummy traffic in the network. Thus,
x = 1.5x102 corresponds to λM = 1 partial-route dummy generated by each
mix per second. Given that W = 50, this implies that there are 50 dummies
per second between the first and second layers, and 100 dummies per second
between the second and third layers, for a total of 150. This is compared to a
rate of λM = 1.5 link-based dummies per second, with 75 dummies per second
in each of the layers adding to the same 150 total. At x = 1.5x104 mixes
generate λM = 100 partial-route dummies or λM = 150 link-based dummies per
second. Considering λU = 100 messages per second, dummy traffic makes up
43% of inter-mix traffic for x = 1.5x102, 88% for x = 1.5x103, and 98.6% for
x = 1.5x104.
As we can see in the figure, in the absence of dummy traffic (λM = 0) anonymity
in this network configuration (N = 3x50) is very low due to the low levels of user
traffic. Even where there is no corruption (b = 0), average anonymity is below 3
bits of entropy, meaning that effective anonymity set sizes are just a handful of
messages. Anonymity levels significantly improve once mixes generate dummy
traffic, with diminishing returns as the dummy rate increases and anonymity
levels approach their upper bound. The best improvement is in the case of
b = 0, where anonymity goes up by 5 bits, meaning that the anonymity set
size multiplies 32-fold thanks to the dummy traffic. Compared to a mixnet
that has the same three layers and minimal width (W = 1), we find that the
average anonymity is the same for W = 1 (with no dummies) and for W = 50
with λM = 1.5x104, meaning that a high rate of mix-generated dummy traffic
succeeds in fully making up for the loss of anonymity caused by traffic thinning.
Link-based and partial-route dummies provide the same protection when there
is no adversarial corruption (b = 0). This is to be expected since partial-route
dummies offer extra protection towards intermediate corrupted nodes, but the
same protection as link dummies against external network adversaries. The fact
that dummies are distributed across layers 33%−66% for partial-route dummies
and 50% − 50% for link-based dummies seems to make no difference to the
effectiveness of the dummy strategy. Once a fraction of nodes is compromised
(b = 0.1), the gains obtained from dummy traffic are mitigated. A the lower
levels of λM dummy traffic still significantly improves anonymity compared
to not generating any dummies at all, and both link-based and partial-route
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strategies provide similar protection. As the dummy rate λM increases, partial-
route dummies provide slightly better anonymity than link-based dummies.
This effect becomes more pronounced with higher corruption rates.

6.4 Effectiveness of dummy strategies

Finally, we examine the effectiveness of partial-route and link-based dummy
strategies when there is very low traffic from users (λU = 100m/s) in a mixnet
dimensioned for higher traffic loads (width W = 50), in the presence of
adversaries that corrupt b = 0.2 and b = 0.3 of the mixnet. Our results,
shown in Figure 12, illustrate that high levels of mixnet corruption diminish
the effect of dummies (compared to the results for lower b shown in Figure 11)
and in particular of link-based dummies — many of which are now identified
and discarded by the large number of adversarial nodes. When b = 0.3, even
high levels of link-based dummies result in anonymity below 4 bits; while for
b = 0.2 the anonymity set triples (1.4 bit increase), reaching an average entropy
of 5 bits.

Figure 12: Average anonymity in low-traffic conditions λU = 100 m/s with
link-based and partial-route dummy strategies towards adversaries corrupting
b = 0.2 and b = 0.3 of a mixnet with L = 3, W = 50, and De2e = 1s.

Partial-link dummies fare moderately better in this challenging adversarial
scenario with low traffic and high level of compromise. When b = 0.2, partial-
route dummies can increase anonymity up to 6 bits, a 16-fold increase in
anonymity set size compared to the 2 bits obtained when not using dummies.
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In the case of b = 0.3 however, even high levels of partial-route dummies result
in a mean entropy of 4.5 bits, corresponding to a perfect indistinguishability
set of about twenty other users, which may be too small to provide meaningful
protection.
Given the huge difference in cost of the two considered dummy strategies and
their comparable impact, we conclude that link-based dummies are a simple
and low-cost, yet effective option for mixes to support anonymity levels when
there are sudden dips in user traffic.

7 Related work

Since Chaum’s seminal work on untraceable email in 1981 [7], there has been a
great amount of research related to mixnets, both in design [8,9, 24,31,32,35,
36,37,43,45] as in evaluation and optimization [11,13,23,39,41,44,47,51,52].
We highlight in this section the most relevant prior work in terms of mixnet
parameter optimization.
Rebollo-Monedero et al. [47] provide a method for optimizing the threshold and
pool parameters of individual batch-based mixes. Their optimization problem
is similar to ours: given a traffic volume and latency constraint, what are the
optimal parameters that maximize entropy-based anonymity? Their anonymity
system model is however vastly simpler than ours: where we consider full
mixnets that may be partially compromised, they restrict themselves to a single
(trusted) mix. In terms of optimization methods, their simpler model allows for
multiobjective optimization of entropy-based anonymity, while we have to resort
to empirical analysis to compare configurations and find optimal parameters
that maximize average (entropy-based) anonymity while meeting worst-case
anonymity constraints. In another result on mixing algorithm optimization but
this time concerning individual continuous-time mixes [32], Danezis [13] showed
that for a given mean latency exponentially-distributed delays provide optimal
anonymity, thanks to the memory-less properties of the exponential distribution.
Prior results on mixnet topology optimization [22] are taken into consideration
in our choice of focusing on layered networks. To the best of our knowledge,
our work is the first to tackle mixnet size optimization.
Proposed systems that are reliant on dummy traffic, such as Loopix [45] and
Vuvuzela [31], leave the tuning of parameters for the dummy traffic strategies
as out of scope. In terms of dummy traffic optimization, Oya et al. [39] consider
long-term disclosure attacks [18], which exploit persistent communication
patterns to infer communication profiles over time, and propose dummy traffic
strategies for networks of pool mixes. Their method, based on solving a least
squares problem, optimizes the amount of dummies needed to achieve a desired
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level of protection against these long-term disclosure attacks. Our model does
not make assumptions about repeated user behaviour, focusing instead on the
anonymity offered by the mixnet to individual messages. Given specified models
for user recipient selection, the methods of Oya et al. may be applied to the
mixnet configuration resulting from our methods to further mitigate long-term
attacks.
Finally, a first version of the MiXiM simulator that we use in our evaluations
was first presented in [3]. The contribution in [3] is the evaluation of different
mixing strategies and network connectivity topologies, which shows that Poisson
mixing and stratified topologies provide better anonymity than pool mixing
and topologies such as XRD [35]. We build on those results by considering the
strategy and topology identified as providing the best anonymity properties,
and proceeding to parameter optimization within the resulting design space.
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Abstract. We analyze the anonymity provided by continuous
mixnets (e.g., Loopix) when messages with different latency
requirements are sent through the same network. The anonymity
provided by existing mixnets that offer bounded latency guarantees
has only been studied considering that all the traffic in the network
follows the same latency distribution. In this work we evaluate
whether it is beneficial to aggregate different types of traffic in
the same network compared to keeping them separate, when the
latency distributions are exponential and the traffic arrivals are a
Poisson process — as is the case in Loopix and related designs. We
present a novel evaluation method to analyze the leakage to the
adversary when multiple different types of traffic are sent through
the same network of continuous mixes. We apply the method
to empirically evaluate the end-to-end anonymity (in terms of
entropy) for each type of traffic in the presence of a global passive
adversary that may additionally compromise a constant fraction of
mixes or may have knowledge about the type of traffic of network
output messages. Finally we show via empirical evaluation using
our analytical framework that it is beneficial for anonymity to
blend different types of traffic in the same mixnet.

1 Introduction

Over the past few decades, a wide range of literature has emerged discussing
Anonymous Communications Networks (ACNs) [1,6,7,10,17,20,21,22], paralleled
by the deployment of real-world mixnet-based systems [12]. Mix networks, or
mixnets, are a variant of Anonymous Communications Networks (ACN) [1,6,
7, 10,17,20,21,22] that were designed to protect against traffic correlation by
global adversaries who can observe all the traffic in the network. They reroute
the traffic through multiple servers known as mixnodes, that delay and reorder
the messages before forwarding them, in order to hide the correlation between
the input and output messages of the mixnet. While there exist a variety of
mixing strategies in the literature [14], such as threshold and timed mixing,
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they either add an unpredictable end-to-end latency or they provide anonymity
that do not take traffic levels into consideration. For instance, threshold mixing
waits for a threshold number of messages before the messages are forwarded,
and therefore, adds an unpredictable end-to-end latency. Designs based on
timed mixing flush out messages at predetermined time intervals, even if there
are only a few messages inside the mixnodes. Tuning these parameters, such as
a smaller threshold or higher time intervals, according to the needs of different
applications is a tradeoff between latency and anonymity as shown in [8, 9].
On the other hand, continuous mixnets [12,22] based on a stop-and-go mixing
strategy adds a random delay (typically from exponential distribution) on each
hop of a message, independent of other messages, to offer a predictable end-to-
end latency as well as an average anonymity that is correlated with the traffic
amount.
Therefore, this stop-and-go mixing strategy allows blending different types of
traffic, each having a different latency requirement in the same mixnet, simply
by drawing the different delays for each traffic type from different distributions.
In this work, we investigate the implications on anonymity of blending different
traffic types, each having a different latency requirement, in a single mixnet. We
call the strategy of blending different traffic with different latency requirements
beta-mixing.
The impact of blending different types of traffic on anonymity guarantees of
the mixnet is an open question — all the existing analyses on continuous
mixnets [3, 4,5, 11,15,22] consider that all the messages delayed according to
the same distribution. Their techniques are not adequate to handle the scenario
when the delays for different messages are drawn from different distributions.
This work aims to address this problem and answer relevant questions related to
continuous mixes when multiple traffic types with different latency requirements
are blended together:

1. How do we quantify the anonymity provided by the mixnet when different
types of traffic are blended together?

2. Are there any advantages or disadvantages to anonymity when different
types of traffic with different latency requirements are blended through
the same mixnet, compared to routing each type via a separate mixnet?

3. Do other factors such as the number of layers, the number of mixes per
layer, the rate delays and the traffic generations rates of each traffic type
have an impact on each or both traffic types when blended together?

1.1 Contributions

This work provides the first quantitative analysis on anonymity when multiple
different types of traffic are blended through a mixnet. Our results demonstrate
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that blending multiple traffic types does not harm the anonymity guarantees,
rather improves for continuous mixnets when the latency distributions on the
mixnodes are exponential and the traffic arrivals are poisson processes — as is
the case in Loopix [22] and related designs [12].
As part of our analysis technique, we present novel mathematical foundations
to analyze the correlation between input and output messages of an honest
mixnode in the presence an adversary that observes all the traffic in the network
and derives probabilistic relationships between network inputs and outputs.
Even though messages from multiple different types of traffic could potentially
mix in an honest mixnode, an adversary might still be able to separate the
traffic based on their individual delays, which might help the adversary track a
specific message. We show that there is indeed a leakage to such an adversary,
and quantify the leakage as a function of the distribution parameters of the
traffic types and the observed delays (3). Based on our proposed mathematical
foundations, we evaluate the anonymity in terms of entropy for the entire mixnet
using empirical evaluations (4), with an illustrative example of two different
types of traffic. Our evaluation results provide important insights demonstrating
the benefits of blending two different types of traffic over sending them through
separate mixnets:

1. Blending improves anonymity when the adversary can see the type of all
messages entering the mixnet, but not the types of the messages exiting
the mixnet.

2. If the adversary can observe the types of all incoming and outgoing
messages, blending does not offer any advantages nor disadvantages.

3. The delay parameter for one traffic type impacts not only the anonymity
of messages within that specific type but also of those from the other
type.

4. Even when a single message from one traffic type is blended with messages
all belonging to the other type, that message achieves significant anonymity
(compared to zero anonymity when it is not blended).

The insights from the results with two types of traffic are immediately
translatable to the case with more than two types (4.6). Our methods and results
allow protocol designers to quantitatively evaluate the anonymity guarantees of
supporting multiple applications with different latency requirements through
the same mixnet deployment, and shows that it is beneficial to do so. Especially
for an application with very few users, blending with other traffic provides
tremendous advantage compared to not blending (which would provide almost
no anonymity because of the scarcity of messages).
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1.2 Related Works

In an interesting work by Dingledine et al. [16], the authors propose a technique
called “alpha-mixing” to mix messages with different latencies in a mixnet.
Their technique proposes a hybrid mix batching strategy to integrate users with
diverse anonymity and performance goals. Senders allocate a security parameter
"α" to each mix in a message’s route, determining its time in each mix. Users
can enhance their anonymity by increasing α, and the overall anonymity of
the network increases. However, their technique is restricted to traditional
deterministic batching strategies and cannot provide predictable latency for the
messages. Moreover, they do not provide any quantitative anonymity analysis.
Continuous mixnets [12, 22] are particularly suited for meeting latency
constraints, since the sender encodes the delays for each mixnode and can thus
predict the overall latency of a message. They can, therefore, support multiple
traffic with different delay distributions. In fact it is already possible to use
mixnet-based network Nym [12] for Telegram and crypto-currency transactions.
To the best of our knowledge, all existing analyses [3, 4, 11, 22] of continuous
mixnets focus on a single type of traffic following the same exponential delay
distribution. Therefore these anonymity evaluation techniques are not suitable
for situations involving multiple traffic types. Even though continuous mixnets
are around for two decades, our work closes the above gap for the first time by
providing the mathematical tools and quantitative evaluations.

2 Problem Statement And Overview

2.1 System Model

Users. We consider a user population U where each user generates traffic
independently of other users. Message generation for each traffic type i follows
a Poisson distribution with rate λ′

i messages per user second. We note that
only messages generated by honest users (not controlled by the adversary) are
relevant to anonymity, and thus U excludes malicious users. The overall network
traffic generation is therefore U .

∑nT
i=1 λi, where nT is the number of traffic

types blended in the same mixnet.
Source routing. We consider a source-routed continuous mixnet [12,22], where
the sending user chooses the sequence of overlay mixnodes that compose the
route of a message, as well as the mixing delay to be applied to the message by
each intermediary mixnode on its route.
Mixing Delays. A message’s per-mix delays are drawn as independent samples
from an exponential distribution [18]. The mean of the used exponential
distribution depends on the type of application and its latency tolerance. The
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per-mix delays are encoded by the sender in the message headers. Upon
decrypting a received message, a mix node retains the message in its internal
memory for the specified delay, before proceeding to forward it to its next
destination in the route.
Topology. We consider a network topology where mixes are arranged in L
ordered layers. The layers are interconnected such that each mix in layer i
receives messages from mixes in layer i − 1 and sends messages to mixes in
layer i + 1; while the first layer receives messages from senders and the last
layer forwards messages to their final recipients. The path length of message
routes is determined by the number of layers L. To select a message route, each
user chooses the nodes for each message uniformly at random from each layer.
Prior work has found that layered network topology provides better anonymity
properties than free routes [13].

2.2 Beta-mixing

We consider the scenarios where users are using different applications and send
their traffic via the mixnet. This is already the case in the Nym network [12],
where users are able to send their Telegram traffic as well as cryptocurrency
transactions using the same network. Currently the Nym network is using the
same default delay parameters for both of the traffic types. However, users have
higher latency tolerance for cryptocurrency transactions reaching 10 minutes
for bitcoin 1, and lower latency tolerance for instant messages. We denote
each traffic type by Ti), the delays are chosen from exponential distribution
with rate parameter λi. Overall, the total amount of Ti traffic entering the
network follows Poisson distribution with parameter λ′

i messages per second.
We summarize the notations in Table 1.

Ti i-th traffic type
λ′

i rate generation of traffic type Ti

λi parameter of the exponential distribution for Ti

L number of layers in the mixnet
W width (number of mixnodes per layer) of the mixnet
k total number of messages in a given mixnode

ki number of messages of type Ti in the mixnode
E(X) expectation of a random variable X

Table 1: Summary of notation for Publication 3.

1https://medium.com/klaytn/a-comparison-of-blockchain-network-latencies-
7508509b8460
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2.3 Attacker Model And Security Goals

The adversary observes all the traffic exchanged in the network links. We assume
the adversary monitors the network from the first message sent. Additionally,
the adversary may compromise a fraction of the nodes (e.g., 10% of all nodes are
compromised, and 90% nodes are honest). The compromised nodes are honest
but curious — i.e., they still route messages following the protocol specifications
but leak to the adversary their internal state, which per message includes the
amount of delay applied in the compromised node, and its immediate predecessor
and successor in the message route. Finally, we also consider an adversary who
knows the type of traffic of all the network output messages.
Compromised users and active attacks. For our analysis we assume
that all the senders are honest. Note that compromised senders that leak
to the adversary information about their messages simply achieve that their
fully traceable messages do not contribute to the anonymity of honest senders,
but still cannot undermine the anonymity that honest users provide to each
other. Thus, the anonymity of messages from honest users in a scenario with
compromised users is simply equivalent to only considering the messages sent
by the subset of honest users. We do not consider any active attacks, noting
that the relevant active attacks and corresponding defense strategies mentioned
in Loopix [22] are applicable, independently of using a single or multiple mixing
delay distributions. We thus consider active attacks to be orthogonal to the
analysis presented in this work.

2.4 Anonymity Metric

We evaluate anonymity using the entropy metric [15, 23]. Although
indistinguishability based metrics [2, 19] are suitable for measuring worst-case
scenarios, entropy-based metrics are better suited to capture the effect of network
scaling (in terms of anonymity set size) on average anonymity. An entropy of,
e.g., 10 bits, indicates that a message is as anonymous as if it was perfectly
indistinguishable among about a thousand (210 = 1024) other messages, while
11 bits correspond to perfect indistinguishability among 211 = 2048 messages.
Note that the scale is logarithmic, and that an increase of one bit of entropy
doubles the size of the equivalent perfect indistinguishability set, while a drop
of one bit halves it.

2.5 Overview of Evaluation Strategy

In order to evaluate the entropy for an input message to the mixnet, we need
to derive the probabilities that correlates the input message to the output
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messages. We do that in two steps: (1) first, we derive the correlation between
the input and output messages of an honest mixnode based on the observations
of the adversary; (2) then, based on the above mathematical derivations, we
experimentally evaluate the probabilities correlating the input and output
messages of a large mixnet.
When there is a single type of traffic, all the messages inside a node are equally
likely to be the next message to come out next [3,4,11,22]. However, when many
types of traffic are blended, the adversary might be able to partially guess the
type of an outgoing message (fast traffic tend to go out earlier than slow traffic);
and that would allow the adversary to correlate messages given some background
knowledge about the types of the input messages. In the next section, we derive
the probabilities that correlate one input message to output messages of one
honest mixnode. Finally, in Section 4, we employ this probability distribution
within the entropy metric to evaluate various configurations of mixnets.

3 Analysis for a single mixnode

In this section we derive the probabilities connecting the input and output
messages of a single standalone honest mixnode. For the ease of explanation,
we derive the probabilities in the following steps:

• first consider the most simple case when the adversary knows the types of
all messages inside the mixnode;

• then we derive the probability distributions for the number of messages of
each type (assuming only two types) when the adversary knows the types
of all incoming messages, but does not know which of them are still in
the mixnode;

• in section 3.3, we extend our analysis for a more general case (still with
two types) where the adversary knows the types of incoming messages
only with certain probabilities;

• finally in section 3.6, we provide the full derivation for more than two
types.

While the traffic type entering the mixnet is not immediately visible, it may
be possible to infer it for the first layer, for example if the message sending
rate is indicative of which application may be generating the traffic. For the
second and subsequent layers, that information is not available to the adversary;
however, as we will see in our derivations shortly, the adversary might be able
to guess the types of messages with certain probabilities based on the observed
delays in the previous layer.
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Figure 1: Adversarial observation around an honest mixnode where the mixnode
receives messages m1, m2, m3, m4, m5 at different times, and a message m′

1 goes
out of the mixnode with relative time differences t1, t2, t3, t4, t5 respectively.

3.1 Very Simple Case

As mentioned above, we first consider the most simple case where the adversary
knows the types of all messages inside the mixnode. We assume that the
outgoing traffic type is not directly available to the adversary, and thus we want
to calculate the probability that a specific outgoing message is a target input
message of a known type when the adversary does not know the types of the
outgoing messages. Since the delays of the different messages are chosen from
different delay distributions, based on the observed delays the adversary can
partially guess which outgoing message may be of which type.
Consider the example in Figure 1: five messages m1, m2, m3, m4, m5 are received
by the mixnode at different times, and the adversary knows the types of each of
them. No other messages have been received by the mixnode and no messages
have left the mixnode yet. Then the first output message m′

1 goes out of the
mixnode with relative time differences t1, t2, t3, t4, t5 with each of the input
arrivals, respectively. Suppose one of those five incoming messages, e.g., m1
was sent by the target user, and the adversary wants to track that message. Let
us assume that m1 ∈ T1. We denote m1 = mtarget. We want to calculate the
probability that m′

1 = mtarget.
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Given that m1 did not go out before t1, the probability that m1 has a delay in
[t1, t1 + ∆t) (assuming m1 ∈ T1) can be written as follows:

Pr [delay(m1) < t1 + ∆t |delay(m1) >= t1]

=Pr [delay(m1) < t1 + ∆t
∧

delay(m1) >= t1]
Pr [delay(m1) >= t1]

=
∫ t1+∆t

t1
λ1e−λ1xdx∫ ∞

t1
λ1e−λ1xdx

=e−λ1t1 − e−λ1(t1+∆t)

e−λ1t1

(1)

To generalize, let us assume that there are a total of d types of traffic and total
kj input messages of each type Tj , j ∈ {1, 2, . . . , d}. After the observations
until time t1 (denoted as O) of the incoming messages and the first outgoing
message, the probability that m′

1 is a specific message m1 can be calculated as
follows:



126 BLENDING DIFFERENT LATENCY TRAFFIC WITH BETA MIXING

Pr[m′
1 = m1|m1 ∈ T1 ∧ O]

= Pr [delay(m1) = t1|m1 ∈ T1 ∧ delay(m1) >= t1]
d∑

j=1

∑
mi∈Tj

Pr [delay(mi) = ti|mi ∈ Tj ∧ delay(mi) >= ti]

= lim
∆t→0

Pr [delay(m1) < t1 + ∆t|m1 ∈ T1 ∧ delay(m1) >= t1]
d∑

j=1

∑
mi∈Tj

Pr [delay(mi) < ti + ∆t|mi ∈ Tj ∧ delay(mi) >= ti]

= lim
∆t→0

e−λ1t1 − e−λ1(t1+∆t)

e−λ1t1∑d
j=1

∑
mi∈Tj

e−λjti − e−λj(ti+∆t)

e−λjti

▷ using Equation (1)

= lim
∆t→0

λ1e−λ1(t1+∆t)

e−λ1t1∑d
j=1

∑
mi∈Tj

λje−λj(ti+∆t)

e−λjti

▷ L’Hôpital’s rule

= lim
∆t→0

λ1e−λ1∆t∑d
j=1

∑
mi∈Tj

λje−λj∆t

= λ1∑d
j=1

∑
mi∈Tj

λj

= λ1∑d
j=1 kjλj

▷ |Tj | = kj

(2)

Note that the quantity Pr[m′
1 = m1|m1 ∈ T1 ∧ O] is not equal to 1∑d

j=1
kj

, and

therefore, there is a bias for the message m′
1 to be a specific incoming message

depending on the λj values. Intuitively, the messages with smaller delays are
more likely to be from the type with smaller average delays. We also want to
compute the probability that the message m′

1 is of type T1, and is computed as,

Pr[m′
1 ∈ T1|O] =

∑
mi∈T1

Pr[m′
1 = mi|mi ∈ T1 ∧ O]

= λ1∑d
j=1 kjλj

· k1 ▷ |T1| = k1

(3)

Hereafter we drop the notation for the adversarial observations O for brevity,
and assume all the probabilities are conditional to those observations.
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3.2 Second and Subsequent Output Messages

After the first message m′
1 has left from the mixnode in the above example (c.f.

fig. 1), we want to calculate the probability of the next message m′
2 that is

coming out of the mixnode is the target message mtarget. However, now the
adversary does not know the exact number of messages of each type inside the
mixnode. Let us still assume that m1 = mtarget. There are three possible states
for the mixnode after m′

1 has left:
• P0: m′

1 was actually m1, which means that the mixnode does not contain
m1 anymore;

• P1: m′
1 was of type T1 but not m1, and now there is one less message of

type T1 contained in the mixnode;
• P2: m′

1 was of not of type T1 and the number of messages of type T1 contained
in the mix remains the same.

For this subsection we assume (for simplicity) that there are only two types
T1 and T2 of messages. We extend the analysis for more than two types in
section 3.6. With the above assumption, the probability that the next message
m′

2 is the specific input message m1 can be calculated as:

Pr[m′
2 = m1|m1 ∈ T1]

= Pr[m′
2 = m1|P0 ∧m1 ∈ T1] · Pr[P0|m1 ∈ T1]

+ Pr[m′
2 = m1|P1 ∧m1 ∈ T1] · Pr[P1|m1 ∈ T1]

+ Pr[m′
2 = m1|P2 ∧m1 ∈ T1] · Pr[P2|m1 ∈ T1]

= 0 · Pr[P0|m1 ∈ T1] + λ1

(k1 − 1)λ1 + k2λ2
· Pr[P1|m1 ∈ T1]

+ λ1

k1λ1 + (k2 − 1)λ2
· Pr[P2|m1 ∈ T1]

Consequently, after i messages have left the mixnode, we need to consider all
possible such combinations. Additionally, any new incoming message (after
m′

1 has left) would also impact the probabilities corresponding to the later
messages. Most importantly, the target message could arrive anytime (possibly
after m′

1 has left). We need to consider all those possibilities to calculate the
probabilities of the outgoing messages being the target message. So, given a
specific target message mtarget of type T1 (and it can arrive anytime during the
protocol run), we keep track of the state of the mixnode with the following set
of random variables:
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• G(j) denotes the probability that there are exactly j messages of type
T1 inside the mixnode, and the target mtarget has not yet arrived to the
mixnode. We use G to denote the event that the target message has not
arrived to the mixnode.

• Q(j) denotes the probability that there are exactly j messages of type
T1 inside the mixnode and the target message is in the mixnode. We use
Q to denote the event that target message has arrived and is still in the
mixnode.

• R(j) denotes the probability that there are exactly j messages of type T1
inside the mixnode, and the target message has left the mixnode. We use
R to denote the event that the target message has left the mixnode.

The quantities Q(j), G(j) and R(j) are defined over j ∈ [0, k] where k = k1 +
k2−i denotes the total number of messages inside the mixnode; and i denotes the
number of messages left the mixnode. Effectively, G(j) = Pr[count(T1) = j ∧G],
and Pr[G] =

∑k
j=0 G(j). Each of these quantities are updated when a new

message arrives or a message leaves the mixnode. Additionally, as we will
see shortly that R(j) is maintained solely for the purpose of calculating the
probability of an outgoing message being of type T1 or T2.
Initialization. We initialize G(0) = 1, Q(0) = 0 and R(0) = 0 before any
messages arrive, since there are exactly 0 messages of type T1 inside the mixnode,
and the target message has not yet arrived. This is consistent with the definitions
of G, Q, and R.

3.2.1 When A Message Arrives.

Until the target message arrives, G(j) is updated for each j ∈ [0, k + 1] for each
new incoming message m as follows:

G(j)new =


G(j) m ∈ T2

G(j − 1) m ∈ T1 ∧m ̸= mtarget , j > 0
0 m = mtarget

(4)

To explain briefly, whenever a message of type T1 arrives, the number of messages
of type T1 in the mixnode goes from (j − 1) to j. If the mixnode had (j − 1)
messages of type T1 with probability G(j− 1), now the mixnode has j messages
with the same probability; and therefore, we have G(j)new = G(j − 1). When
the incoming message is of type T2, if the mixnode had j messages of type T1,
the mixnode still has j messages of type T1; and therefore, the G(j) remains
unmodified. After the target message arrives, G(j) becomes 0 for all j ∈ [1, k],
since the types of all incoming messages are known to the adversary.



ANALYSIS FOR A SINGLE MIXNODE 129

Note that G(j)new (and Q(j)new, R(j)new resp.) denotes the new value that
will replace G(j) (and Q(j), R(j) resp.) after the calculations are done for all
the j values.
After the mixnode has received the target message, when a new message m
arrives (including the target message itself), Q(j) is updated for each j ∈ [0, k+1]
as follows:

Q(j)new =


G(j − 1) m = mtarget

Q(j − 1) m ∈ T1 , j > 0
Q(j) m ∈ T2

(5)

Note that Q(j) values are 0’s for all for each j ∈ [0, k + 1] until the target
message arrives to the mixnode. The main purpose of maintaining G(j) values
is to be able to correctly set the Q(j) values when the target message arrives.
And after the target message arrives, the update rules for Q(j) are very similar
to that of G(j). However, very soon we are going to see that the Q(j) and G(j)
values can be simultaneously non-zero when the adversary does not exactly know
when the target message arrives (for a mixnode in the second and subsequent
layers).
Analogous to Q(j) values, R(j) is updated for each j ∈ [0, k + 1] as follows:

R(j)new =
{

R(j) m ∈ T2

R(j − 1) m ∈ T1, j > 0
(6)

Note that, similar to Q(j) values, we need to keep track of R(j) values only
after the target message has arrived to the mixnode. It is worth to mention
here that

∑
j Q(j) quantifies the probability that mtarget is in the mixnode,

whereas,
∑

j G(j) quantifies the probability that mtarget has not yet arrived to
the mixnode. And,

∑
j R(j) quantifies the probability that mtarget has left the

mixnode.

3.2.2 When A Message Leaves.

Whenever a message m′ leaves the mixnode, the probability that the message
is the target message mtarget can be calculated as (for a total number of k
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messages inside the mixnode before m′ leaves),

Pr[m′ = mtarget]

=
∑

1≤j≤k

Pr[Q∧ count(T1) = j] · Pr[m′ = mtarget| j = count(T1)]

=
∑

1≤j≤k

Q(j) · λ1

jλ1 + (k − j)λ2
▷ By eq. (2)

(7)

Explanation of Equation (7). Given that there are exactly j messages of
type T1 and (k − j) messages of type T2 held by the mixnode and the target
message is one of those j messages, we know that the probability of the next
outgoing message being the target message can be calculated as λ1

jλ1 + (k − j)λ2
(refer to Equation (2)). The probability that the mixnode has j messages of
type T1 and the target is inside the mixnode is given by Q(j). And, we have to
consider the sum over all possible j values for which Q(j) is non-zero. If the
mixnode does not have the target message the next outgoing message cannot
be the target message, and therefore, we do not need to consider the G(j) or
R(j) values.
Other Probabilities of an Outgoing Message. We also want to compute
the probability that the message m′ is of type T1, and can be computed as,

Pr[m′ ∈ T1]

=
∑

1≤j≤k

Pr[count(T1) = j] · Pr[m′ ∈ T1|j = count(T1)]

=
∑

1≤j≤k

(
G(j) + Q(j) + R(j)

)
· jλ1

j · λ1 + (k − j)λ2

(8)

Note that when the mixnode has j messages, either the target message has not
yet arrived, or it is inside the mixnode, or it has left the mixnode. Therefore, the
quantity (G(j) + Q(j) + R(j)) represents the probability of the mixnode holding
exactly j messages of type T1. Consequently,

∑
j G(j) + Q(j) + R(j) = 1.



ANALYSIS FOR A SINGLE MIXNODE 131

Similarly, the probability that the message m′
1 is of type T2 can be computed

as,

Pr[m′ ∈ T2]

=
∑

1≤j≤k

Pr[count(T1) = j] · Pr[m′ ∈ T2|j = count(T1)]

=
∑

1≤j≤k

(G(j) + Q(j) + R(j)) · (k − j)λ2

jλ1 + (k − j)λ2

(9)

Update G, Q, R When A Message Leaves. After the message m′ leaves the
mixnode, we also need to update Q(j) and G(j) values, and they are updated
for each j ∈ [0, k − 1] as follows:

Q(j)new

= Q(j) · Pr[m′ ∈ T2| j = count(T1)]

+ Q(j + 1) · Pr[m′ ∈ T1 ∧m′ ̸= mtarget| j + 1 = count(T1)]

= Q(j) · (k − j)λ2

jλ1 + (k − j)λ2
+ Q(j + 1) · jλ1

(j + 1)λ1 + (k − j − 1)λ2

(10)

For j = k, we update Q(k)new = 0, since there are only (k − 1) messages left in
the mixnode after m′ has left. And,

G(j)new = G(j) · Pr[m′ ∈ T2| j = count(T1)]

+ G(j + 1) · Pr[m′ ∈ T1| j + 1 = count(T1)]

= G(j) · (k − j)λ2

jλ1 + (k − j)λ2

+ G(j + 1) · (j + 1)λ1

(j + 1)λ1 + (k − j − 1)λ2

(11)
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For j = k, we update G(k)new = 0. Additionally,

R(j)new = R(j) · Pr[m ∈ T2| j = count(T1)]

+ R(j + 1) · Pr[m ∈ T1| j + 1 = count(T1)]

+ Q(j + 1) · Pr[m′ = mtarget| j + 1 = count(T1)]

= R(j) · (k − j)λ2

jλ1 + (k − j)λ2

+ R(j + 1) · (j + 1)λ1

(j + 1)λ1 + (k − j − 1)λ2

+ Q(j + 1) · λ1

(j + 1)λ1 + (k − j − 1)λ2

(12)

For j = k, we update R(k)new = 0.

3.3 General Case With Two Traffic Types

For a mixnode on the second and consequent layers of a mixnet, the adversary
might not exactly know the types of the incoming messages to the mixnode.
However, based on the observed delays on the previous layers (and following
the analysis in Section 3.2), the adversary can guess the type of each message
with some probability. With that consideration, we want to analyze how easily
the adversary can correlate the outgoing messages with the incoming messages.
For example, for a mixnode on the second layer the adversary can compute the
probabilities of each incoming message being type T1 (as shown in Section 3.2),
and each of them will have a probability of being the target message (we are
still assuming that the target message is a message from the traffic type T1). In
such cases, we want to compute the probabilities of the outgoing messages of
being the target message.
Similar to Section 3.2, we still assume that there are only two types of messages:
T1 and T2. We keep track of the state of the mixnode using the variables Q(j),
G(j) and R(j) for j ∈ [0, k] where k denotes the total number of message held
by the mixnode. For a mixnode in the first layer, the adversary knows the exact
number k1 (resp. k2) of messages of type T1 (resp. T2) came to the mixnode.
However, for a mixnode in the second layer, those quantities are probabilistic
and dependent on the first layer. Additionally, the adversary does not know
when the target message arrives to the mixnode, if at all (since there can many
mixnodes in every layer).
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3.3.1 Update G, Q, R When A Message Arrives

Before any messages arrive we initialize G(0) = 1, Q(0) = 0 and R(0) = 0.
When a new message m arrives, G(j) can be updated for each j ∈ [1, k + 1] as:

G(j)new

= Pr[m ∈ T2 ∧ G ∧ count(T1) = j]

+ Pr[m ∈ T1 ∧m ̸= mtarget ∧ G ∧ count(T1) = j − 1]

= Pr[m ∈ T2 | G ∧ count(T1) = j]×G(j)

+ Pr[m ∈ T1 ∧m ̸= mtarget | G ∧ count(T1) = j − 1]×G(j − 1)

= Pr[m ∈ T2 | G ∧ count(T1) = j]×G(j)

+
(

Pr[m ∈ T1 | G ∧ count(T1) = j − 1]

− Pr[m = mtarget|G ∧ count(T1) = j − 1]
)
×G(j − 1)

(13)

And for j = 0 we can update

G(0)new = G(0)× Pr[m ∈ T2 | G ∧ count(T1) = j].

Note that the number of messages of type T1 in the mixnode on the second
(or subsequent) layer depends on the state of the previous layer(s). In that
sense, Pr[m ∈ T2 | G ∧ count(T1) = j] depends on the state of the mixnode,
which in turn depends on the state of previous layers. We consider the following
approximation: the probability of an incoming message being of type T1 (resp.
type T2) is independent of count(T1) of the current mixnode; and therefore,
Pr[m ∈ T1 | G ∧ count(T1) = j] = Pr[m ∈ T1 | G] = Pr[m ∈ T1]. Similarly,
Pr[m ∈ T2 | G ∧ count(T1) = j] = Pr[m ∈ T2]. Note that the type of the
incoming message m is always independent of where the target message is,
however, Pr[m = mtarget] is not. So, we have the following,

G(j)new = Pr[m ∈ T2]×G(j) +
(

Pr[m ∈ T1]−

Pr[m = mtarget]
Pr[G]

)
×G(j − 1).

(14)

Note that we have used Pr[m = mtarget|G ∧ count(T1) = j − 1] =
Pr[m = mtarget]

Pr[G] in the final equation. That is because the target message
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can be present only with one mixnode. Therefore, m could only be a target
message if it has not arrived to the current mixnode before, or in other words,
if G is true. Consequently,

Pr[m = mtarget ∧ G] = Pr[m = mtarget]

⇐⇒ Pr[m = mtarget| G] = Pr[m = mtarget]
Pr[G]

The justification for the approximation is two-fold:
• In a steady-state flow, based on the analysis from [5], it is a good

approximation to consider each mixnode as an independent M/M/∞
queue. That means, the internal states of the nodes can be considered
independent of each other; except for the adversarial knowledge of the
total number of messages contained in a node. With that approximation,
the probability that an incoming message from the previous layer is of
type T1 or T2 is independent of the state of current mixnode. However,
the adversary has the knowledge that the target message can be held
by only one mixnode at any given point. Therefore, Pr[m = mtarget] for
an incoming message m is not independent of the state of the current
mixnode, and is bounded by Pr[G].

• If we want to plug-in these probability calculations in a simulator
(which we do in Section 4), maintaining the inter-dependent states for a
mixnet with multiple layers and multiple mixnodes per layer explodes the
computational complexity, and becomes a serious performance bottleneck.

Q(j) is updated for each j ∈ [1, k + 1] as:

Q(j)new = Pr[m ∈ T2 ∧Q ∧ count(T1) = j]

+ Pr[m ∈ T1 ∧m ̸= mtarget ∧Q ∧ count(T1) = j − 1]

+ Pr[m = mtarget ∧ G ∧ count(T1) = j − 1]

= Q(j) · Pr[m ∈ T2] + Q(j − 1) · Pr[m ∈ T1]

+ G(j − 1) · Pr[m = mtarget]
Pr[G]

(15)

And for j = 0, we update Q(0)new = Q(0) · Pr[m ∈ T2].
Explanation for Equations (14) and (15) in Simple Words. The concept
of transition between G and Q is still similar to the previous section (Section 3.2).
However, now the transition is probabilistic, since the adversary does not
certainly know if an incoming message m is the target message. If m has a
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probability P of being the target message, overall Pr[Qnew] should be equal to
Pr[Q] + P; in other words,

∑
Q(j)new =

∑
Q(j) + P .

For each j, G(j)new is contributed by G(j) with an amount exactly as the
probability that m belongs to T2, and G(j − 1) with an amount exactly as the
probability that m belongs to T1 but not the target. So, in total G quantities
are reduced by an amount same as the probability of m being the target. And,
that amount is added to the total of Q quantities by adding the amounts that
we have just reduced from G values to each Q(j)new. So, for each j, Q(j)new is
contributed by Q(j) (with an amount exactly as the probability that m belongs
to T2), Q(j − 1) (with an amount exactly as the probability that m belongs to
T1), and the amount laid off from G(j − 1).
Note that G(j)new (resp. Q(j)new) is contributed by G(j) (resp. Q(j)) for the
amount as the probability that m belongs to T2 because the number of messages
of T1 remains the same when m ∈ T2. Analogously, G(j)new (resp. Q(j)new) is
contributed by G(j − 1) because the number of messages of T1 increases by 1
when m ∈ T1.
Analogously, R(j) is updated for each j ∈ [1, k + 1] as follows:

R(j)new = R(j) · Pr[m ∈ T2]

+ R(j − 1) · Pr[m ∈ T1 ∧m ̸= mtarget]
(16)

And for j = 0, we update R(0)new = R(0) · Pr[m ∈ T2].

3.3.2 When A Message Leaves.

When a message leaves from the mixnode we update the quantities G(j), Q(j), R(j)
for j ∈ [0, k] exactly same as in section 3.2. The probability that an outgoing
message is the target message, the probability that it belongs to a specific type
(e.g., T1) are also computed in the same way as in section 3.2.
We present the overall methodology to calculate the probabilities for a given
mixnode as part of a simulator in Algorithm 2. It is worth to mention here
that our method also works when there is only one type of traffic going through
the mixnet, and provides the same results as the existing methods [15, 23] for a
single traffic type.
Target Is From Type T2: When the target message is from T2 the derivation
remain exactly the same, however, all the quantities are to be defined for type
T2, which is equivalent to swapping the assignment of the types in the notation.
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3.4 When the Adversary Does Not Know the Types of Input
Messages

It is possible that the adversary does not know the types of the incoming
messages to the mixnet (possibly every client is generating both types of traffic).
It is still possible to extend our analysis strategy in such scenarios.
Suppose, the total number of observed packets is N , then we have X1 +X2 = N
where X1 ∼ Poisson(λ′

1) and X2 ∼ Poisson(λ′
2). Then we can say for an

incoming message m,

Pr[m ∈ T1] =
N∑

i=0

i

N
× Pr[X1 = i|X1 + X2 = N ]

where (X1|X1 + X2 = N ) ∼ Binom(N ,
λ′

1
λ′

1+λ′
2
). Therefore, the above quantity

can be further reduced to:

Pr[m ∈ T1] = 1
N

N∑
i=0

i× Pr[X1 = i|X1 + X2 = N ]

= 1
N
×E

[
Binom

(
N ,

λ′
1

λ′
1 + λ′

2

)]
= λ′

1
λ′

1 + λ′
2

Therefore, the value of Pr[m ∈ T1]
Pr[m ∈ T2] does not depend on the total number of

messages passing through the mixnode, or the number of messages the adversary
observes.
Now the overall calculation of mapping probabilities between the incoming and
outgoing messages of a mixnode is similar to the previous subsection, where
the adversary knows that an incoming message i belongs to a specific type with
some probability 0 ≤ pi ≤ 1. However, the adversary does not know the type
of the target message. Suppose, the target message mtarget is of type T1 with
probability p and of type T2 with probability 1− p. Then the analysis for the
whole mixnet needs to be done twice: once assuming mtarget ∈ T1, and then
assuming mtarget ∈ T2. Suppose the probabilities of an outgoing message m′

i

being the target message are pi,1 and pi,2 in those two analyses. Then the final
probability that m′

i = mtarget is calculated as p · pi,1 + (1− p) · pi,2.
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3.5 When the Recipient Leaks the Types

If the mixnode is the last layer and the recipient leaks the type of the message
it is receiving, the adversary gains additional knowledge. In such cases, the
probabilities need to be adjusted to consider that factor. Suppose, the outgoing
messages from the mixnode are denoted with m′

1, m′
2, . . . etc. And the

probabilities of them being the target message mtarget are p1, p2, . . . respectively,
without using the knowledge from the recipient side. Let us consider that
mtarget ∈ T1. With the additional knowledge from the recipient side, we can
derive the following for an outgoing message m′

i ∈ T1,

Pr[m′
i = mtarget | m′

i ∈ T1 ∧mtarget ∈ T1]

= Pr[m′
i = mtarget ∧m′

i ∈ T1 | mtarget ∈ T1]
Pr[m′

i ∈ T1 | mtarget ∈ T1]

= Pr[m′
i = mtarget ∧m′

i ∈ T1 | mtarget ∈ T1]
Pr[m′

i ∈ T1] = pi

D1
;

where D1 =
∑

i:m′
i
∈T1

pi. Similarly, for an outgoing message m′
i ∈ T2 we can

derive,

Pr[m′
i = mtarget | m′

i ∈ T2 ∧mtarget ∈ T1]

= Pr[m′
i = mtarget ∧m′

i ∈ T2 | mtarget ∈ T1]
Pr[m′

i ∈ T2 | mtarget ∈ T1] = 0.

Therefore, we can adjust the probabilities for the leakage on the recipient side
by normalizing them for all the outgoing messages of type T1 (for the target
message mtarget ∈ T1).

3.6 More Than Two Types of Traffic

The methodology presented until now can be extended to analyze anonymity
when there are more than two types of traffic. However, an additional set of
quantities would be required to keep track of the number of messages for each
type inside the mixnode, except the type of the target.2 However, we do not
need to modify G, Q, R calculations, because they only concern about if an
incoming or outgoing message is of the same type as the target or not. The
new quantities corresponding to every type are very similar to e.g., G with a

2With only two types, the number of messages of type T2 can easily be calculated if the
number of messages of T1 and the total number of messages are known. However, that is not
the case when there are many types.
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slight difference — they are not conditional on the arrival (or departure) of the
target message. How they are updated when a message arrives or leaves are
also similar.
Assuming that the target is from type T1, let Hw(j) denote the probability that
there are j messages inside the mixnode of type Tw except w = 1; and,

Hw(j|j < x) =


Hw(j)∑x

a=0 Hw(a) j < x

0 otherwise

denote the probability that there are j messages inside the mixnode of type Tt

but conditioned on j < x. Note that H1(j) = G(j) + Q(j) + R(j). Once the
Hw quantities are in place, the probabilities of an outgoing message being a
target message, or of a specific type can be computed similar to Section 3.3.
For example, the probability of an outgoing message being the target message
can be calculated as (assuming a total of d types),

Pr[m′ = mtarget]

=
∑

1≤kd≤k

· · ·
∑

1≤k1≤k

Hd(kd) · · ·H2(k2)×Q(k1)

× Pr[m′ = mtarget | kt = count(Tt) ∀1 ≤ t ≤ kd]

=
k∑

kd=0
· · ·

k∑
k1=1

Hd(kd|kd ≤ k − kd−1 − · · · − k1) · · ·

×H2(k2|k2 ≤ k − k1)×Q(k1)× λ1∑d
a=1 kaλa

(17)

However, the Hw quantities need to be updated whenever a message arrives
or leaves. Whenever a new message arrives, Ht(j) values can be updated as
follows,

Hw(j)new = Hw(j) · Pr[m ∈ Tw] + Hw(j − 1) · Pr[m ̸∈ Tw];

where Pr[m ∈ Tw] and Pr[m ̸∈ Tw] are calculated based on the previous layer.
And when a message leaves,

Hw(j)new = Hw(j) · Pr[m ̸∈ Tw| j = count(Tw)]

+ Hw(j + 1) · Pr[m ∈ Tw| j + 1 = count(Tw)]
(18)
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For w = 1 we can say,

Pr[m ∈ Tw| j = count(Tw)]

=
k−j∑

kd=0
· · ·

k−j∑
k2=1

Hd(kd|kd ≤ k − kd−1 − · · · − k2 − j) · · ·

×H2(k2|k2 ≤ k − j)× jλw∑d
a=2 kaλa + jλw

(19)

and Pr[m ̸∈ Tw| j = count(Tw)] = 1 − Pr[m ∈ Tw| j = count(Tw)]. The
evaluation is exactly the same for any other w, except for the switched indices
of the variables.

4 End-to-end Anonymity Analysis for Mixnets with
Beta-mixing

In order to demonstrate the effect of blending, we provide empirical analysis for
end-to-end mixnets with the simple case of two types of traffic, and discuss in
section 4.6 how to extend the insights from these analysis when there are more
types.

4.1 Methodology

Our methodology to evaluate the impact of blending different traffic types on
top of the same mixnet is as follows: First, we presented our analytical method
in the previous section which shows how to calculate the probability of an output
message being one input message. We then modified the open-source simulator
used in [4] by implementing our analytical method. The modifications made
to the simulator are summarized in Algorithm 2. We executed the updated
simulator across various mixnet configurations (number of nodes, number of
layers, rates of the different traffic generations etc). Finally, as a measure of
anonymity, we evaluate the entropy of the probability distribution linking the
mixnet’s input and output messages [15,23]. For our evaluations, we assume
that the adversary knows the types of the messages coming to the mixnet. Note
that, while the traffic type is not immediately visible, it may be possible to infer
it, for example if the message sending rate is indicative of which application
may be generating the traffic.
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Algorithm 2: Probability computation on a single node with two types of
traffic.
Result: Updated Pr[mi = mt|mt ∈ T1].
Initialize:
G, Q, R : arbitrarily expandable Lists ;
G.append(1); Q.append(0);
k = 0; i = 0;
if event(receive(mi)) then

k + +;
for j ← 0 to k do

Q[j] = Q[j − 1] · Pr[mi ∈ T1] + Q[j] · Pr[mi ∈ T2] + G[j − 1] · Pr[mi = mt]
sum(G) ;

G[j] = G[j] · Pr[mi ∈ T2] + G[j − 1] ·
(

Pr[mi ∈ T1]− Pr[mi = mt]
sum(G)

)
;

R[j] = R[j − 1] · Pr[mi ∈ T1] + R[j] · Pr[mi ∈ T2];
end

end
if event(send(mi)) then

define denom(j) = j · λ1 + (k − i− j) · λ2 ;

Pr[mi = mt] =
k−1∑
j=0

λ1

denom(j) ·Q[j];

Pr[mi ∈ T1] =
k−1∑
j=0

j · λ1

denom(j) · (Q[j] + R[j] + G[j]);

Pr[mi ∈ T2] =
k−1∑
j=0

(k − i− j) · λ2

denom(j) ·
(
Q[j] + R[j] + G[j]

)
;

for j ← 0 to k do

R[j] = λ1

denom(j + 1) ·Q[j + 1] + (j + 1) · λ1

denom(j + 1) ·R[j + 1] + (k − i− j) · λ2

denom(j) ·R[j];

Q[j] = j · λ1

denom(j + 1) ·Q[j + 1] + (k − i− j) · λ2

denom(j) ·Q[j];

G[j] = (j + 1) · λ1

denom(j + 1) ·G[j + 1] + (k − i− j) · λ2

denom(j) ·G[j];

end
Forward Message (mi);
i + +;

end
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4.2 Experimental Setup

The simulation starts with users generating messages, selecting a route for each
message, and sending them through the network to their respective recipients.
Each user generates messages from two traffic types, T1 and T2, following a
Poisson distribution with parameters λ′

1 and λ′
2. The delays parameters of

each message belonging to either T1 or T2 also follow Poisson Distribution with
parameters λ1 and λ2, respectively. We consider a user population of U = 100
users, each user generating a total of 5 messages per second for the two types
of traffic combined. The total traffic generation rate is 500 messages per second
with a total of 100000 messages. For each simulation run, each run representing
one data point in the graphs, once the network has been initialized and is in
a steady state we choose 50 input target messages3. In order to evaluate the
impact of blending two types of traffic on the anonymity of the system for each
of these types of traffic, we choose target messages from each type of traffic.
mtarget is the message that the adversary follows. At the end of the simulations,
all the 100000 received messages, in one simulation run, have a probability
of being mtarget. Finally we plug this probability distribution in the entropy
metric in order to evaluate the anonymity provided by the mixnet.
We vary for different experiments the generation rates of each traffic such that
the sum of the two rates of traffic generations (λ′

1 + λ′
2) is equal to 5. Our goal

is to evaluate whether there are advantages of blending two different traffic
types with different latency requirements in the same mixnet over maintaining
separate mixnet infrastructures as well as determining the significance of the
traffic generation ratios (λ′

1:λ′
2). We consider T1 as fast traffic, and T2 as slow

traffic, meaning all messages belonging to T1 have an average delay 1
λ1

= d1 = 1,
and messages from T2 have higher delays. For each experiment, we plot the
entropy values, for two cases: (i) for target messages belonging to T1 and (ii)
for messages belonging to T2. To evaluate the impact of blending traffic on the
anonymity provided by the mixnet for messages from:
• T1 (target messages are from type T1): The first 4 data points represent the

entropy values for : (λ′
1 = 5, λ′

2 = 0), (λ′
1 = 4,λ′

2 = 1), (λ′
1 = 2.5, λ′

2 = 2.5),
and (λ′

1 = 1 , λ′
2 = 4) The 5th data point of this graph represent only one

target message from T1 and the rest of the network traffic is from T2 with
λ′

2 = 5.
• T2 (target messages are from type T2): The first 4 data points represent the

entropy values for: (λ′
1 = 0, λ′

2 = 5), (λ′
1 = 1,λ′

2 = 4), (λ′
1 = 2.5, λ′

2 = 2.5),
and (λ′

1 = 4 , λ′
2 = 1). The 5th data point of this graph represent only one

3The simulation times vary for experiments due to the extensive probability computation
for each output message. We will include the open-source code, the data, as well as other
details related to the simulator as an artefact.
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target message from T2 and the rest of the network traffic is from T1 with
λ′

1 = 5.
In order to compare anonymity of the messages of T1 (resp. T2) where traffic
is blended to the anonymity where there’s a dedicated infrastructure for each
traffic type, we also plot the entropy values for the same values of λ′

1 (resp. λ′
2)

but all values of λ′
2 (resp. λ′

1) are equal to 0. We call the scenario a Solo case,
meaning that the network only has messages from the the type traffic T1 ( T2).
Finally, in the scenario of one single message from either T1 or T2, we want to
evaluate the anonymity provided by the network when there’s only one message
from that type of traffic and the rest of the 500 messages per second are from
the opposite traffic. Such scenarios can manifest in real-world situations. For
instance, in the case of Nym [12], a practical scenario might involve one user
initiating a cryptocurrency transaction, while the rest of the network during a
rather large period of time, are sending Telegram messages. We consider the
following mixnet settings for our evaluations:

1. Cascade: One mixnode per layer for L = 1, L = 2 and L = 3 (4.3);
2. 3x10: A mixnet consisting of 3 layers with 10 mixnodes per layer (4.4):

• against a Global Passive Adversary (GPA);
• the GPA additionally compromises 10% mixnodes;
• the GPA can see the types of all output messages;

3. d1:d2: Different ratios of per-mix delays; T1 with an average delay d1=1
and T2 with average delays d2 = 5, d2 = 10, d2 = 15 and d2 = 20 (4.5);

4.3 Evaluation: One Mixnode Per Layer

First, we evaluate the entropy for a small mixnet: one mixnode per layer for
L = 1 (one single standalone mixnode), L = 2 and for L = 3 . We plot the
entropy values for the different λ′

1 and λ′
2 ratios evaluating the anonymity

provided by the mixnet for messages from T1 in Figure 2a and from T2 in
Figure 2b.
In these figures, the blue lines denote the entropy values for 1 single mixnode,
the red ones denote the entropy for L = 2 and the black is for L = 3. The solid
lines for each of these configuration denote the entropy values of the two types
of traffic blended together and the dashed lines are for the Solo cases, meaning
that all λ′ values from the opposite traffic are equal to 0.
As we can see in Figure 2a, as the ratio λ′

1 : λ′
2 declines when blending traffic

(solid lines), the entropy only slightly decreases. The Solo cases, represented
by the dashed lines, show the entropy values for single traffic T1 in the mixnet.
The decreasing entropy values of the Solo cases are to be expected since there
is a decrease in the traffic generation rate λ′

1 in 2a. We use the Solo cases as
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(a) Entropy for messages of type T1 for
W = 1, L = 1, L = 2 and L = 3.

(b) Entropy for messages of type T2 for
W = 1, L = 1, L = 2 and L = 3.

Figure 2: Evaluation of anonymity in terms of entropy for continuous mixnets
with width W = 1 (number of mixnodes per layer), average delay d1 = 1

λ1
= 1

for traffic type T1, average delay d2 = 1
λ2

= 5 for traffic type T2.

reference in order to compare the impact of blending on anonymity to dedicating
a different mixnet per traffic type. We conclude from this graph that even
though there’s a slight decrease, the overall anonymity is much better when
blending traffic. This is due to the fact that messages from T2 do make up for
the reduced number of messages of T1.
Figure 2b provides similar observations. Additionally, it shows that the slow
traffic (T2) has much better entropy compared to the fast traffic (T1) for both
Solo and with blending. This is due to the higher per-mix delay (d2 = 5) for
messages from T2 compared to messages from T1 (d1 = 1). However we do
notice a slight increase in anonymity for traffic type T2 when the ratios λ′

2 : λ′
1

declines. This is due to the fact that messages T2 are able to meet with many
more messages of fast traffic (T1) when they are inside the mix because of their
higher delays. In other words, for a message with a large delay, having other
messages with small delays decrease the probability of that message being one
input message and hence this provide higher value of entropy.
When comparing the entropy values for a single mixnode to the case of L = 2
and L = 3, we notice that adding layers increase anonymity, a result that is
consistent with previous works [3,4, 22] analysing only a single type of traffic.
For example, when having L = 1 and W = 1 (a single standalone mixnode
represented by the blue lines), we have entropy values of around 10.3 for type
T1 and λ′

1 = 1, λ′
2 = 4; and entropy values of around 11.5 for the same λ′ when

L = 3 and W = 1 (black lines).
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However, when there’s only one single unique target message, we notice that
adding layers has the opposite impacts, especially for the slow traffic. This is
due to the fact that the adversary has more advantages in following this unique
target message that has a different delay compared to all ther other messages
in the network. We emphasize however the importance of blending, because
otherwise this unlucky message would be 100% de-anonymized as shown by the
dashed lines representing the solo cases.
We emphasize the validity of our analysis by comparing our simulation results
in Solo cases with those from [4]. This comparison is justified as the authors
in [4] exclusively evaluated one type of traffic, and both methods yield identical
entropy values when utilizing the same network size, user population, and traffic
generation parameters.

(a) Entropy for messages of type T1 for
a network with L = 3, and W = 10 and
two adversarial setups.
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(b) Entropy for messages of type T2 for
a network with L = 3, and W = 10 and
two adversarial setups.

Figure 3: Evaluation of anonymity in terms of entropy for continuous mixnets
with width W = 10 (number of mixnodes per layer), number of layers L = 3,
average delay d1 = 1

λ1
= 1 for traffic type T1, average delay d2 = 1

λ2
= 5 for

traffic type T2. B is the number of compromised mixnodes in the network.
Scenario A: Adversary only knows the input types of traffic. Scenario B:
Adversary knows the type of traffic of input and output messages

4.4 Evaluation: 3 Layers, 10 Mixnodes Per Layer

In this section, we evaluate the impact of blending the two types of traffic
in a network with L = 3 and W = 10. We maintain the same experimental
setups, in terms of number of clients and number of messages per second, as
in the previous experiments. Additionally, we evaluate the impact of having
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an adversary who is corrupting 10% of the network (B = 3) as well as the
impact of an adversary that additionally knows the traffic type of each output
message. We symbolise by A the adversary who only knows the types of input
messages and by B the adversary who knows the the types of traffic of all input
and output messages. The type of messages when received by the recipient can
be leaked when the adversary can compromise the recipient, or controls the
ISP of the recipient. In order to quantify this knowledge of the adversary in
our empirical analysis, we normalize the probabilities of all messages being the
target as explained in Section 3.5. We report the entropy values in Figure 3.
In Figure 3, the solid lines represent the entropy values when the two types
of traffic are blended and the dashed line represent the Solo cases. The red
lines represent the entropy values for 0 corruption, the blue lines represent
the adversary who corrupts 10% of all the nodes (B = 3) and the black lines
represent the scenario B where the adversary knows the types of traffic of all
the input and output messages. Similar to previous experiments, we observe
that the entropy decreases as λ′

1 (resp. λ′
2) decreases when traffic types are

not blended; however, when we blend messages from different traffic types, the
messages from the second traffic type compensates for the lack of messages from
T1 (resp. T2). Similar to previous evaluation, the slow traffic benefits slightly
more from blending than the fast traffic.
When we consider 10% of the mixnodes are compromised (we choose them by
choosing one corrupt mixnode per layer), we observe slight decrease in entropy
values for each type of traffic, and in both blended and non-blended scenario (c.f.
Figure 3). The black lines, representing adversary B, shows that the entropy is
lower when the adversary knows the types of output messages than when the
adversary does not know — which was expected, since the adversary has the
additional information of the output traffic types. In fact, the entropy values
closely match the dashed red lines depicting entropy of single-type traffic. This
indicates that, even in the worst-case scenario where the adversary knows the
types of traffic of all input and output messages, blending traffic is as effective
as dedicating the entire network to each traffic type. We can summarize the
insights as follows:

1. Blending traffic is slightly more advantageous for the slow traffic than for
the fast traffic.

2. However even for the fast traffic, blending two different types of traffic into
the same mixnet infrastructure is more beneficial in terms of anonymity
compared to sending them through separate mixnets.

3. On the other hand, anonymity for the slow traffic improves as the difference
between the delay parameters increases.
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(a) Entropy for messages of type T1 for
L = 3, W = 10, B = 0.

(b) Entropy for messages of type T2 for
L = 3, W = 10, B = 0.

Figure 4: Evaluation of anonymity in terms of entropy for continuous mixnets
with L = 3, W = 10, average delay d1 = 1

λ1
= 1 for traffic type T1, and different

average delays for traffic type T2: d2 = 1
λ2

= 5, d2 = 10, d2 = 15, d2 = 20.

4.5 Evaluation: Different Ratios of Delay Parameters

In the previous sections, we consider two types of traffic which we called fast
with an average delay d1 = 1 and a second type of traffic T2 which we called
slow with an average delay d2 = 5. In this section we want to investigate the
impact of these per mix delays ratios on the anonymity of both of the traffic.
In figure 4a, we keep the same rate for per-mix delay d1 = 1 for traffic type T1,
and we change the rate delays of traffic T2 to d2 = 10 (red), d2 = 15 (black)
and d2 = 20 (green). We also plot the entropy values for Solo case of traffic
T1 in purple dashed line. When the ratios λ′

1:λ′
2 is large, meaning that the

majority of the messages in the network are from type T1, the entropy values
are almost the same for all values of d2. However when this ratio λ′

1:λ′
2 declines,

meaning that the majority of the message generation in the network are coming
from T2 traffic we see that the best entropy values for target messages from
T1 are when d2 = 5 (blue lines). Having the slow traffic with large per-mix
delays compared to the fast traffic does not provide the best anonymity for the
fast traffic, however blending these two traffic together does still provide better
anonymity than the Solo case (purple dashed line). As for the traffic T2 in 4b,
the entropy values are to be expected: when we increase the per-mix delay d2
we increase the anonymity for the messages from that traffic: the best entropy
values are provided when d2 = 20 (the green solid lines). We can summarize
the insights as follows:
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(a) Entropy for target mes-
sages of type T1

(b) Entropy for target mes-
sages of type T2

(c) Entropy for target mes-
sages of type T3.

Figure 5: Evaluation of anonymity in terms of entropy for continuous mixnets
with L = 1, W = 1, average delay d1 = 1

λ1
= 1 for traffic type T1, average delay

d2 = 1
λ2

= 2 for traffic type T2, and average delay d3 = 1
λ3

= 5 for traffic type
T3.

1. When the amount of messages from the fast traffic is the majority in the
network, the delay parameter of the slow traffic has less impact on the
anonymity of the fast traffic.

2. However, when the amount of the fast traffic is not the majority, the delay
parameter of the slow traffic has a negative impact the anonymity of the
fast traffic. As the difference between the delay parameters increases,
anonymity slowly deteriorates.

3. The rate delays of one traffic type impact not only the anonymity of
messages within that specific type but also those from other types of
traffic.

Remark We consider in our analysis that the adversary observes the mixnet
since the first message being sent, and therefore can count how many messages
came to the mixnet, how many has left, and how many are still remaining. We
argue, however, that changing the starting time of observation will not radically
change our results since an adversary observing the network for a long time can
infer these information with high confidence.

4.6 More Than Two Types of Traffic

To validate our insights obtained with two types of traffic, we evaluate the
impact of blending three types of traffic with a set of small-scale experiments.
We vary for different experiments the generation rates of each traffic such that
the sum of the three rates of traffic generations (λ′

1 + λ′
2 + λ′

3) is equal to 6
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with U = 20, meaning that we generate 120 messages per second, and the total
number of messages is equal to 12000. Note that the number of clients as well
as the number of messages does not change our insights regarding the blending
strategy. In order to compute the probability of an output message being the
target input message, given that the adversary knows the type of traffic of the
target message when there are three types of traffic, we need to consider all
possible values of k2, which is the number of messages of type T2 that entered
the node. We update Algorithm 2 to compute the probability distribution over
all possible k2 values based on the derivations in section 3.6, and present it in
Algorithm 3.
We evaluate the impact of blending three types of traffic in a network with
one mixnode: traffic type T1 with an average delay d1 = 1, traffic type T2 with
an average delay d2 = 2, and traffic type T3 with an average delay d3 = 5. In
Figure 5a, we present entropy values for target messages from traffic type T1
under different scenarios: when there are messages only from T1 (red), when
there are messages from both T1 and T2 (black), when there are messages
from T1 and T3 (green), and when there are messages from all three types of
traffic (blue). Similarly, we repeat this analysis for target messages from T2 in
Figure 5b and for T3 in Figure 5c.
In all three figures, there is a noticeable increase in entropy values when blending
different types of traffic. Specifically, the highest entropy values are observed
when messages from all three traffic types are combined.

5 Discussion And Conclusion

5.1 Broader Impact and Future Work

We have showed, through a diverse set of experiments in multiple settings, that
the blending traffic types improves anonymity. The degree of this improvement,
however, depends on the different average delays of the traffics and their
respective generation ratios. In this paper, we assume that the end-to-end
latency is set by the application using the mixnet-based system, leaving users
with limited control over this aspect. However, envisioning a more user-centric
mixnet-based system can consider the possibility of allowing users to choose
delays to improve anonymity, as proposed by the authors in [16]. In this
paper, the authors let senders specify for each message whether they prefer
security or speed and hence end-to-end delays is chosen by the users. In such a
scenario, a systematic study of the effects of different generation ratios along
with the different average delays on anonymity is needed. Furthermore, we
assumed in this paper that the adversary knows the type of traffic of input
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Algorithm 3: Probability computation on a single node with three types
of traffic.
Result: Updated Pr[mi = mt|mt ∈ T1].
Initialize:
G, Q, R : arbitrarily expandable Lists ;
G.append(1); Q.append(0);
k = 0; i = 0;
if event(receive(mi)) then

k + +;
for j ← 0 to k do

for k2← 0 to k do
Q[j, k2] = Q[j − 1, k2] · Pr[mi ∈ T1] + Q[j, k2− 1] · Pr[mi ∈ T2]

+ Q[j, k2] · Pr[mi ∈ T3] + G[j − 1] · Pr[mi = mt];

G[j, k2] = G[j, k2− 1] · Pr[mi ∈ T2]

+ G[j − 1, k2] ·
(

Pr[mi ∈ T1]− Pr[mi = mt]
)

+ G[j, k2] · Pr[mi ∈ T3];

R[j, k2] = R[j − 1, k2] · Pr[mi ∈ T1] + R[j, k2− 1] · Pr[mi ∈ T2]

+ R[j, k2] · Pr[mi ∈ T3];
end

end
end
if event(send(mi)) then

define denom(j, k2) = j · λ1 + k2 · λ2 + (k − i− k2j) · λ3 ;

Pr[mi = mt] =
k−1∑
j=0

k−1∑
k2=0

λ1

denom(j, k2) ·Q[j, k2];

for j ← 0 to k do
for k2← 0 to k do

R[j, k2] = λ1

denom(j + 1, k2) ·Q[j + 1, k2] + (j + 1) · λ1

denom(j + 1, k2) ·R[j + 1, k2]

+ (j, k2 + 1) · λ2

denom(j, k2 + 1) ·R[j, k2 + 1] + (k − i− k2− j) · λ3

denom(j, k2) ·R[j];

Q[j, k2] = j · λ1

denom(j + 1, k2) ·Q[j + 1] + (k2 + 1) · λ2

denom(j, k2 + 1) ·Q[j, k2 + 1]

+ (k − i− k2− j) · λ3

denom(j, k2) ·Q[j, k2];

G[j, k2] = (j + 1) · λ1

denom(j + 1, k2) ·G[j + 1, 2] + (k2 + 1) · λ2

denom(j, k2 + 1) ·G[j, k2 + 1]

+ (k − i− k2− j) · λ3

denom(j, k2) ·G[j, k2];

end
end
Forward Message (mi);
i + +;

end
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messages. However, it is not always straightforward for an adversary to deduce
the types of messages, particularly when this information is not overtly leaked
from client behaviors. An in-depth exploration of different applications that
enable adversaries to infer message types is deferred for future research. In
addition, future research should also consider more real-world scenarios: while
our analysis and insights remain the same irrespective of message volume or
the geo-location of the different mixes, exploring the impact of real data in
practical settings may yield valuable additional insights. Such analysis will
not reverse the relevance of our observations but may reveal nuanced insights
that can be crucial in real-world implementations. Finally, due to limitations
in simulation constraints, we regrettably had to work with a relatively small
number of messages per second. Exploring the impact of blending different
traffic types on anonymity in scenarios with a substantial volume of traffic
presents an intriguing avenue for future research. Investigating by how much
does the anonymity increases with blending traffic in high-volume situations
could provide valuable insights for a more comprehensive understanding of the
blending traffics.

5.2 Conclusion

We have provided the first quantitative analysis of the anonymity offered by
continuous mixnets when multiple different traffic types are blended together.
To that end, we provided (i) a novel analytical framework to compute the
probabilities connecting the input and output messages of a mixnode when
different traffic types with different latency requirements are blended together;
(ii) a simulation-based evaluation of anonymity based on the proposed analytical
framework considering varying proportions of traffic types, different average
delays per traffic type, and diverse network settings. Our evaluations reveal that
blending different traffic types through a mixnet enhances anonymity compared
to dedicating a different mixnet to each traffic type.
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Abstract. Mixnets are a fundamental privacy enhancing tech-
nology in the context of anonymous communication that have
been extensively studied in terms of a Global passive Adversary
(GPA). However a more realistic adversary that captures only a
portion of the network have not yet been studied. We call these
adversaries “Adversaries with Partial Visibility (APV)”. In this
paper we provide a framework that models the mixnet-based system
and captures different types of Adversaries with Partial Visibility.
Each adversary is modeled based on their goals, prior knowledge,
and capabilities. We then use this model to perform traffic analysis
using the Metropolis-Hastings algorithm in conjunction with a
Bayesian inference engine. To the best of our knowledge this is
the first time such an adversary is explicitly defined and studied,
despite this adversary model being championed as more realistic
than global passive adversaries in prior work. We highlight that
our framework is flexible and able to encompass a broad range
of different adversaries. Naturally, our model also captures the
classical global passive adversary (GPA) as a special case.

1 Introduction

The notion of a mixnet was first invented by Chaum [2]. Mixnets were designed
specifically to resist an adversary with a global view who can observe all inputs
and outputs in the network. Resisting such adversaries is achieved via the
mixing strategy where each mix does not output messages immediately upon
receiving them. Instead, a mix stores messages for some amount of time before
sending them to either another mix or to a recipient. This technique hides
correlations between the inputs and outputs which therefore makes mixnets
resilient against a Global Passive Adversary (GPA). Currently, a substantial
body of literature exists using simulation-based evaluation in order to quantify
anonymity under such a powerful adversary for generic mixnets [1, 14].

157
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However, adversaries with such full visibility are of questionable practical
utility, since in practice even very powerful adversaries may have blind spots
in their network coverage [17]. The literature currently lacks methods to
model and analyze anonymity properties with respect to an adversary who
has partial visibility of the network, such an adversary (such as Iran or Russia
surveillance operations) that can only control mixes within their jurisdiction.
One challenge in evaluating anonymity under such an adversary is that their
advantages in inferring information about messages in a network vary greatly
depending on which portions of the network they have visibility over. Deriving,
analytically, the probability of an event when considering such an adversary
requires conditional probabilities based on the different assumptions of the
portions of the network that they can or cannot see. Even a simple network
results in an explosion in complexity from the derivation of such probabilities.
To address this problem, we first provide a general and flexible matrix-based
mixnet model that captures different mixnet configurations, then we model
adversaries based on their goals, priors, and capabilities. By performing this,
we retrieve two sets of data: an Observation O and a Hidden State HS. The O
is the part of the trace the adversary has visibility over and the HS is the part
of the trace the adversary lacks visibility over. Finally, we use this modeling
to perform mixnet traffic analysis under an APV . The main strength of this
framework is that it is able to capture a broad range of adversaries. We develop
and implement a Bayesian inference engine which takes an APV and a network
configuration as input. The inference engine then uses the Metropolis Hastings
to estimate the distribution over possible traces.
In summary, our main contributions are as follows:

• A matrix-based mixnet model that is able to capture different mixnet
configuration such as different topologies and mixing strategies.

• A model for an Adversary with Partial Visibility (APV) that can be
captured by the matrix-based mixnet model. This model can be used in
conjunction with Bayesian inference techniques to perform traffic analysis
attacks. To the best of our knowledge such a general adversary model has
not been studied in mixnets before.

• A traffic analysis framework that uses the Metropolis-Hastings algorithm
to evaluate anonymity under different APV s.

2 Motivation and Related Work

In this section we present our motivation and related work. First, we discuss
Adversaries with Partial Visibility in the context of mixnets. Second, we discuss
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our decision to choose the Metropolis–Hastings algorithm for traffic analysis.

Adversaries with Partial Visibility: Since Chaum’s seminal work on
untraceable email [2], there has been considerable research exploring and
understanding the design space of mixnets [5, 10, 13, 15]. However, most of
this literature assumes a very strong notion of the adversary, called a Global
Passive Adversary (GPA), which observes the entire network. In [17], Syverson
argues that a GPA is unrealistic and does not reflect the real anonymity of a
system. Starting from adversary models that are not reasonable in practice has
contributed to the lack of wide-spread adoption of anonymous communication
systems. Syverson argues that in security analysis, most adversaries are subject
to some constraints on their capabilities such as having a partial view of a
network [17]. An adversary’s ability to execute a successful attack is dependent
on the adversary’s available resources and their effectiveness. In other words,
the measure of an adversary’s ability to succeed must include the resources it
will take them to learn enough information to link relations.
In [8], Gallagher et al. have argued for the need for new adversary ontologies
that could better model real-world adversaries by outlining the limitations of
the adversaries that are commonly used in academic literature, such as Global
Passive Adversary. A GPA is unrealistic in real world scenarios where the
mixnet system spans multiple administrative domains (e.g., different autonomous
systems) in several countries. In fact, considering such an unnecessarily strong
adversary may hinder exploring and curtail the development of mixnet designs
that can scale better and provide adequate and meaningful privacy in the real
world [14].

Traffic Analysis in Mixnets: Multiple variants of traffic analysis attacks in
mixnets do exist in the literature [3, 11, 12, 16]. However the focus has been
on the edges of mixnets where messages are sent and received and therefore
the adversary does traffic analysis on the patterns of these messages in order
to correlate for example a sender to a receiver. These attacks do not capture
an adversary that is also able to corrupt or monitor a portion of the network
in order to de-anonymize the sender and receiver. Traffic analysis by an
Adversary with Partial Visibility (APV ) over the network is a hard task as
it requires consideration of prior knowledge of the adversary as well as the
different assumptions for the parts of the network that the adversary does not
have visibility over. In [6], the authors argue that at the heart of traffic analysis
lies an inference problem. Therefore applying Bayesian techniques provides a
sound framework on which to build attacks and algorithms to estimate different
quantities. Their main contribution is introducing the application of Bayesian
inference to traffic analysis. The Metropolis–Hastings algorithm is a well-known
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method for obtaining a sequence of random samples where direct sampling is
difficult [9]. In order to estimate a function of the mapping between input and
output messages of the network, they build an inference engine that samples
from the distribution of network states that a set of given observations allow.
However, this model only models global passive adversaries [6].
One of the key contributions of our work is to extend this bayesian-based
framework in conjuction with Metropolis Hastings in order to analyse Adversaries
with Partial Visibility. This encompasses a much wider set of adversaries than
the Global Passive Adversary considered in prior work [6, 18].

3 Adversary Model

In this paper we provide a method that solves the problem of traffic analysis
under an Adversary with Partial Visibility (APV ). In a nutshell the problem
is presented as follows: The adversary APV has a prior knowledge about the
mixnet-based system. An APV observes the network over some time interval t
and produces an observation O. Given the prior knowledge on the system model
as well as the observation O, the adversary tries to infer the probability of
certain events that happened either partially or entirely outside of her visibility
during the time t. We call the parts of the network trace that the adversary
does not have visibility over a Hidden State HS. Table 1 provides a handy
reference for all the notations used in this paper. One of our objectives for
solving this problem is to make the adversary model as general as possible in
order to accommodate different types of adversaries. We therefore start by
modeling the three major aspects of any adversary: (i) Goal, (ii) Prior and (iii)
Capability:
Goal: The adversary chooses a goal. For example, an adversary’s goal can be to
infer the probability of a sender si communicating with receiver rj (Pr[si → rj ]),
or correlating a specific input ii to an output oj (Pr[ii → oj ]). Note that in the
first example, the adversary needs to track all messages from si to rj , however,
in the second example the adversary is only interested in correlating ii with oj .
Prior: Depending on the system model, different adversaries can have different
sets of prior knowledge. One could imagine a system that have different paths
lengths for each message or different constraints on users in choosing the route
(for example users in certain geographical locations are more likely to route their
messages through nodes in adjacent areas). We use C for the system constraints.
This type of information is encoded in the prior knowledge of the adversary.
To be more formal we assume that an abstract system consists of an Observation
O and a Hidden State HS. We therefore assign a joint probability given the
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Notation Interpretation
Adversary
A Adversary
APV Adversary with Partial Visibility
O Observation
HS Hidden State
C Constraints
Messages
µ mix
Mt Set of messages that are inside µ during t
MI Incoming messages to a mix
MO Outgoing messages of mix
Matrices
Pm Path of the message m
V Set of Vertices in a path
E Set of edges in a path
VI Set of mix input vertices
VO Set of mix output edges
Eµ Set of edges in the subgraph associated

with the inner-mix mappings of mix µ
EI,O Set of edges in subgraph associated with

inter-entity connections
between ET O and ET I

vi,I(µj) ith input edge of jth mix
vi,O(µj)) ith output edge of jth mix
GM Set of ghost messages
Metropolis–Hastings
T R Trace
T Rp Proposed Trace
T Rc Current Trace
T RG Trace of the Ground Truth
Q Transitioning function

Table 1: Summary of notation for Publication 4.

constraints C, Pr[HS,O | C]. We further elaborate how to incorporate the joint
probability in our framework in section 5.
Capability: In order to achieve its goals, the adversary does traffic analysis by
making use of its Compromising and/or Monitoring capabilities. Monitoring
the network means that the adversary is monitoring the connections between
different physical entities of the network either throughout some portion of the
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network or throughout the entire network in the case of a GPA. A physical entity
in the network can be either a mix µ or a user u. We call this an inter-entity
connection. An ISP is one example of an adversary that can see inter-entity
connections and use this data for traffic analysis. The adversary is also able
to compromise. Compromising a mix means this adversary has the capability
of seeing inside a mix. One real-world example of an adversary that can see
inner-mix mappings is one that can add mixes to a volunteer-based network [7].

4 A Matrix-based Model of a Mix Network

In this section, we describe our model for a matrix-based mix network. As
explained in the previous section, the APV is trying to estimate the probability
distribution of the Hidden State HS given their Observation O and the prior
knowledge about the system constraints C. We therefore need to provide a
model for the mixnet system that encompasses the adversary’s constraints C
and partitions the message trace (defined next) into an Observation O and
Hidden State HS.

4.1 Trace Graph: A graph derived from the message trace

A trace, which is the full set of messages traversing the network during a time
t, is represented by HS andO. We now describe how to derive a graph (V, E)
from a trace, where V is the set of vertices in the graph and E is the set of
edges. The purpose of this graph is to split each message path into segments so
that we can differentiate between the parts of each path that an adversary can
see and the parts that they cannot see. We start by defining a path, and then
show how to model each path as a graph.

Definition 4.1 (Path). A path, P = (si, µ1, .., µn, rj) = {e1, ..en+2}, is an
ordered set of entities, users and mixes, that describes the path of the message
from the sender si to the receiver rj (n: length of the message path).

If Pi is the ith path, then as it goes through mix µj , we will denote its input
vertex in this mix as vi,I(µj) and its output vertex as vi,O(µj). We will denote
the vertex associated with the path’s sender as (vi(s)) and the vertex associated
with the path’s receiver as (vi(r)).

Definition 4.2 (Path Graph). Let Pi = (s, µ1, .., µn, r) be a path. A path
graph is a set of vertices V and a set of edges E . A vertex represents (i) the
sender of the message (vi(s)) of the corresponding path, (ii) the input/output of
the message to/from the different mixes, vi,I(µj), vi,O(µj) and (iii) the recipient
of the message (vi(r)). An edge is the connection between two vertices of the
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network, which can be between two entities (either a mix or a user) or between
an input vertices and an output vertices of each mix.

Note that a vertex in the network is not just a physical point of entry of the
message. It is rather a representation of time in the graph. For example, if
a message m arrives to mix µ at t1 = 1 and a message m2 arrives to µ at
time t2 = 2, we assign different vertices in the mix to the different messages.
Figure 1b shows a simple example of modeling a portion of the path and its
relationship to the mix by vertices and edges.

Definition 4.3 (Trace). Let M be a set of messages sent through the mixnet.
For message m ∈M , let Pm be the path of m. A trace T R = {Pm : m ∈M}
is the set of paths of all messages sent through the network during time interval
t, in other words, a trace is the full set of paths that occur in a network during
a time interval t.

Definition 4.4 (Trace Graph). Let M be the set of messages sent across the
network during time interval t and let T R = {Pm : m ∈ M} be a trace of a
network in that time interval. Let GP be the Path graph of path P . The Trace
Graph, GT R = {GP : P ∈ T R} is the set of Path Graphs associated with paths
in T R.

We model the Trace Graph as a set of adjacency matrices.

Definition 4.5 (Adjacency Matrix). Let G = (V, E) be a graph, where V is
the set of vertices and E is the set of edges. Then an adjacency matrix Mx is
a matrix with |V| columns and |V| rows, where row i and column i are both
labeled by vertex vi ∈ V, for i ∈ [1, |V|]. Element (i, j) of Mx is 1 if the edge
(vi, vj) ∈ E and 0 otherwise.

Each adjacency matrix will be associated with a subgraph of the Trace Graph,
GT R. We identify two types of subgraphs in the Trace Graph. The first type is
an inner-mix subgraph, defined by the vertices and edges associated with each
mix. We call the adjacency matrix of this subgraph an inner-mix matrix. This
matrix represents the relationship of the input messages to a mix to the output
messages of the same mix.

Definition 4.6 (Inner-mix matrix). Let TG be a trace graph, let µ be a mix,
and let VI be the incoming vertices of messages associated with µ and VO be
the outgoing vertices of messages associated with µ, as described in Definition
4.2. For each message going through µ, there is an edge (v, w) between a vertex
in v ∈ VI and a vertex w ∈ VO, as defined by the path of that message. Let Eµ

be the set of such edges. Then an inner-mix matrix is the adjacency matrix of
the graph (VI ∪ VO, Eµ).
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(a) An example of a network trace (b) Mix µ1 modeled by vertices and edges.

Figure 1: An example of network trace T R and the representation of mix µ1
by vertices and edges.

We also model inter-entity connections as a set of adjacency matrices. An
inter-entity matrix is a matrix that represents the connections between entities
that have messages going between them.

Definition 4.7 (Inter-entity matrix). Let VO be the set of outgoing vertices
of a subset of the network entities that are able to send messages to subset of
entities with vertices VI . Let EI,O be the collection of all edges that connect the
vertices of VO with the vertices VI . Then an inter-entity matrix is the adjacency
matrix of the graph (VO ∪ VI , EI,O).

The number of inter-entity matrices in our model vary depending on the network
configuration. For example, if we have a free-route network where each mix
can send a message to any mix in the network then we can have one inter-
entity matrix. However, if the system’s topology is stratified then mixes are
arranged in a fixed number of layers and can only communicate with mixes in
the subsequent layer. In this case we have an inter-entity matrix that connects
every two layers (eg EO is associated with layer i and EI is associated with layer
i + 1).

4.2 Matrices in two sets

As given in Section 4.1, we model the entire Trace Graph by a list of matrices.
There exists two types of matrices (i) inner-mix matrices that represent the
"inside" of the mix and (ii) the inter-entities matrices that represent the
connections between two sets of entities (either a mix or a user). The motivation
behind this modeling is two-fold:

• Using this model we are able to trace any message by simply tracing the
elements with value 1 that connect the edges in the different matrices.
Figure 2 shows the matrices that are the representation of the trace
depicted in Figure 1a. We can see in Figure 2 how by simply following
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Figure 2: Modeling the trace in Figure 1a by matrices

Figure 3: Inter-entity matrix split into O and HS.

the connected edges in the matrices we are able to correlate the input i1
to the output o3.

• Accommodating the adversary in our model. The set of matrices represents
the full trace of the network, so in order to include the adversary in this
model, we need to split the matrices into two sets: matrices that are part
of the observation O and matrices that are part of the Hidden State HS.
For example, if an adversary APV is only corrupting a mix µ1, we put the
corresponding matrix in the observation and the rest of the matrices in the
hidden state. However, for the inter-entity matrices, depending on which
portions of the network the adversary monitors, the same matrix has to
be split to O and HS. For example, if APV controls the connections
between µ1 and µ3 the inter-entity2 in Figure 2 is split in two as shown
in Figure 3.

We call the Ground Truth the trace of messages that actually happens in
reality, i.e. the trace that the adversary wants to learn information about. The
adversary can see some part of the Ground Truth in its Observation O and
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proceeds to conduct the traffic analysis by traversing through the space of the
different possible traces in the Hidden State HS.

5 Traffic Analysis of Mixnets

The goal of the APV , having an observation O and a prior knowledge about the
network C, is to estimate the probability distribution over the possible hidden
states in order to achieve its goal, for example linking senders to receivers or
input messages to output messages. In other words, the APV tries to estimate
the target distribution Pr[HS | O, C] using the Metropolis–Hastings method.

5.1 Markov Chain Monte Carlo (MCMC)

The Metropolis–Hastings method works by sampling states by conducting a
random walk across a state space. In our context, a state is the Hidden State,
HS, of the trace. The Metropolis-Hastings algorithm requires that we define
a transition function that allows us to propose a new Hidden State (HSp) for
every Hidden State (HSc) that we encounter in our random walk. Next we
compute the following ratio, αnext_move in order to decide whether or not to
accept the HSp.

αnext_move = Pr[HSc|O, C] ∗Q(HSp|HSc)
Pr[HSp | O, C] ∗Q[HSc|HSp] (1)

Note that Q is the transition function that provides the probability of moving
from a current state HSc to a proposed state HSp. Further details on how to
compute Q are provided in Algorithm 4. We recall from Section 4 that in the
set of matrices MX associated with a trace T R, a matrix in MX is either an
inter-entities matrix or an inner-mix matrix. Recall also that we divide this set
of matrices into two sets; an Observation O and a Hidden State HS.
The transition function we use to move from current Hidden State HSc to
a proposed Hidden State, HSp works as follows. We start by choosing a
matrix Mx ∈ HS at random, and then two columns (which corresponds to
vertices in the network) in Mx at random to swap. For inner-mix matrices,
this corresponds to the following: let Mt be a set of messages in a mix with
inner-mix mapping Fµj : MI → MO during time t. Let v1,I , v2,I(µj) ∈ MI ,
and let v1,O, v2,O(µj) ∈MO such that Fµj

(v1,I) = v1,O, Fµj
(v2,I) = v2,O. Then

swapping two columns in Mx assigns to Mt a new inner-mix mapping F ′
µ, where

F ′
µ(v1,I(µj)) = v2,O(µj) and F ′

µ(v2,I(µj)) = v1,O(µj) and F ′
µ(x) = Fµ(x) for all

x such that x ̸∈ {v1,I , v2,I}.
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For inter-entity connections, the transition function corresponds to the following:
Let ET O and ET I be two sets of entities and letMt be a set of messages that are
sent from entities in ET O to entities in ET I during time t. Let Fe : ET O → ET I

be the inter-entity connection. Let VO be the vertices associated with outgoing
packets from ET O and let VI be the vertices associated with the incoming packets
of ET I . Let v1,O, v2,O ∈ VO, and let v1,I , v2,I ∈ VI such that Fe(v1,O) = v1,I

and Fe(v2,O) = v2,I . Then swapping two columns in Mx assigns to Mt a
new inter-entity connection F ′

e, where F ′
e(v1,O) = v2,I , F ′

e(v2,O) = v1,I and
F ′

e(x) = Fe(x) for all x such that x ̸∈ {v1,O, v2,O}.

5.2 Computing the Probability of a State based on Priors

Depending on the system, the adversary may have prior knowledge on the
system, which will be accounted for in the estimation of the target probability.
We model the system by a list of constraints C. Any system can have a variety
of constraints, such as paths lengths [18], or user constraints in choosing nodes
based on geo-locations, or having a biased distribution for routing (as in the
example of Nym [7]).
To consider user constraints, the adversary, having a proposed trace T R,
computes Pr[T R | C] which is the probability of the trace given its prior
knowledge on the system model C. As described in Section 4.2, a trace T R is
composed of an Observation O and HS, therefore:

Pr[T R | C] = Pr[HS,O | C] (2)

We note however that the adversary is trying to estimate Pr[HS | O, C]
(Equation 1). We therefore apply Bayes rule:

Pr[HS | O, C] = Pr[HS,O | C]
Pr[O | C] (3)

Thus, we can rewrite rationext_move as follows:

αnext_move = Pr[HSc | O, C] ∗Q(HSp | HSc)
Pr[HSp | O, C] ∗Q[HSc | HSp]

= Pr[HSc,O | C]/Pr[O | C] ∗Q(HSp | HSc)
Pr[HSp,O | C]/Pr[O | C] ∗Q[HSc | HSp]

= Pr[HSc,O | C] ∗Q(HSp | HSc)
Pr[HSp,O | C] ∗Q[HSc | HSp]

= Pr[T Rc | C] ∗Q(T Rp | T Rc)
Pr[T Rp | C] ∗Q[T Rc | T Rp]

(4)
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Computing the αnext_move is therefore reduced to computing the probabilities
of the different traces T R given the constraints C. Assuming path selection is
independent (we further elaborate on this point in Section 6). Because a trace
is a set of message paths, the adversary computes:

Pr[T R|C] =
∏

P ∈T r

Pr[P |C] (5)

Based on this derivation, we execute the Metropolis-Hastings algorithm by
generating a sequence of different samples (traces) starting from a random
trace.

5.3 Metropolis-Hastings Algorithm

We now put everything together to present the concrete algorithm used to gain
the target distribution. We describe the algorithm here, and its pseudo-code is
included in Algorithm 4.
Q(T Rp|T Rc) is the transition function, that is the probability of moving
from one state T Rc to another state T Rp. In our model, this translates to
choosing a matrix of Mx ∈ MX and two of its columns (c1, c2) to permute
which yields T Rp. Therefore the transition function is symmetric and equal to

1
|MX |∗|V|∗|V|−1 , where |V| is the number of columns in Mxc. As noted in [4], the
values of Q(T Rp|T Rc) are not key to the correctness of the sampling, however
different transition functions may speed the convergence to a the stationary
distribution.

5.4 Constraints in sampling

Depending on the network configuration as well as the adversary capabilities,
some sample states are not possible therefore are thrown away in the Metropolis
Hastings algorithm. In order for our model to be accurate we incorporate two
categories of these impossible states:
Ghost Messages: In prior work using the Metropolis-Hasting algorithm [4],
the authors acknowledge that one of the limitation of their model is assuming
that the adversary starts observing the network when the all mixes are empty.
We argue however that this is not realistic. Instead the adversary starts
observing the network when there are already messages inside the mixes and
those message contribute in hiding an item of interest. We model this scenario
by ghost messages. Not to be confused with dummy or cover traffic, ghost
messages gm are an output message whose inputs are outside the observation
of the adversary and therefore are not items of interests but they do play a
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Algorithm 4: Metropolis–Hastings Algorithm
Result: Computing Pr[si → rj ]
Input: T R ← {O,HS}, APV , burn in, nMH

Initialize:
si ← pick_sender;
rj ← pick_receiver;
reality ← check(si → rj) ;
Pt ← compute(Pr[TRc]);
I ← 0;
nsamples ← 0 ;
while nsamples ≤ nMH do

MXc ← pick_matrice(HSc);
MXp ← permute(MXc) ;
HSp ←MX p =MX \ {Mxc} ∪ {Mxp} ;
TRp ← O, HSp;
violations ← check_constraints(TRp) ;
if Not violations then

Pt+1 ← compute(Pr[TRp]);
α← min

[
1, Pt+1

Pt

]
;

r ← U(0, 1);
if α ≥ r then

accept(TRp);
nsamples + +;
if check(si → rj) then

I + +;
end
Pr[si → rj ] = I

nsamples
;

return: {Pr[si → rj ], reality}

role in hiding an item of interest. We therefore add vertices to the subgraph
associated with the matrix.
Routing: When an adversary is monitoring or compromising a mix, not only
do the have knowledge about the input and output messages of that mix but
also the destination and source mixes of those messages. We model this by a
list of rules. Any sampled state that is the result of a violations of these rules
will be thrown away.
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6 System Model

In this section, we showcase modeling a small example of a mixnet-based system
of 9 mixes in order to perform traffic analysis. We choose a stratified topology
where the 9 mixes are arranged in 3 layers as shown in Figure 6. Each mix

Figure 4: Mixnet-based system Model.

is assigned a layer, and messages are sent from layer li to layer li+1. In our
experiments, we use a threshold mix [2] that buffers messages in the queue
until the threshold parameter T is reached. At that point the mix permutes
the T messages, and then outputs all messages in a random order. Finally all
messages are source-routed. We emphasize that our model is not limited to
this type or size of network . We argue that the matrix-based model is able to
accommodate any type of mixes and/or network. However, depending on the
type of the network, Equation 5 should be adapted accordingly. Next we show
how to compute the probability of a trace in a network of certain constraints C.

6.1 Probability of a Trace

Recall from equation 5, that a trace T R is a collection of all its paths and
therefore the probability of a specific trace is the product of the probabilities of
different paths.

Pr[T R|C] =
∏

Pi∈T R
Pr[Pi] (6)

In addition, as explained in Section 4, a message path Pi is an ordered set of
entities that describe the path of the message from a sender si to a receiver ri.
The routing of the message through the different mixes, as well as choosing a
receiver for each message is probabilistic. Let’s denote Pr[µ] the probability of
the mix µ being chosen in the path Pi and Pr[ri] the probability of the receiver
ri is part of Pi, meaning sender si chose receiver ri to send a message to. The
probability of the path Pi is then:

Pr[Pi|C] =

 ∏
µ∈Pi

Pr[µ])

 Pr[ri] (7)
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The above equation holds because we consider source routing, meaning that each
user chooses the path of each message among the set of mixes and receivers. We
leave other types of routing outside the scope of this work. Putting Equation 6
and Equation 7 together, the probability of a trace is therefore:

Pr[T R|C] =
∏

Pi∈T R
(

∏
µ∈P

Pr[µ])Pr[ri] (8)

Considering our stratified topology system model of l layers and N(li) mixes
in each layer li, we now proceed to compute the probability of each path. We
abuse notation slightly and also consider µj,li

as the event that the sender si

chooses mix µj,i as the jth mix in layer li, as well as ri as the event the sender
si in path i chooses the receiver ri as the receiver. We first consider that each
sender knows all the public parameters of the network such as all the mixes
in the network as well as the number of mixes in each layer. The sender then
chooses each mix as well as the receiver of each message uniformly.

Pr[Pi] =
[

l∏
i=1

Pr[µj,li
]
]

Pr[ri]

=
[

l∏
i=1

1
N(li)

]
Pr[ri]

(9)

Next we show how we compute the probability of a trace of a network when
mixes are not chosen uniformly.

6.1.1 Probability of a trace: Mixes are not chosen Uniformly

Depending in the systems requirements, mixes can be chosen according to
a certain weights assigned to them.We now consider the case of mixes not
chosen uniformly, but according to an assigned weight. Mix weights can reflect
geographic approximation, bandwidth, trust etc. Let’s denote by w(µj,li

) the
probability of the mix µj,li

being chosen among the set of mixes in layer li. The
probability of each path becomes:

Pr[Pi] =
[

l∏
i=1

w(µji,i)
]

Pr[ri] (10)

We can also model the case when each sender si only knows a subset of the
mixes in each layer lj (S(si, lj)).

Pr[Pi|S(si, lj)] =

 l∏
j=1

Pr[µj,lj |S(si, lj))]

 Pr[ri] (11)
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To compute Pr[µji,i|S(si, lj)], we need to divide the weight of mix µji,i by the
sum of the weights of the all the mixes in layer li that sender si knows.

Pr[µj,lj
|S(si, lj)] = w(µji,i)

w(S(si, li))
(12)

Therefore:

Pr[Pi|S(si, lj)] =

 l∏
j=1

w(µji,i)
w(S(si, li))

 Pr[ri] (13)

Recipient probability The recipient probability Pr[ri] captures any prior
knowledge of the adversary about the relationship between a specific sender and
a specific receiver, for example if the adversary has a prior knowledge about
friendship graphs of certain senders (i.e sender s1 is twice as likely to send a
message to receiver r1 than to a receiver r2).

7 Empirical Evaluation

In this section we first explain how we assess the effectiveness of our model and
then show the results of inferring probabilities of trace-related events under two
adversaries of different capabilities.

7.1 Determining the Accuracy of our model

Our framework is effective if it reaches the target distribution. To evaluate
the effectiveness of our model of an APV we need to assess the closeness of the
samples given by our model to a target distribution based on the ground truth
across many rounds of messages in a mixnet.
Recall from Section 5, that we first start by generating the ground truth trace
T RGT and the adversary specifies the trace related event that they want to infer
probability of. We refer to the success or failure of this event in the ground truth
as a goal and we model it as a predicate function P : {T RGT } → {0, 1}, which
takes the ground truth traceT RGT as input and outputs 1 if the occurrence
happens in T RGT and 0 otherwise. For example, if the goal of the adversary
is to infer the probability of sender s1 sending a message to receiver r1 during
its window of observation, then we associate to this goal a predicate P , where
P (TR) = 1 if s1 did send a message to r1 in the trace TR and 0 otherwise.
Then we translate this ground truth trace into a set of matrices. Depending
on what portions of the network the adversary observes, we divide this set of
matrices into two sets: Hidden State HS and O. In order to avoid starting
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from a high probability state, we do a randomized uniformly chosen number of
permutations on the different matrices that are part of HS and finally we give
these two sets of matrices to the adversary as well as the list of constraints.
The adversary then execute the Metropolis–Hastings algorithm on the trace. At
the end of one run of the Metropolis–Hastings algorithm, the adversary assign a
probability ptr to the event of interest. We refer to the probability, ptr, as a goal
and the output of P (T RGT ) as an occurrence. We call an occurrence positive
when P (T RG) = 1 and we call an occurrence negative when P (T RG) = 0.
In order to assess the accuracy of our model we need to generalize beyond a single
trace. To do this, we run the Metropolis Hastings algorithm on Ntr number of
traces for the same adversary each time using a different ground truth trace.
After each run of the algorithm, we record the probability ptri

that the adversary
assigns a given event to its goal, and we record the occurrence P (TRGT ). Once
we have our full data set (ptri

, occurrences) tuples, we compare the average
inferred probability to the confidence score on the occurrences. We use the
Wilson score interval [20], as it has been shown to be the most accurate [19]
of binomial confidence intervals. The Wilson Score takes number of successes
and number of failures as inputs, and outputs the probability of success along
with the 95% confidence interval. We consider our model to be effective if the
sampled probability lies within the confidence interval. Therefore, the average
ability of the adversary to correctly infer the probability of the specified event
across many different events can be taken into account.

7.2 Capability: Compromising

We start by analysing an adversary who has compromising capability. The goal
of this adversary is to infer whether at-least one of the messages of a sender
si arrived to a receiver rj. This adversary tries to link the receiver to senders
that route a message through one of the compromised mixes. Therefore we
choose an adversary who is compromising one entry mix and one exit mix. We
evaluate this adversary for up to 500 observations.
We can see in Figure 5a that when there are only a few observations, the
confidence interval is high, however, we show that our model eventually converges
into the the target distribution where the confidence interval is within tight
bounds as the model is guessing with 95% confidence the correct probability.
Note however, that we are showing the average sampled probability of the
different events. The probability of each trace-related event may differ per
different observation. In Figure 5b we show the histogram of the number of
experiments per bin. The idea behind this binning is to analyse beyond the
average probability inferred by the adversary for the different observations.
After collecting all the sampled probabilities where each probability corresponds
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to one trace, we store them in different bins depending on their values. Each
bin corresponds to an interval of probabilities and contains the number of times
the adversary inferred that probability.
We can see that for this adversary, the bin that corresponds to a probability
between [0, 0.1] contains the largest number of items, meaning that for most
observations the adversary guessed between [0, 0.1] due to lack of information.
The second largest bin is the one that corresponds to the events having a
probability between [0.9, 1]. Those events are likely to be the messages that went
through both the compromised mixes (and so the APV had more information),
and finally around 25% of the total events the adversary infers a probability
between 0.2 and 0.7. This would intuitively match to the case where messages
went through a single compromised mix that the APV could watch, but not
both.

(a) Accuracy (b) Bins

Figure 5: Capability of APV1: Compromising 2 mixes.

7.3 Capability: Monitoring

Similar to the previous experiment, the goal of this adversary is to infer whether
at-least one of the messages of a sender si arrived to a receiver rj . The adversary
is monitoring the inter-entity matrices, and so the adversary is what is usually
called a Global Passive Adversary in mixnet literature. The adversary in this
case is not compromising the mixes, and therefore all permutations of inner-mix
mapping are possible.
We can see in Figure 6a that the adversary captured by our model is able to
infer probabilities correctly with enough number of observations. As opposed
to the APV , the GPA can connect si to a receiver ri with a higher confidence.
Figure 6b shows the histogram of the different probabilities estimated by this
adversary. Unlike the previous adversary, we can see that the number of items
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inside the different bins is more balanced between probabilities, meaning that
this adversary does not sample states with a very high probability compared to
other states with low probability. This confirms our understanding with the
modeled GPA. In the first adversary, we can see that there are traces with high
probabilities (a less balanced histogram) that correspond to messages being
routed via at least one compromised node. We note however that the average
probability inferred about the different events is similar in this scenario even
though the first adversary is more realistic as it compromises only 2 mixes as
opposed to the second adversary that monitors all mixes in the network.

(a) Accuracy (b) Bins

Figure 6: Capability of APV2: Monitoring all inter-entity matrices (GPA).

We emphasize that the main goal of the paper is not to present the specific
results of de-anonymization, but rather to demonstrate the possibility of going
beyond the traditional Global Passive Adversary (GPA) model in mixnets. In
addition, we show that our model is also able to capture this GPA as a special
case.
However, this flexible framework comes with one main drawback which is
the Metropolis Hastings algorithm is computationally expensive, requiring a
large number of state samples to be drawn in order to reach from the target
distribution. Additionally, if the adversary is relatively weak, it may be more
efficient to rely on the adversary’s prior knowledge and analytically infer trace-
related events. Nevertheless, for adversaries with a reasonable level of visibility
into the network, we consider the computational cost of the algorithm to be
acceptable, especially given the lack of alternative methods for studying such
adversaries.
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7.4 Performance evaluation

Our Metropolis-Hastings sampler is composed by 2363 LOC of Python and
run on an Intel(R) Core(TM) i9-9920X with 3.50GHz CPU and 132 GB RAM.
As explained in 5.1, in order to compute αnext_move we need to compute
the probability of every state. Depending on the adversary’s knowledge, the
network size and the number of messages per observation, the computation time
might increase. For our simulated scenarios, it took about 6 hours for the full
analysis. While this may seem expensive, our implementation is not optimised
for size, memory usage or running time and we argue that more optimized
implementations will outperform it.

8 Conclusion

To the best of our knowledge, this is the first work considering a model of an
adversary whose capabilities can be modeled by the partial view of the network.
In this paper we present and analyze traffic analysis by Adversaries with Partial
Visibility (APV ), who have a visibility over some portion of the network. We
put forth a mathematical model of a mix network and use this model with the
conjunction of Metropolis-Hastings to build a Bayesian inference engine that
models how an adversary infer probabilities about trace-specific events. Finally,
we analyzed the effectiveness of our model under different simulated adversaries.
The critiques made of previous work on mixnets by Syverson [17] are to a large
extent correct, as even powerful nation-state adversaries may have only partial
visibility. However, this does not mean that mixnets cannot be analyzed in
terms of such adversaries, as our work shows. Our work would allow the more
realistic practical engineering of privacy-enhancing technologies, especially as
real-world mixnets like Nym are deployed in countries with partial adversaries
such as Iran [7].
Nonetheless, the work is limited. While we studied compromised mixes, we
assumed the mixnet adversaries that were compromised were honestly following
the protocol. Thus, an aspect that needs to be studied is actively malicious
mixes as well as users. More importantly further work should systematically
study different adversaries, each having different visibility over multiples mix
networks with different parameters and design decisions.
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