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Abstract

Recent advancements in distributed ledger technologies and decentralized
identity management systems have emphasized the need for transparent and
privacy-preserving methods. In this context, Threshold cryptography and Non-
Interactive Zero-Knowledge (NIZK) proofs are two prominent and fundamental
cryptographic concepts that play a critical role. By distributing cryptographic
keys among multiple parties, threshold cryptography enhances the security,
builds trust, and reduces the risk of key compromise. On the other hand,
NIZK proofs enhance privacy in decentralized and distributed applications.
Particularly, threshold signatures and Zero-Knowledge Succinct Non-interactive
ARgument of Knowledge (zk-SNARK) proofs have gained importance in both
academia and industry. However, their combined application often remains
non-trivial.

The first part of this thesis is the study of Threshold Structure-Preserving
Signatures (TSPS). These schemes are particularly interesting, as they are
compatible with efficient NIZK proof systems such as Groth-Sahai proofs. We
present the details of two TSPS schemes: one offers the shortest possible
signature size for a restricted message space and relies on idealized models. The
other, despite having slightly larger signatures, is proven secure under standard
assumptions in a stronger model and supports messages being arbitrary group
element vectors. We summarize the main properties of these constructions and
discuss how these schemes can be applied to Threshold-Issuance Anonymous
Credentials.

The second part of this thesis highlights the importance of universal and
updatable NIZKs, particularly zk-SNARKs, focusing on their impact on reducing
trust in a single party and enhancing privacy in large-scale applications. We
further discuss how the security properties of updatable NIZKs can be generically
lifted to stronger security models targeting security in composable security
frameworks such as the Universal Composability (UC) framework.

iv



Beknopte samenvatting
Recente ontwikkelingen in gedistribueerde blockchaintechnologieën, crypto-
munten en gedecentraliseerde identiteitsbeheersystemen hebben de noodzaak
benadrukt van transparante en privacybeschermende methoden. In deze
context zijn drempelcryptografie en Niet-Interactieve Nulkennisbewijzen
(Non-Interactive Zero-Knoweldge (NIZK)) twee prominente en fundamentele
cryptografische concepten die een cruciale rol spelen. Drempelcryptografie
verbetert de beveiliging en vermindert het risico op het lekken van sleutels door
cryptografische sleutels te verdelen onder meerdere partijen. Aan de andere kant
verbeteren NIZK-bewijzen de privacy in gedecentraliseerde en gedistribueerde
toepassingen. Specifiek drempel-handtekeningen en Beknopte Nul-Kennis Niet-
Interactief Argument van Kennis (Zero-Knowledge Succinct Non-interactive
ARgument of Knowledge (zk-SNARK)) bewijzen hebben zowel in de academische
wereld als in de industrie aan belang gewonnen. Hun gecombineerde toepassing
blijft echter vaak niet triviaal.

Het eerste deel van deze thesis richt zich op de studie van Drempel Structuur-
Bewarende Handtekeningen (Threshold Structure-Preserving Signatures
(TSPS)). Ze zijn bijzonder interessant omdat ze compatibel zijn met efficiënte
NIZK-bewijssystemen zoals Groth-Sahai bewijzen. We bespreken twee TSPS-
schema’s in detail: het eerste biedt de kortst mogelijke handtekening voor
een beperkte berichtenruimte en vertrouwt op geïdealiseerde modellen. Het
tweede heeft iets grotere handtekeningen maar is bewezen onder standaard
aannames in een sterker model en ondersteunt berichten die bestaan uit
willekeurige groepselementen. Vervolgens voorzien we een overzicht van de
belangrijkste eigenschappen van deze constructies en bespreken we hoe deze
schema’s kunnen worden aangewend in toepassingen zoals Threshold-Issuance
Anonymous Credential (TIAC).

Het tweede deel van deze thesis benadrukt het belang van universele en
bijwerkbare, bewerkbare or aanpasbare NIZK’s, in het bijzonder zk-SNARK’s,
waarbij we de focus leggen op hun impact op het verminderen van het vertrouwen
in één enkele partij en het versterken van de privacybescherming in scenario’s
met veel gebruikers. We bespreken verder hoe de beveiligingseigenschappen van
bijwerkbare, bewerkbare or aanpasbare NIZK’s generiek kunnen worden opgetild
naar sterkere beveiligingsmodellen die gericht zijn op beveiliging in samenstelbare
beveiligingsraamwerken zoals het universele samenstelbaarheidsraamwerk
(Universal Composability framework).

v
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CHAPTER

1 Introduction

The garden of the world has no limits, except in your mind.
Molana Rumi

1.1 Motivation

Through the advancement of mobile technologies and the internet, people are
now able to communicate and use online services from anywhere at any time.
However, in doing so they often share their personal information in real time
with centralized online service providers. Personal information can include a
person’s name, age, geographical location, or real-life behavior, and oversharing
these details can lead to identity theft, online harassment, physical threats and
mass surveillance. This highlights the importance of data privacy within the
digital world. Generally speaking, data privacy refers to the ability to control
the flow of personal information: when, how, and to what extent data can be
shared. Specifically, privacy refers to the right of individuals to selectively reveal
sensitive details about themselves in a fair and legal manner [Swi97].

While the most prominent privacy protection regulations such as the General
Data Protection Regulation (GDPR) [Uni16] aim to restrict the use of personal
data to safeguard individuals’ online privacy, cryptographic privacy-preserving
tools play a central role in implementing these regulations. These methods are
considered fundamental techniques for enforcing regulations such as GDPR, as
they enable privacy by design. Enhancing the privacy using these methods is
significant, as a recent survey [MKW22] indicates that over 130 000 personal
data breaches across Europe were reported to regulators between January 2021

2
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MOTIVATION 3

and January 2022, an average of 356 breaches per day. Meanwhile, it has been
evident that regulatory fines against big tech (centralized) companies were not
sufficient to change their behavior.1 These days, the top 1% of social networks
hold 95% of social web traffic and 86% of social mobile app usage. Similarly,
the top 1% of search engines capture 97% of search traffic, while the top 1% of
e-commerce sites account for 57% of e-commerce traffic [Dix24].

On the one hand, decentralized and distributed systems aim to reduce users’
sensitive data availability to big and centralized service providers such as Meta
and Google. On the other hand, privacy-preserving tools as a cryptographic
solution aim to protect users’ sensitive information, even in the event of data
breaches [Tro+17].

Privacy-preserving cryptographic tools enable the extraction of useful
information from a potentially sensitive set of data without providing full
access to the data. There are many real-world applications for such schemes
in scenarios where access to data can be beneficial to those with exclusive
access or in cases where plain data access may be harmful for the users, such as
in health care, electronic voting, and notably in the context of decentralized
anonymous authentication systems. Zero-Knowledge (ZK) proofs [GMR85] play
a central role in many privacy-preserving systems, particularly in decentralized
and distributed systems.

ZK proofs involve two parties (the prover and verifier) and enable the prover
to prove the validity of a claim to a verifier, usually in multiple rounds of
communication, without disclosing any information beyond the validity of the
claim. Non-Interactive Zero-Knowledge (NIZK) proofs [BFM88] remove the
interaction between prover and verifier. They allow a prover to convince a verifier
about the truth of a statement in a single round of communication. NIZK proofs
have three main fundamental security properties: completeness, zero-knowledge
and knowledge soundness. Completeness ensures correctly generated proofs
always verify, zero-knowledge captures the fact that no information beyond the
validity of the proof is leaked during the verification phase, and the knowledge
soundness guarantees that the prover cannot convince a verifier without knowing
the hidden witness.

NIZK proofs are invaluable within many systems such as Anonymous Credentials
(AC), allowing users to confirm their identity or specific attributes to others
without giving away any extra personal details, thereby protecting privacy
and mitigating the risk of identity fraud. To be more precise, users frequently
need to prove aspects of their identity or status without compromising their
anonymity. This might include demonstrating they reside in a specific region
to access geo-restricted services, proving membership in a loyalty program

1https://analyticsindiamag.com/big-techs-dont-care-about-lawsuits/.

https://analyticsindiamag.com/big-techs-dont-care-about-lawsuits/


4 INTRODUCTION

to receive discounts, or confirming they belong to a particular professional
group to access specialized forums without being tracked. In these systems,
a verifier can be assured nothing beyond that a trusted entity, known as the
credential issuer, has already certified the list of attributes claimed by the
user. Anonymous credentials could be a very valuable tool for the European
Digital Identity Wallet, which the European Commission plans to roll out by
2026 [EU24; AF24].

A credential in this context is defined by a digital signature on a set of attributes
that the users possesses (e.g., affiliation, role, age). The users can demonstrate
their possession of a credential (digital signature) that satisfies a specific access
policy without revealing any details about the real identity of the user, except
that they meet the criteria of the access policy using NIZK proofs. Despite
many advantages that NIZK proofs offer to privacy-focused systems, they often
bring along both communication and computational overheads. Over the past
decades, there has been significant work towards building digital signatures that
are compatible with efficient NIZK proofs.

Structure-preserving primitives [Abe+10], in particular Structure-Preserving
Signatures (SPS) keep an algebraic structure over bilinear groups and avoid
non-linear operations in their designs; as a consequence, they are compatible
with efficient NIZKs such as Groth-Sahai (GS) proof systems [GS08]. Since GS
proofs are straight-line extractable, i.e. extraction works without rewinding, in
the standard model, they are particularly interesting for constructions targeting
security in composable security frameworks such as the Universally Composable
(UC) framework [Can01], which is a formal method for analyzing and proving
the security of cryptographic protocols. However, GS proofs only can handle a
restricted class of relations known as quadratic equations, particularly Pairing-
Product Equation (PPE).

As discussed earlier, the credentials, i.e. signatures on attributes, are often
issued by central authorities to manage user identities. However, this approach
has two main drawbacks: the reliance on a single credential issuer, which creates
an availability concern, and the potential risk of compromising the single key,
representing a vulnerability and a single point of failure. To be more precise,
a corrupted issuer can generate fake credentials, thereby compromising the
integrity and security of the entire system. Consequently, there is a growing
interest in developing decentralized identity management systems which typically
rely on threshold cryptography, particularly Threshold Signatures (TS).

By sharing a single secret signing key among multiple parties, TS [Des90] enable
a sufficiently large group of signers to collaboratively generate a signature. In this
case, the users obtain their credentials if a quorum of credential issuers agrees
on the authenticity of the claimed attributes. The combined (i.e. aggregated)
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credential provides the same security properties as a centrally issued credential,
and subsequent use of the credential, i.e. signature, in this context remains the
same.

While NIZKs with a limited class of functionality such as Groth-Sahai (GS)
proofs are a solid design choice for the aforementioned applications, they are
not suitable for all types of complex and arbitrary relations. Zero-Knowledge
Succinct Non-interactive ARgument of Knowledge (zk-SNARK) [Par+13; Gro16]
are an efficient form of the (pre-processed) NIZKs, with succinct (short) proofs
and efficient verification. In contrast to GS proofs, they can be applied efficiently
to any Nondeterministic Polynomial Time (NP)-language, described as an
arithmetic circuit. However, zk-SNARKs require a complex trusted setup. This
phase needs a high degree of trust in a single entity for the generation of a set
of public parameters, known as Common Reference String (CRS), which can be
used to create and validate a proof. Given the fact that a maliciously executed
setup by a subverted CRS generator can undermine the security guarantees
of these systems, assuming the existence of a trustworthy entity in most of
decentralized and distributed applications is difficult.

To overcome this challenge, various trust mitigation techniques have been
proposed, including subversion-resistant zk-SNARKs [BFS16; Abd+17; Fuc18;
Bag19b] or generating the CRS parameters with Multi-Party Computation
(MPC) protocols [Ben+15; BGM17; Koh+21]. In the former case, a one-time
validity check can be performed by the prover, but the verifier still needs to
trust the generator of the CRS. In contrast, in the latter case, the setup can
be performed by a (fixed and) sufficiently large number of parties, denoted by
n, instead of a single party, thereby reducing the trust level to one out of n in
the setup for both the prover and verifier. Powers-of-Tau ceremonies [BGM17]
are a prime example for this scenario that are being deployed in real-world
applications. However, this trust assumption is fixed throughout the entire
operational lifespan of the system. Moreover, this heavy setup phase in some
zk-SNARKs is circuit-dependent, and any minor change to the initial circuit
necessitates a complete redo of the setup process.

As an alternative to these trust mitigation mechanisms, Groth et al. [Gro+18]
proposed universal and updatable zk-SNARKs. The universal nature of these
systems enables to reuse the same CRS for any circuit up to a certain size, while
in non-universal zk-SNARKs such as Groth16 [Gro16], the CRS components
solely depend on a fixed circuit. Moreover, the updatability allows parties–
including provers and verifiers– to take the most recent CRS and continuously
update it in a verifiable way, enabling the engagement of a more diverse set
of participants over time. Similar to the MPC-based settings, the knowledge
soundness remains as long as one of the contributors (updators) acts honestly.
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1.2 Overview of Contributions

The main contributions of this thesis can be summarized in two main research
areas listed below.

1.2.1 Threshold Structure-Preserving Signatures

As already mentioned, the compatibility of Structure-Preserving Signatures
(SPS) with Groth-Sahai (GS) proofs [GS08] makes them an attractive building
block for many complex (privacy-preserving) cryptographic protocols. However,
even though more than ten years have passed since the introduction of SPS,
the literature still lacks Threshold Structure-Preserving Signatures (TSPS) as
a natural extension. By sharing secret keys among multiple parties, threshold
cryptography reduces the potential risk of compromising the single key which
represents a single point of failure. In this case, a secret key-dependent operation
can be performed if a sufficiently large number of parties collaborates.

In [Cri+23], we define TSPS as a novel cryptographic primitive and propose an
efficient construction over a new message space called the indexed Diffie-Hellman
(iDH) message space. We prove its security under the hardness of a modified
version of an interactive assumption, called the Generalized Pointcheval-Sanders
(GPS) assumption, against static adversaries and a weaker unforgeability notion,
called T-UF-0 [Bel+22]. However, we obtain the shortest possible TSPS based
on the impossibility results for SPS shown by Abe et al. [Abe+11b]. This paper
leaves several interesting open questions, including the development of a TSPS
for any vector of group elements and its construction with stronger security
guarantees and supporting adaptive adversaries.

As a subsequent work, in [Mit+24], we answer some of the open questions
in [Cri+23]. In this paper, we propose a TSPS based on standard and non-
interactive assumptions, namely Matrix Decisional Diffie-Hellman (MDDH)
and Kernel Matrix Diffie-Hellman (kerMDH) assumptions. We prove the
unforgeability of this construction under the strongest notion of security for
fully non-interactive Threshold Signatures (TS), called T-UF-1 [Bel+22] and
for adaptive adversaries.

1.2.2 Non-Interactive Zero-Knowledge proofs

The updatability feature of universal and updatable zk-SNARK allows parties–
including provers and verifiers– to take the most recent CRS and continuously
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update it in a verifiable way, enabling the engagement of more diverse set of
participants over time. However, except for Groth et al.’s initial study [Gro+18],
none of the follow-up works on universal and updatable zk-SNARKs discussed
how it can be set up, i.e., how the CRS components can be updated and
be verified. To fill the existing gap, in [BMS23], we show how the CRS in
some existing universal and updatable zk-SNARKs, including Sonic [Mal+19],
Plonk [GWC19], Marlin [Chi+19], Lunar [Cam+21], and Basilisk [RZ21] can be
updated and their consistency can be checked. As an additional contribution,
we propose a batched and aggregated form of CRS validity checks, leading to
more practical results.

In [BS21], we elaborate on the fact that the traditional definitions of knowledge
soundness in the context of universal and updatable NIZKs are not well
adapted to the decentralized settings. Zk-SNARK’s use-cases within the UC
framework [Can01], require stronger security guarantees such as Simulation
Extractability (SE) along with straight-line extraction and zk-SNARKs in
the universal and updatable CRS model are not an exception. SE ensures
the knowledge soundness even if the adversary has already seen many
simulated proofs. This definition matches better real-world applications such
as Decentralized Anonymous Payment (DAP) and privacy-preserving smart
contracts in which the adversary has already access to many valid proofs and
still should not be able to generate a fake proof. In NIZKs with updatable CRS,
an adversary can also update the CRS and observe proofs generated under
different CRSs, thus the generalization of this security property needs some
care.

1.3 Outline of This Thesis

This thesis has two parts. The first part of this thesis includes the following
chapters:

Chapter 2 provides a summary of the notation and recalls the definition of various
cryptographic primitives along with their security properties. Additionally, in
this chapter, we recall some mathematical assumptions on problems that are
assumed to be hard and form the foundation for the design of the constructions
discussed in the next chapters.

Chapter 3 covers the main contributions of this thesis on Threshold Structure-
Preserving Signatures (TSPS). We start by motivating these constructions. We
briefly summarize the main challenges towards building them and discuss two
instantiations.
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In Chapter 4, the emphasis is on the setup process for universal and updatable
zk-SNARKs. Additionally, in this chapter we discuss a generic framework for
lifting the standard updatable knowledge-sound NIZKs to a stronger security
notion, called updatable black-box simulation extractability.

Finally, Chapter 5 concludes the main contributions of this thesis and lists some
interesting open problems for future study.

In the second part (Part II), we list the original text of our papers.

1.4 Other Publications

Additionally, we published several articles that complement this thesis.

• C. Badertscher, M. Sedaghat, and H. Waldner. “Unlinkable Policy-
Compliant Signatures for Compliant and Decentralized Anonymous
Payments”. In: Cryptology ePrint Archive, Paper 2023/1070 (to appear
in PETS’2024) (2024). url: https://eprint.iacr.org/2023/1070

Summary of Results: Blockchain as the main technology behind the
cryptocurrencies is essentially a decentralized ledger which operates on
a distributed network of nodes. However, the flagship cryptocurrencies,
such as Bitcoin and Ethereum, have received a great public attention,
they come with privacy issues. Decentralized Anonymous Payment (DAP)
systems overcome this challenge and hides the transaction values as well
as the identifiers of the parties involved in each transaction, resulting in a
fully privacy-preserving payment system. Meanwhile, their potential for
full privacy has raised concerns about regulatory issues and illicit activities,
such as money laundering, tax evasion, trading of illegal substances and
terrorist funding. In this paper, we propose Unlinkable Policy-Compliant
Signatures (ul-PCS) that can enhance the existing proposals towards a
proactive accountable private system. We subsequently integrate this
scheme with the existing DAPs, ensuring that the validity of signature on
a transaction is determined by a predefined policy, with both the sender’s
and receiver’s attributes playing a role in finality of the transactions.

• F. Baldimtsi, K. K. Chalkias, Y. Ji, J. Lindstrøm, D. Maram, B. Riva, A.
Roy, M. Sedaghat, and J. Wang. “zkLogin: Privacy-Preserving Blockchain
Authentication with Existing Credentials”. In: The Science of Blockchain
Conference (SBC) 2024 (To be presented) (2024). https://arxiv.org/
pdf/2401.11735

https://eprint.iacr.org/2023/1070
https://arxiv.org/pdf/2401.11735
https://arxiv.org/pdf/2401.11735
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Summary of Results: To receive and send cryptocurrencies, the users
need to create a wallet. Private key-based wallets, often accessed via
mnemonics or hardware wallets, pose onboarding challenges, impacting
blockchain adoption. In this paper, we propose zkLogin, that utilizes
identity tokens from OpenID Connect platforms (like Google, Microsoft,
Meta, etc) for transaction authentication, allowing users to sign with
their existing accounts, enhancing user experience by eliminating the need
to remember new secrets. The zkLogin system ensures strong security
and privacy by integrating platform-based authentication and by using
zk-SNARKs, it links the connection between users’ off-chain and on-chain
identities, without additional trusted entities.

• A. Madhusudan, M. Sedaghat, S. Tiwari, K. Cong, and B. Preneel.
“Reusable, Instant and Private Payment Guarantees for Cryptocurrencies”.
In: Information Security and Privacy - 28th Australasian Conference,
ACISP 2023, Brisbane, QLD, Australia, July 5-7, 2023, Proceedings.
Ed. by L. Simpson and M. A. R. Baee. Vol. 13915. Lecture Notes in
Computer Science. Springer, 2023, pp. 580–605. doi: 10.1007/978-3-
031-35486-1_25

Summary of Results: Public decentralized cryptocurrencies, in
particular the proof of work-based cryptocurrencies such as Bitcoin, have
scalability issues such as low throughput and high transaction latency.
In this paper, we present a payment guarantee system that provides
conditionally-reusable collateral enabling instant payment confirmation.
Based on a novel cryptosystem called randomness-reusable Threshold
Encryption (rrTE) scheme, we propose a state-less and proactive
deanonymizing mechanism which prevents malicious users from misusing
the system, namely double-spending their collatorals. We also propose a
Threshold-Issuance Anonymous Credential (TIAC) instantiated by the
Groth-Sahai (GS) proofs [GS08] using the proposed TSPS in [Cri+23].

• S. F. Aghili, M. Sedaghat, D. Singelée, and M. Gupta. “MLS-ABAC:
Efficient Multi-Level Security Attribute-Based Access Control scheme”.
In: Future Generation Computer Systems (2022). issn: 0167-739X. doi:
https://doi.org/10.1016/j.future.2022.01.003. url: https://
www.sciencedirect.com/science/article/pii/S0167739X22000115

Summary of Results: In this paper, we propose an outsourceable and
lightweight multi-level secure attribute-based access control scheme as a
followup to [SP21]. In our prior work, we proposed a Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) which benefits from constant
ciphertext and constant key sizes, however its ciphertext contains target
group elements. Our method uses the Ascon cryptosystem [Dob+21] to
compress the ciphertext further and replace the target group element in

https://doi.org/10.1007/978-3-031-35486-1_25
https://doi.org/10.1007/978-3-031-35486-1_25
https://doi.org/https://doi.org/10.1016/j.future.2022.01.003
https://www.sciencedirect.com/science/article/pii/S0167739X22000115
https://www.sciencedirect.com/science/article/pii/S0167739X22000115
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the ciphertext with a substantially shorter field element. Additionally,
based on the architecture, we reduced the decryption cost by using an
honest-but-curious intermediary Cloud. To grant access to the data, this
paper combines dynamic and static attributes, unlike prior works that
only considered static attributes.

• F. Baldimtsi, Konstantinos Kryptos Chalkias, F. Garillot, J. Lindstrom,
B. Riva, A. Roy, M. Sedaghat, A. Sonnino, P. Waiwitlikhit, and J. Wang.
“Subset-optimized BLS Multi-Signature with Key Aggregation”. In:
(2023). Cryptology ePrint Archive, Paper 2023/498 (Financial Crypto
2024). url: https://eprint.iacr.org/2023/498

Summary of Results: Multi-Signatures have received much attention
due to their application in blockchain settings and more specifically in proof
of stake-based cryptocurrencies like Eth 2.0 and Sui. The most efficient
multi-signature schemes like BLS-based schemes [BDN18], however, require
to compute the aggreagted public keys for each block. This paper defines
the subset-optimized multi-signatures, which enables secure signing for any
subset of a pre-fixed set signers. As a result, we evaluate the unforgeability
of the scheme using an information theoretical assumption, namely the
Random Modular Subset Sum (RMSS) problem in the Algebraic Group
Model (AGM) and Random Oracle Model (ROM).

• M. Sedaghat and B. Preneel. “Cross-Domain Attribute-Based Access
Control Encryption”. In: Cryptology and Network Security (CANS).
ed. by M. Conti, M. Stevens, and S. Krenn. Springer International
Publishing, 2021, pp. 3–23. doi: 10.1007/978-3-030-92548-2_1

Summary of Results: Access Control Encryption (ACE) was introduced
by Damg̊ard et al. [DHO16] as a novel cryptographic solution to the
problem of information flow control, i.e., to enforce who can read and
write which data. It allows to enforce a fine-grained access control by
giving different rights to different users in terms of which messages they
are allowed to send and receive (i.e., decrypt). In this paper, we extend
the existing identity-based ACEs in which the predicate functions can
handle attributes of the users and improve the granularity of the policy
in a cross-domain setting [WC21], called Cross-Domain Attribute-Based
Access Control Encryption.

The complete list of publications can be found in the Publications section on
page 194.

https://eprint.iacr.org/2023/498
https://doi.org/10.1007/978-3-030-92548-2_1


CHAPTER

2 Background

The beauty of mathematics only shows itself to more patient followers.
Maryam Mirzakhani

In this section, we first introduce several background notions used in the first
part (Part I) to understand the main contributions of this thesis. Then we
review some well-known cryptographic primitives and their security properties.
These primitives are building blocks for the constructions discussed in the
next chapters. Considering that some algorithms in different primitives share
identical names, we use PRI.Alg to show algorithm Alg for the primitive PRI.
Additionally, we elaborate on certain cryptographic hardness assumptions and
the models ensuring their security.

2.1 Basic Notation

Throughout the first part of this thesis, let κ ∈ N denote some general security
parameter and 1κ its unary representation. A function ν : N → R+ is called
negligible if for all large enough κ there exists κ0 ∈ N such that for all κ > κ0
and c > 0 it holds that ν(κ) < 1/κc. All the algorithms are randomized
and Probabilistic Polynomial-Time (PPT) unless it is explicitly stated. For
a non-empty set S, x ←$ S denotes sampling an element from S uniformly
at random and assigning its output to variable x. Let y ←$ Alg(z; r) denote
running probabilistic algorithm Alg on input z and an implicit random input r
and assigning its output to variable y. An algorithm Alg is called deterministic
if r = ⊥ and if we do not specify r, i.e. y ←$ Alg(z) the random input r is
sampled uniformly at random. A vector r⃗ is denoted by r and a matrix A is

11
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denoted by A. We use [1, n] to denote the set of integers {1, . . . , n}. {0, 1}∗

denotes the set of all binary strings of arbitrary length.

We denote the output of a security game GGame between a challenger and a
PPT adversary A by GGame

A , where A wins the game if GGame
A = 1. Within

the security games, the adversary could potentially have access to optional
oracles such as Ooracle(·). A cryptographic scheme, Pri, is called computationally
secure or perfectly secure if for all PPT adversaries A, we have AdvPri

A ≤ ν(κ) or
AdvPri

A = 0, where AdvPri
A := Pr[GGame,Pri

A = 1]. The scheme is called statistically
secure, if the above condition holds for unbounded adversaries.

Let q be a κ-bit prime. We denote the group of integers module p by Zq = Z/qZ,
its multiplicative group of units by Z∗

q , and the polynomial ring over Zq by
Zq[X]. For a group G = ⟨G⟩ of prime order q with generator G and identity
element 1G, we use G∗ to denote the set G \ 1G. Throughout this thesis, we
treat most groups using additive notation and use an implicit representation of
group elements, in which for an integer α ∈ Zq, its implicit representation in
group G is defined by [α]M := αM ∈ G, where M can be any arbitrary group
element in G. To be more general, the implicit representation of a matrix
A = (αij) ∈ Zm×n

q in G is defined by [A]M, and we have:

[A]M :=


α1,1M · · · α1,nM
α2,1M · · · α2,nM

... . . . ...
αm,1M · · · αm,nM

 .

To simplify, when M is a generator of G, i.e. G, we use [α] instead of [α]G.

2.2 Bilinear Groups

In real-world applications, elliptic curve groups over prime fields with large
characteristics are commonly used. Within this setting, the cyclic group,
represented as G, is composed of point pairs (x, y) ∈ Z2

p. These pairs satisfy
the elliptic curve equation y2 = x3 + ax + b, where the variables a, b ∈ Zp are
fixed parameters.
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Example 1. For example, the Secp256k1 elliptic curve used to generate
Bitcoin public keys is defined by the equation y2 = x3 + 7, i.e., a = 0
and b = 7. As another example, the popular pairing-friendly BLS12-381
curve, proposed by Barreto, Lynn and Scott in [BLS03], is defined by
y2 = x3 + 4, i.e., a = 0 and b = 4 over a coordinate field of size 384 bits.

Pairings, also known as bilinear maps, are efficiently computable functions
that operate over three cyclic groups, G1, G2, and GT , each having a prime
order p and generators G1, G2, and GT , respectively. The pairing function
e : G1 ×G2 → GT maps a pair of elliptic curve points from source groups G1
and G2 to the specific target group GT as a multiplicative subgroup of a finite
field such that the exponents of source group elements multiply.

A pairing is termed symmetric if G1 and G2 are the same; otherwise, it is
asymmetric. In this thesis, we exclusively concern with asymmetric bilinear
groups, specifically Type-III bilinear groups. These groups are distinct in
that there is no efficient isomorphism between G1 and G2. Type-III bilinear
groups are the most efficient choice for certain security levels [GPS08]. BLS12-
381 [BLS03] and BN-254 [BN06] elliptic curves are two prime examples of this
type.

Definition 1 (Type-III Bilinear Groups). More formally, an asymmetric bilinear
group generator, BGgen(1κ), returns a tuple (p,G1,G2,GT , G1, G2, e), such that
G1 = ⟨G1⟩, G2 = ⟨G2⟩ and GT = ⟨e(G1, G2)⟩, where e : G1 × G2 → GT is a
bilinear map with the following properties:

• Bilinearity: ∀ α, β ∈ Zp, e([α]1, [β]2) = [αβ]T = e([β]1, [α]2) ,

• Non-degeneracy: e(G1, G2) ̸= 1GT
,

where for simplicity we use [α]ζ instead of [α]Gζ
for ζ ∈ {1, 2, T}. Additionally,

we use [α, . . . , αℓ]ζ instead of
(
[α]ζ , [α2]ζ , . . . , [αℓ]ζ

)
. We use additive notation

for the source groups of G1 and G2 while we use multiplicative notation for the
target group GT .

We further extend the pairing operation such that for two matrices A and B
with matching dimensions we define e([A]1, [B]2) = [AB]T . To be more precise,

e([A]1, [B]2) = e




α1,1G1 · · · α1,nG1
α2,1G1 · · · α2,nG1

... . . . ...
αm,1G1 · · · αm,nG1

 ,


β1,1G2 · · · β1,nG2
β2,1G2 · · · β2,nG2

... . . . ...
βm,1G2 · · · βm,nG2


 =

[AB]T ·
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2.3 Cryptographic Assumptions

In cryptography, the security proofs mainly rely on mathematical hardness
assumptions, i.e., the fact that some problems are believed to be hard to solve.
These assumptions can be categorized into different types, ranging from standard
to non-standard, falsifiable to non-falsifiable and interactive to non-interactive,
etc. In the following, we provide a list of hardness assumptions that form the
basis for the constructions we will discuss in the next chapters.

Note 1. (Standard Assumptions) Standard assumptions are well-
accepted mathematical problems, such as the factoring problem or
the discrete logarithm problem, and may involve multiple rounds of
interaction (i.e. interactive) or no interaction at all between the adversary
and the challenger (i.e. non-interactive). An assumption is termed
falsifiable if it can be structured as a game, possibly interactive, where a
challenger can effectively check if the adversary has achieved their goal.

Discrete Logarithm (DL)-based problems. The Discrete Logarithm (DL)
problem as a classical problem in number theory forms a foundation for many
Public Key Cryptography (PKC) systems.

Definition 2 (Discrete Logarithm (DL) problem). Let a cyclic group G = ⟨G⟩
of prime order q, the DL problem is hard if for all PPT adversaries A, we have:

Pr [∀ Z ←$ G | z ← A(G, Z) : Z = [z]] ≤ ν(κ) ·

The (q1, q2)-Discrete Logarithm assumption as formally defined below, expands
the set of known group elements to the adversary.

Definition 3 ((q1, q2)-Discrete Logarithm Assumption). Given an asymmetric
bilinear group description BG := (p,G1,G2,GT , G1, G2, e) ← BGgen(1κ), the
(q1, q2)-discrete logarithm assumption holds if for all PPT adversaries A, we
have: Pr

[
z ←$ Z∗

p, z′ ←$A(BG, [z, . . . , zq1 ]1, [z, . . . , zq2 ]2) : z′ = z
]

< ν(κ).

This assumption is hard in the bilinear Generic Group Model (GGM).
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Note 2. (Computational vs. Decisional Assumptions) The
assumptions such as Discrete Logarithm (DL) are computational, meaning
the adversary’s objective is to compute and obtain a challenge output.
Conversely, an assumption is termed decisional when the adversary is
only required to distingiush between two potential scenarios.

Definition 4 (Decisional Diffie-Hellman Assumption [Bon98]). Given a cyclic
group G of prime order q with generator G, the Decisional Diffie-Hellman
(DDH) assumption holds if for all PPT adversaries A, and uniformly random
integers x, y, z ←$ Z∗

q , we have: AdvDDH
A (κ) := |ε1 − ε0| ≤ ν(κ), where εβ :=

Pr[A([x], [y], [xy + βz]) = 1].

It is straightforward that the DDH assumption over the source group G
becomes trivial when there exists a symmetric bilinear map e : G×G→ GT .
The adversary can verify by checking if the Pairing-Product Equation (PPE)
e([x], [y]) = e([xy + βz], G) holds. However, in the Type-III bilinear setting,
the Symmetric External Diffie-Hellman (SXDH) assumption [Jou00; BF01]
ensures that DDH holds in both source groups G1 and G2. Looking ahead,
in Chapter 4, we use the SXDH assumption to construct a key-updatable public
key encryption scheme from the well-known ElGamal cryptosystem [ElG84].

PS assumptions. Next, we recall the family of Pointcheval-Sanders (PS)
assumptions that play a central role in the design of the initial Threshold
Structure-Preserving Signatures (TSPS) scheme, discussed in Chapter 3.

Definition 5 (Pointcheval-Sanders (PS) Assumption [PS16]). Given a tuple
([x]2, [y]2) and an oracle OPS(m)→ (h, [x + my]h) ∈ G2

1, where x, y ←$ Z∗
p, and

h ←$ G1. The PS game, i.e., GPS, is to find the tuple (m∗, h∗, s∗) such that
(1) h∗ ̸= 1G1 , m∗ ̸= 0, (2) s∗ = [x + m∗y]h∗ and (3) m∗ ̸∈ Q, where Q is the list
of all queried messages to the OPS(m) oracle. The advantage of an adversary
A against this game can be defined as AdvPS

A (κ) := Pr
[
GPS

A (κ) = 1
]
. The PS

assumption holds if for all PPT adversaries A, we have: AdvPS
A (κ) < ν(κ).

It is easy to verify the validity of the challenge tuple (m∗, h∗, s∗) by checking
the PPE, e(s∗, G2) = e(h∗, [x]2 + m∗[y]2). Note that the PS assumption is
an interactive assumption, meaning that during the security game, there is
communication between the challenger and the adversary and its hardness is
proved in the GGM [PS16].
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Informal Definition 1. (GGM vs. AGM) The Generic Group Model
(GGM), introduced by Shoup [Sho97], assumes a strong characteristic of
adversaries: they can only interact with the group in a black-box manner.
The Algebraic Group Model (AGM), introduced by Fuchsbauer, Kiltz
and Loss [FKL18], lies between the GGM and the standard model. The
AGM is similar to the standard model, but it differs from the GGM
in that the security game relies on the hardness of a mathematical
problem. The AGM, on the other hand, is similar to GGM but differs
from the standard model as an algebraic algorithm can only produce
group elements by employing group operations on the given elements.
Although an algebraic algorithm does not need to interact with an oracle
to perform a computation, it must output a record of group operations
performed, called representation vector.

Kim et al. [Kim+20] developed an expanded form of the PS assumption, termed
the Generalized Pointcheval-Sanders (GPS) assumption. This version differs
from the original PS assumption by dividing the oracle OPS(·) into two distinct
oracles, OGPS

0 (·), which randomly selects h from G1, and OGPS
1 (·), which, given

h and m ∈ Zp, computes the value [x+my]h. Subsequently, Kim et al. [Kim+22]
further expand the GPS assumption to what is now referred to as GPS2, which
modifies the oracle OGPS

1 (·) such that it accepts group element messages of [m]
instead of field elements m as inputs.

Definition 6 (GPS2 Assumption [Kim+22]). Given a tuple ([x]2, [y]2) and two
oracles OGPS2

0 ()→ h ∈ G1 and OGPS2
1 (h, M1, M2)→ ([x]h +[y]M1) ∈ G1, where

x, y ←$ Zp and dlogh(M1) = dlogG1(M2), the GPS2 game i.e., GGPS2 , is to find
(M∗

1 , M∗
2 , h∗, s∗) such that (1) h∗ ≠ 1G1 , M∗ ̸= 1G1 , (2) s∗ = [x]h∗ + [y]M∗

1
,

(3) dlogh∗(M∗
1 ) = dlogG1(M∗

2 ) and (4) (⋆, M∗
1 ) ̸∈ Q1, where Q1 is the list of

pairs (h, M1) queried to OGPS2
1 (·). The advantage of an adversary A against

this game can be defined as AdvGPS2
A (κ) := Pr

[
GGPS2

A (κ) = 1
]
. The GPS2

assumption holds if for all PPT adversaries A, we have: AdvGPS2
A (κ) < ν(κ).

The GPS2 assumption is hard based on the (2,1)-DL assumption (cf. Definition 3)
in the AGM and ROM.
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Informal Definition 2. (Random Oracle Model (ROM)) Hash
functions are a common design choice for many cryptographic schemes.
The Random Oracle Model (ROM), introduced by Bellare and Rogaway
in [BR93], is used to model these functions in the security proofs. A
random oracle refers to a function that generates uniformly random
outputs for each new query, while maintaining consistency by always
producing the same output for an identical query. The main idea in a
security proof in the ROM is to replace cryptographic hash functions
with random oracles to prove the security, then transitioning back to
actual hash functions for real-world deployments. While this model leads
to more efficient cryptosystems, random oracles do not really exist in
real world [PS00].

Definition 7 (Collision Resistant Hash Function (CRHF)). For a given security
parameter κ and a family of functions H : {0, 1}ℓin(κ) → {0, 1}ℓout(κ), where
ℓout(κ) > ℓin(κ), H is a family of CRHF, if for any H ∈ H it is difficult to find
a pair (X1, X2) such that X1 ̸= X2 and H(X1) = H(X2).

Example 2. SHA-256 is a well-known and practical hash function which
produces outputs of 256 bits.

Matrix Assumptions. Matrix assumptions extend the DL-based assumptions
and play a central role in the construction of many schemes [Esc+13; Her+14;
MRV16; Esc+17].

Definition 8 (Matrix Distribution). For any natural numbers k and ℓ where
k ≤ ℓ, consider Dℓ,k as a matrix distribution. This distribution produces
matrices from Zℓ×k

p of full rank k in polynomial time. W.l.o.g., we let the first
k rows of matrix A ←$ Dℓ,k form an invertible matrix. When ℓ = k + 1, we
simply refer to the distribution as Dk.
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Example 3. As a simple example, let k = 3 and ℓ = 4, meaning the
matrix A has 4 rows and 3 columns. Given k = 3, ℓ = 4, and a finite
field of prime order p, the following matrix A satisfies the requirements:

A =


1 0 0
0 1 0
0 0 1
2 3 4

 .

In this example, the first 3 rows form an identity matrix, which is
clearly invertible, satisfying the requirement that the first k rows form an
invertible matrix. The matrix A has full rank k = 3, as the first k rows
are linearly independent, and the addition of any row does not affect the
rank.

Definition 9 (Dℓ,k-Matrix Decisional Diffie-Hellman (Dℓ,k-MDDH) Assump-
tion [Esc+17]). For a given security parameter κ, consider two positive integers
k ∈ N∗ and ℓ ∈ N∗ s.t. k < ℓ and Dℓ,k be a matrix distribution as defined
in Definition 8. The Dℓ,k-MDDH assumption for Gζ with ζ = {1, 2} holds,
if for all PPT adversaries A we have: AdvMDDH

Dℓ,k,Gζ ,A(κ) := |ε1 − ε0| ≤ ν(κ),
where εβ := Pr [A(BG, [A]ζ , [Ar + βu]ζ) = 1], where BG ←$ BGgen(1κ), A←$

Dℓ,k, r←$ Zk
p, u←$ Zℓ

p.

Intuitively, this assumption extends the SXDH assumption and states
that two distributions ([A]ζ , [Ar]ζ) and ([A]ζ , [u]ζ) are computationally
indistinguishable.

Definition 10 (Dk-Kernel Matrix Diffie-Hellman (Dk-KerMDH) Assump-
tion [MRV16]). For a given security parameter κ, consider a positive integer
k ∈ N∗, and let Dk be a matrix distribution as defined in Definition 8. The
Dk-KerMDH assumption for Gζ with ζ = {1, 2} holds, if for all PPT adversaries
A, we have: AdvKerMDH

Dk,Gζ ,A(κ) = Pr [c ∈ orth(A) | [c]3−ζ ← A(BG, [A]ζ))] ≤ ν(κ).

Definition 11 (Orthognal of a Matrix). For any full rank matrix A ∈ Zℓ×k
p ,

lets A⊥ ∈ Zℓ×(ℓ−k)
p be a matrix with A⊤A⊥ = 0 and rank ℓ− k. The set of all

these matrices are denoted as follows:

orth(A) := {A⊥ ∈ Zℓ×(ℓ−k)
p | ATA⊥ = 0 ∧ rank(A⊥) = ℓ− k} ·

The Kernel Matrix Diffie-Hellman assumption can be seen as a computational
analogue to the Matrix Decisional Diffie-Hellman (MDDH) assumption. It is
recognized that for any k ≥ 1, Dk-MDDH ⇒ Dk-KerMDH [KPW15; MRV16].
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Example 4. As an example for the D2-KerMDH assumption, let the
random matrix A←$ D2 be defined as follows:

A =

a1 0
0 a2
1 1

 ∈ Z3×2
p ,

where a1, a2 ←$ Z∗
p. Given [A]ζ , i.e.,

[A]ζ =

[a1]ζ 0
0 [a2]ζ

[1]ζ [1]ζ

 ,

it is computationally hard to find [c]3−ζ , where c :=
(
c1 c2 c3

)
≠ 0,

such that,

(
c1 c2 c3

)
·

a1 0
0 a2
1 1

 =
(
a1c1 + c3 a2c2 + c3

)
= 0 ·

Knowledge of Exponent Assumption (KEA). Next, we recall the well-
known Knowledge of Exponent Assumption (KEA), which is known as a basis
for efficient Non-Interactive Zero-Knowledge (NIZK) proofs. Note that this
assumption is categorized as a non-falsifiable assumption, meaning the validity
of the adversary’s outputs cannot be efficiently checked by the challenger.

Note 3. (Non-Falsifiable Assumptions) A common form of a non-
falsifiable assumption is a statement of the form,

∀A, ∃ ExtA(·) : Pr[GGame
A = 1 ∧ ExtA(·) work] ≥ 1− ν(κ) .

To break an assumption of this type we need to show adversary A
wins such that no algorithm ExtA(·) exists that works. Proving the
non-existence of such an algorithm is challenging without additional
assumptions.

The Knowledge of Exponent Assumption (KEA) as the first hardness assumption
of this type was introduced by Damg̊ard in [Dam92]. It states that it is infeasible
to obtain a pair of elements C and Ĉ from G and [α] in a group G, such that
Ĉ = [α]C , without prior knowledge of a, where C = [a] and Ĉ = a[α].
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Next, we recall the Bilinear Diffie-Hellman Knowledge of Exponent (BDH-KE)
assumption [Abd+17] which is a version of the original KEA over asymmetric
bilinear groups.

Definition 12 (BDH-KE Assumption [Abd+17]). Consider an asymmetric
bilinear group BG, the BDH-KE assumption for a given relation R ∈ R(1κ),
and PPT adversary A, states that there exists a PPT extractor ExtA(·), s.t. we
have:

Pr

r ←$ RND(A), ([α1]1 , [α2]2)← A(R,BG, r), a← ExtA(R, r) :

e([α1]1 , G2) = e(G1, [α2]2)→ (a = α1 ∧ a = α2)

 ≥ 1− ν(κ).

Example 5. As a simple example, let BG := (p,G1,G2,GT , G1, G2, e) be
a Type-III bilinear group description. Given BG, if adversary A returns
([a]1, [a]2) such that the PPE, e(G1, [a]2) = e([a]1, G2) holds, then we can
conclude A knows a. The main reason for this is that A can choose a
random element [a]1 without knowing a. However, because the discrete
logarithm in G1 is hard, A cannot obtain a to compute [a]2.

2.4 Digital Signatures

Digital Signatures (DS) emulate handwritten signatures which are commonly
used in our society to signify the acceptance of some conditions. There are
different reasons to sign a physical document, for example to agree about the
details of a bank transaction or to confirm the postman has delivered an item to
us. With the progress of the digital world, many physical documents have been
substituted with digital content. Similarly, DS let us confirm the identity of the
signer and validate that they have approved the content of a digital document.

A DS is typically defined with four processes. Initially, the setup phase generates
the set of public parameters and the key generation produces a key pair, a
private key and a public key. Following this, in the signing phase, the signer,
using its private key, creates a signature for a given message. Lastly, the
verification process involves checking the signature’s authenticity by using the
public key, the message, and the signature itself.

Definition 13 (Digital Signatures (DS)). More formally, a DS over message
space M consists of the following PPT algorithms:



DIGITAL SIGNATURES 21

• pp← DS.Setup(κ): the probabilistic algorithm setup takes the security
parameter κ as input and outputs the set of public parameters pp.1

• (sk, vk) ← DS.KeyGen(pp): the probabilistic algorithm key generation
takes pp as input and outputs a pair of signing/verification keys (sk, vk).

• σ ← DS.Sign(pp, sk, m): the probabilistic algorithm sign takes pp, a secret
signing key sk, and a message m ∈M as inputs, and outputs a signature
σ.

• 0/1 ← DS.Verify(pp, vk, m, σ): the deterministic algorithm verify takes
pp, a public verification key vk, a message m ∈M, and a signature σ as
inputs, and outputs either 1 (accept) or 0 (reject).

A DS is deemed secure if it satisfies two properties: Correctness and Existential
Unforgeability against Chosen Message Attack (EUF-CMA). Correctness ensures
any correct signature must be verifiable exclusively with the signer’s public key.
However, EUF-CMA guarantees the process of creating the signature should be
solely under the signer’s control, and any changes to either the signature or the
corresponding message must be easily identifiable.
Definition 14 (Correctness). A digital signature is correct for all public
parameters pp ← Setup(κ), key-pairs (sk, vk) ← KeyGen(pp) and messages
m ∈M, if: Pr [Verify (pp, vk, m, Sign(pp, sk, m)) = 1] ≥ 1− ν(κ).
Definition 15 (Existential Unforgeability against Chosen Message Attack
(EUF-CMA) [GMR88]). Given the security parameter κ, public parameters pp,
verification key vk such that (sk, vk)← KeyGen(pp), and oracle OSign(m)→ σ,
the goal of the EUF-CMA game for a DS, i.e. GEUF-CMA, is to find a pair (m∗, σ∗)
such that (1) Verify(pp, vk, m∗, σ∗) = 1 and (2) m∗ ̸∈ Q, where Q is the list of
queried messages to oracle OSign(·). A DS is called EUF-CMA-secure if for all
PPT adversaries A: AdvEUF-CMA

A (κ) := Pr
[
GEUF-CMA

A (κ) = 1
]
≤ ν(κ).

Note 4. (Strong Unforgeability) A signature is said strongly
unforgeable when the adversary is not only unable to generate a valid
signature for a fresh message (i.e. passes the conditions of existential
unforgeability) but also incapable of producing a new signature for a
challenge message m∗, even after observing a valid signature for the
same message m∗. In simpler terms, in a strongly unforgeable signature
scheme, the signature itself cannot be altered or re-randomized.

Below we overview the fundamentals of Threshold Signatures (TS) as the core
field of study for the constructions discussed in Chapter 3.

1The setup algorithm is typically an auxiliary algorithm for digital signatures, and in this
thesis we expect it to generate the bilinear group description.
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2.5 Threshold Signatures

While Digital Signatures (DS) involve a single signer, an (n, t)-threshold
signature scheme allows for distributed signing among n signers. In this case,
any subgroup of at least t members can collectively sign a message, but a group
smaller than t cannot successfully create a signature.

A Threshold Signature (TS) typically consists of five main phases. The initial
stage, known as the setup phase, is responsible for generating a set of public
parameters, while the key generation phase involves creating a unique key pair
for each signer, consisting of a private share and its corresponding verification
key and a universal verification key. During the partial signing phase, signers
utilize their private shares to sign a message, producing a partial signature.
The aggregation phase then combines a sufficient number of these valid partial
signatures to produce a unified aggregated signature. The process concludes
with the verification phase, where the integrity of the aggregated signature is
checked using the universal verification key. When a signature/message pair
successfully completes the verification phase, it signifies to the verifier that at
least t out of n signers have participated in the partial signing process.

Example 6. As a simple example, when a student completes their
academic program and is eligible to receive a university certificate, they
request a certificate. The university may form a threshold signing group,
which consists of multiple authorized administrators or officials, for
example the administration office, the dean and the head of the ICT
division. To issue a certificate, they can collectively generate Threshold
Signatures (TS) on the certificate. This signature is only valid if a
sufficient number of administrators agrees to sign.

Threshold signatures were proposed by Desmedt in 1989 to distribute the trust
among multiple signers and to improve the key availability [Des90]. Since
then, there have been many advancements in enhancing the security and
efficiency of these schemes [Gen+01; MR01; GGN16; Lin17; Doe+18; Doe+19].
Additionally, due to the rise of cryptocurrencies, blockchain technology, and
self-sovereign identity management, threshold signatures attracted significant
research interest, e.g., [Bol03; KG20; Can+20; Kon+21; CKM23]. Currently,
there is a standardization effort in the broader domain of threshold cryptography
by NIST [BDV+20; BP23].
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Note 5. (Non-Interactive Threshold Signatures) A TS is called
non-interactive if the group of signers do not need to interact during
the partial signing phase and no pre-processing phase is required. In
this thesis, we focus on non-interactive threshold signatures over bilinear
groups, which we will refer to simply as Threshold Signatures (TS).

Definition 16 ((n, t)-Threshold Signatures). Given a security parameter κ and
a message space M, an (n, t)-TS contains the following PPT algorithms:

• pp← T S.Setup(κ): the setup algorithm takes the security parameter κ
as input and outputs the set of public parameters pp.

• ({ski, vki}i∈[1,n], vk)← T S.KeyGen(pp, n, t): the key generation algorithm
takes the public parameters pp along with two integers n, t s.t. 1 ≤ t ≤ n
as inputs. It then returns secret/verification keys (ski, vki) for i ∈ [1, n]
along with a global verification key vk as output.

• Σi ← T S.ParSign(pp, ski, M): the partial signing algorithm takes pp, the
ith party’s secret key, ski, and a message M ∈ M as inputs. It then
returns a partial signature Σi as output.

• 0/1← T S.ParVerify(pp, vki, M, Σi): the partial verification algorithm as
a deterministic algorithm, takes pp, the ith verification key, vki, and a
message M ∈M along with partial signature Σi as inputs. It then returns
1 (accept), if the partial signature is valid and 0 (reject), otherwise.

• Σ← T S.CombineSign(pp, T, {Σi}i∈T ): the combine algorithm takes a set
of partial signatures Σi for i ∈ T along with T ⊆ [1, n] and |T | ≥ t. It
then returns an aggregated signature Σ as output.

• 0/1 ← T S.Verify(pp, vk, M, Σ): the verification algorithm as a
deterministic algorithm, takes pp, the global verification key, vk, and
message M ∈ M along with an aggregated signature Σ as inputs. It
then returns 1 (accept), if the aggregated signature is valid and 0 (reject),
otherwise.

Note 6. (Distributed Key Generation (DKG)) While the key
generation algorithm can be run by a DKG protocol [Ped92], throughout
this thesis we assume the presence of a trusted dealer for sharing the pair
of secret/verification keys among signers. DKG is an interactive protocol
that allows for the secure creation of key pairs among multiple parties
without a centralized dealer.
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Security Properties. A threshold signature is called secure, i.e., unforgeable, if
no one can come up with a valid signature even if t−1 of the signers are corrupted,
i.e. act maliciously. Bellare et al. in [Bel+22] studied multiple notions of security
for threshold signatures, particularly non-interactive threshold signatures. They
discussed two primary security notions for non-interactive threshold signatures,
labeled TS-UF-0 and TS-UF-1. In the TS-UF-0 notion, the adversary is limited
in that it cannot observe any partial signatures of the challenge message for
which it creates a forgery. On the other hand, the TS-UF-1 notion, as a stronger
security notion, permits the adversary to make partial signing queries up to
(t− |# corrupted signers|− 1) times on the challenge message.

In finalizing our discussion on the security aspects of threshold signatures, we
briefly explore how static and adaptive corruptions differ. A threshold signature
is called secure against static adversaries when adversaries must declare all
corrupted parties at the beginning of the security game, before having seen
their verification keys. However, in practical scenarios, corruption often occurs
over time. This necessitates protection against stronger adversaries, specifically
those capable of adaptive corruption. In these situations, adversaries have the
flexibility to select which signers to corrupt as the security game progresses,
and this selection can be influenced by information gained from observing the
set of public parameters and also having access to the partial signing oracle.

The formal definition of these unforgeability notions can be found in Definition 54
on page 117.

2.6 Secret Sharing Schemes

Secret sharing schemes allow to divide a secret among several parties, where
only a quorum of a pre-determined size has the ability to reconstruct the secret.
In this thesis, we use the Shamir secret sharing scheme [Sha79] as a well-known
secret sharing mechanism that employs Lagrange Interpolation.

Shamir Secret Sharing Scheme. In an (n, t)-Shamir secret sharing, to share
a secret s ∈ Zp among n parties, the dealer forms a random polynomial,
f(x) ∈ Zp[X] of degree (t − 1) such that f(0) = s. To share the secret, the
dealer evaluates f(x) on each shareholder’s index and securely provides each
shareholder with si = f(i), i ∈ [1, n]. To reconstruct the secret, for a subset
S ⊆ [1, n] one can compute the Lagrange coefficients λi := Λi(0) =

∏
j∈S,j ̸=i

j
j−i ,

and then combine them with the shares, i.e., s = f(0) =
∑

i∈S siλi. The need for
at least t polynomial evaluations arises from the degree of the initial polynomial
and fewer than t cannot learn any information about s.
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Definition 17 (Langrange Interpolation). Given ℓ distinct interpolation points
and evaluation points (αi, ϕi), using Lagrange interpolation we can find the
unique polynomial Φ(x) of degree ℓ− 1 such that Φ(αi) = ϕi for all i ∈ [1, ℓ].
In doing so we first compute Lagrange polynomials Λi(x) :=

∏
j∈[1,ℓ],j ̸=i

x−αj

αi−αj

for all i ∈ [1, ℓ].

It is easy to observe that for all i ∈ [1, ℓ], we have Λi(αi) = 1 and also for
all i ∈ [1, ℓ] and j ̸= i we have Λi(αj) = 0. Then we can obtain Φ(x) as
Φ(x) =

∑
i∈[1,ℓ] Λi(x)ϕi.

Example 7. Taking a simple example where t = 2 and considering shares
as points on a plane, with x-coordinate being the index and y-coordinate
being the point evaluated by a random polynomial f(x) of degree 1, i.e.
t− 1 = 1, at this index. As shown in Figure 2.1, it is a basic fact that
multiple lines can pass through any single point, yet only one unique line
can connect two distinct points. Without knowing the second point it
is not possible to interpolate the line and obtain the secret, which is its
intersection with y-axis.

Figure 2.1: Polynomial Interpolation: the unique line through two points.

We further extend the Shamir secret sharing to enable sharing of matrices of
dimension a × b, essentially running ab instances of Shamir secret sharing in
parallel. It is easy to observe that in the standard Shamir secret sharing scheme
we have a = b = 1.

Definition 18 (Secret Sharing). More formally, for any two positive integers
n, t ≤ n, a secret-sharing scheme over Za×b

p (for a, b ∈ N) involves two main
algorithms: Share and Rec. Share is a probabilistic function that, given a secret
matrix M⃗ from Za×b

p , produces n shares (M⃗1, . . . , M⃗n), each belonging to Za×b
p .

This scheme is defined by two security properties:
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1. Correctness guarantees that from any t or more shares, the original
secret M⃗ can be accurately reconstructed.

2. Security ensures that any set of shares fewer than t provides no
information about M⃗ , maintaining its confidentiality against adversaries.

For more details, check Definition 47 on page 112.

2.7 Non-Interactive Zero-Knowledge Proofs

The concept of Zero-Knowledge (ZK) proofs, introduced by Goldwasser et al.
in 1985 [GMR85], had a great impact on the field of cryptography. In simple
terms, ZK proofs offer an efficient means of showing the validity of a statement
without disclosing any additional information. The main security requirements
of a ZK proof are that it should require the prover to know the secret to be
proven, called knowledge soundness, and that no extra information is leaked
during the proof process, called zero-knowledge. In this thesis, we focus on Non-
Interactive Zero-Knowledge (NIZK) proofs, primarily due to their capability to
eliminate the need for interaction between parties. This is important, especially
when dealing with large-scale systems where achieving smooth and efficient
interactions can be challenging.

Before exploring the formal definition of NIZKs, lets review some foundational
notations.

Informal Definition 3. (Relations vs. Languages) For a security
parameter κ, let R be a relation generator, such that R(κ) returns
an efficiently computable binary relation R = {(x, w)}, where x is the
statement and w is the corresponding witness (secret input). Let LR =
{x : ∃ w | (x, w) ∈ R} be a language consisting of the statements in
relation R.

A relation can be defined as a set of pairs (x, w) and in a provable statement,
i.e., Nondeterministic Polynomial Time (NP) relation, x is called instance and
w is called witness. However, the language defined by a relation R consists of
all the valid instances such that there exists a witness satisfying the relation R.

The following example inspired by the blog post by Mohnblatt2, gives a better
understanding of the differences between a statement (x), a witness (w), a
relation (R) and a language (LR).

2https://nmohnblatt.github.io/zk-jargon-decoder/intro_to_zk/what_is_proving.
html.

https://nmohnblatt.github.io/zk-jargon-decoder/intro_to_zk/what_is_proving.html
https://nmohnblatt.github.io/zk-jargon-decoder/intro_to_zk/what_is_proving.html
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Example 8. We know some mathematical statements, like checking if
“17 is a prime number!” or “99 is a prime number!”, are easily decidable.
However, finding if the following Sudoku puzzle has an answer and finding
the solutiona requires more effort.

1 3
3

3
(⋆)

In the Sudoku puzzle, the relation RSudoku involves a grid consisting of
integers and blanks, e.g. puzzle (⋆), as instance. However, the witness in
this case refers to a vector of integers that correctly fills all the blanks
in the puzzle, ensuring the Sudoku rules are met. Thus, we can write
(x := (⋆), w := [2, 1, 2, 2, 1]) ∈ RSudoku.
The Sudoku puzzle (⋆) belongs to the language LRSudoku . However, any
Sudoku puzzle like the one below that does not have a solution, i.e.
witness, cannot be in this NP-language.

1 3
2

3
aOne can fill in the blanks in such a way that each row and each column, contain

numbers from 1 to 3 exactly once.

Definition 19 (Non-Interactive Zero-Knowledge (NIZK) proofs). Formally,
a NIZK proof for an NP-relation R ∈ R(κ) consists of the following PPT
algorithms:

• (c⃗rs, t⃗s, t⃗e) ← NIZK.Gencrs(κ, R): the CRS generation, i.e. setup, is
a randomized algorithm that takes the security parameter κ and the
relation R as input(s), and outputs a Common Reference String (CRS),
c⃗rs, along with a simulation and extraction trapdoors t⃗s, t⃗e. Note that the
input R is an arbitrary input element, where in some NIZK schemes the
CRS needs to be generated under a certain relation, while others can be
established without direct dependency on the relation itself.

• (π,⊥)← NIZK.Prove(R, c⃗rs, x, w): the prove algorithm is a probabilistic
algorithm that takes the tuple (R, c⃗rs, x, w) as input. It then returns a
proof π when (x, w) ∈ R, otherwise it returns ⊥.

• 0/1← NIZK.Verify(R, c⃗rs, x, π): the verify algorithm is a deterministic
algorithm that takes the tuple (R, c⃗rs, x, π) as input. It either accepts (1)
or rejects (0), checking whether x ∈ LR.
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• π′ ← NIZK.Sim(R, c⃗rs, t⃗s, x): the simulator algorithm takes the tuple
(R, c⃗rs, t⃗s, x) as input and without knowing the corresponding secret
witness, outputs a simulated proof π′ such that it is computationally
indistinguishable from π.3

Informal Definition 4. (Zero-Knowledge Succinct Non-interactive
ARgument of Knowledge (zk-SNARK)) Generally speaking a zk-
SNARK is essentially a knowledge sound NIZK with certain feature of
succinctness. More concretely, the prover is (quasi-)linear, the proof is
asymptotically short, i.e. for any κ we have |π| ∈ O(polylog(|x| + |w|))
and the verification time is fast, i.e. in the order of O(|x|).
The most efficient zk-SNARK to date is proposed by Groth in
2016 [Gro16], Groth16 in short, and has constant proof size, only 3
source group elements and 3 pairing operations in the verification phase.

Perhaps the most powerful cryptographic technology to come out of the
last decade is general-purpose succinct zero-knowledge proofs.

Vitalik Buterin, Inventor of Ethereum

The primary security properties of NIZK arguments are completeness, Zero-
Knowledge (ZK), soundness and Knowledge Soundness (KS).

Note 7. (NIZK proofs vs. NIZK arguments) In a NIZK argument the
security properties in Definitions 20 to 24 are computationally bounded,
meaning the adversary’s advantage is limited by a negligible function, ν(κ).
However in a NIZK proof the winning conditions are deterministically
equal to 0. In this thesis, we use the terms NIZK argument and NIZK
proof, interchangeably.

Definition 20 (Completeness). A NIZK argument is called complete for relation
R ∈ R(κ), if for all κ and (x, w) ∈ R, we have:
Pr

[
(c⃗rs, t⃗s, t⃗e)← Genc⃗rs(κ, R) : Verify (R, c⃗rs, x, Prove(R, c⃗rs, x, w))

]
≥ 1−ν(κ) .

Definition 21 (Zero-Knowledge). A NIZK argument is called ZK, if for all
security parameters κ, all PPT adversaries A and relations R ∈ R(κ) we have:
|ε0 − ε1| ≤ ν(κ), where,

εb := Pr
[
(c⃗rs, t⃗s, t⃗e)← Genc⃗rs(κ, R) : AOb,t⃗s(·,·)(R, c⃗rs) = 1

]
,

3Note that the simulation is exclusively used within the security definitions and security
proofs, as (ideally) there is no trapdoor in real-world deployments.

https://en.wikipedia.org/wiki/Vitalik_Buterin
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where the oracle Ob,t⃗s(·, ·) is defined in Figure 2.2.

Ob,t⃗s(x, w) :
1 : if (x, w) ̸∈ R return ⊥ else :

2 : if b = 0 : return π ← Prove(c⃗rs, x, w)

3 : else return π ← Sim(c⃗rs, t⃗s, x)

Figure 2.2: Simulation Oracle.

The main idea behind this definition is that if a simulator, with access to a
secret trapdoor, can create a proof (without knowing the witness) that looks
exactly like an original proof generated by the proving algorithm, then we can
say that the proof itself does not contain information about the witness.

Definition 22 (Soundness). A NIZK argument is sound for any relation
R ∈ R(κ), if for all adversaries A, we have:

Pr

(c⃗rs, t⃗s, t⃗e)← Gencrs(κ, R), (x, π)← A(R, c⃗rs) :

Verify(R, c⃗rs, x, π) ∧ x ̸∈ LR

 ≤ ν(κ) .

Usually, we use the stronger notion of Knowledge Soundness (KS) which enables
extracting a witness from a valid proof. Note that KS implies soundness.

Definition 23 (Knowledge Soundness (KS)). A NIZK argument is called
knowledge-sound, if for all security parameters κ, all PPT adversaries A and
relations R ∈ R(κ), there exists an extractor ExtA, and we have:

Pr

(c⃗rs, t⃗s, t⃗e)← Gencrs(κ, R), (x, π)← A(R, c⃗rs),

w← ExtA(R, c⃗rs, t⃗e, π) : Verify(R, c⃗rs, x, π) ∧ (x, w) ̸∈ R

 ≤ ν(κ) .

Intuitively, in a knowledge sound NIZK, it is impossible for someone to create a
fake proof that verifies, but the witness does not belong to the relation with
a high probability. To show this, we can define an extractor in two possible
settings: Black-Box and Non-Black-Box, that with the help of a secret trapdoor,
can extract the witness from any verifiable proof.
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Informal Definition 5. (Black-Box vs. Non-Black-Box Extraction)
We say an efficient extractor Ext(·) has black-box access to the adversary
A if it can run A externally without having access to its source code. In
contrast, in a non-black-box scenarioa, the extractor ExtA(·) has direct
access to the adversary’s source code, private coins, and hardcoded secrets.
Note that in a non-black-box scenario, there is a specific extractor for
each adversary, whereas in a black-box scenario, a single extractor works
for all adversaries.

aAlso known as white-box.

Below we recall a stronger notion of Simulation Extractability (SE) in two
possible scenarios; strong SE and weak SE. This definition strengthens the KS
since the adversary can observe a polynomially bounded number of simulated
proofs.

Definition 24 (Weak and Strong Simulation Extractability (SE) [Gro06;
Bag+21]). A NIZK argument (cf. Definition 19) is called weak strong
simulation extractable, if for all security parameters κ, all PPT adversaries
A and relations R ∈ R(1κ), there exists an extractor ExtA(·), and we have:

Pr


(c⃗rs, t⃗s, t⃗e)← Gencrs(κ, R), (x, π)← AOc⃗rs,t⃗s(·)(R, c⃗rs),

w← ExtA(R, c⃗rs, t⃗e, π) : (x, w) ̸∈ R ∧ Verify(R, c⃗rs, x, π) ∧(
(x, ·) ̸∈ QS ∨ (x, π) ̸∈ QS

)

 ≤ ν(κ) ,

where the oracle Oc⃗rs,t⃗s(·) is defined in Figure 2.3.

Oc⃗rs,t⃗s(x) :
1 : π ← Sim(c⃗rs, t⃗s, x)

2 : QS ← QS ∪ {(x, π)}

3 : return π

Figure 2.3: Simulation Oracle for Simulation Extractability Property.

The idea behind this definition is that in a strong simulation extractable NIZK
an adversary wins the Simulation Extractability (SE) game, if the proof verifies
and then either confirms the extractor’s success or if the proof has already
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been simulated by the simulation oracle. To show this, we can define an
extractor that, using the extraction trapdoor, is capable of extracting the
witness from any verifiable proof that has not been previously simulated by the
oracle, i.e. (x, π) ̸∈ QS . However, in the weak SE, we permit randomization of
proofs. Consequently, we adjust the requirement for a fresh instance and proof
condition to ensure that only the instance has not been queried before to the
simulation oracle. This adjustment comes primarily from the realization that in
a NIZK system with proof randomization, the adversary can easily re-randomize
the proof and pass the conditions in the strong SE. To elaborate more, the
adversary can request the simulation oracle for an instance x and obtain the
proof π and the simulation oracle updates QS ← QS ∪ {(x, π)}. Due to the
proof’s re-randomizability, the adversary can alter π to a valid proof π′ and
return (x, π′), while the extractor fails since this is a simulated proof, and as
a result, (x, π′) does not belong to the set QS . Thus the adversary wins the
strong SE game and we can conclud that the NIZKs with randomizable proof
cannot fulfill the strong SE property.

Intuitively, the weak and strong notions of SE can be likened to the EUF-
CMA and strong EUF-CMA security properties of Digital Signatures (DS)
(cf. Definition 15). In the EUF-CMA (weak SE), it is infeasible to obtain a valid
signature (a proof) for a fresh message (a fresh instance) even after observing
multiple simulated signatures (proofs). Moreover, within the strong notion of
EUF-CMA, it becomes impossible to modify a signature into a new form and
succeed in the game. A NIZK with SE property is also often called Signature
of Knowledge (SoK) [CL06; GM17].

Example 9. As a prime example, the proof in Groth’16 zk-
SNARK [Gro16] is re-randomizable (i.e. its proof is malleable), thus
as shown by Baghery et al. [Bag+21] this famous zk-SNARK can only
achieve weak SE.

2.8 Public Key Encryption

Public-Key Encryption (PKE) is a well-known cryptographic primitive that
allows a user to encrypt a plaintext using a public key. The corresponding
secret key holder can then decrypt the ciphertext and retrieve the plaintext.

Definition 25 (Public-Key Encryption (PKE)). More formally, a PKE consists
of the following PPT algorithms:
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• (sk, pk)← PKE .KeyGen(κ): the key generation algorithm takes κ as input
and outputs a secret/public key pair (sk, pk).

• ct ← PKE .Encrypt(pk, m): the encryption algorithm takes a public key
pk and a message m as inputs and outputs ct.

• m/⊥ ← PKE .Decrypt(sk, ct): the decryption algorithm takes a secret key
sk and a ciphertext ct as inputs, and outputs either a message m or ⊥.

The main security properties of a PKE scheme are completeness and
confidentiality, defined by Indistinguishability under Chosen-Plaintext Attack
(IND-CPA).4

Definition 26 (Correctness). A PKE satisfies correctness if for all (sk, pk)←
KeyGen(κ) and messages m we have:

Pr[Decrypt(sk, Encrypt(pk, m)) = m] ≥ 1− ν(κ) ·

Definition 27 (Indistinguishability under Chosen-Plaintext Attack (IN-
D-CPA)). A PKE meets IND-CPA security, if for all κ and PPT adversaries A,
we have:

Pr

(sk, pk)← KeyGen(κ), (m0, m1)← A(pk), b←$ {0, 1},

ctb ← Encrypt(pk, mb), b′ ← A(pk, ctb) : b′ == b

 ≤ 1
2 + ν(κ) .

4Note that for a PKE, stronger notions of security, such as Indistinguishability under
Chosen-Ciphertext Attack (IND-CCA), are also defined. However, in this thesis, we only
focus on CPA-security.
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Structure-Preserving Signatures (SPS) were introduced by Abe et al.
in [Abe+10]: these are standard digital signatures (cf. Section 2.4) over
bilinear groups (cf. Definition 1) with certain properties. In these schemes,
the message, signature, and verification keys are composed of elements from
source groups G1 and G2, and the verification of a signature is limited to
group membership checks and the evaluation of some Pairing-Product Equation
(PPE). As previously noted in Chapter 1, these features make them compatible
with efficient proof systems such as Groth-Sahai (GS) proofs [GS08] and this
compatibility makes them a key candidate for the development of efficient
privacy-preserving cryptographic primitives in the standard model such as
group signatures [Abe+10; LPY15], traceable signatures [Abe+11a], blind
signatures [Abe+10; FHS15; Fuc+16], policy-compliant signatures [BMW21;
BSW24] and anonymous credentials [Fuc11; Cam+15].

Informal Definition 6. (Groth-Sahai proofs [GS08]) GS proofs can
prove the satisfiability of some quadratic equations over bilinear groups.
This proof system is notably capable of proving the satisfiability of Pairing
Product Equations (PPE) of the following form:

n∏
i=1

e(Ai,Yi)
m∏

i=1
e(Xi, Bi)

m∏
j=1

n∏
i=1

γi,je(Xj ,Yi) = T ,

where X1, . . . ,Xm ∈ G1, Y1, . . . ,Yn ∈ G2 are the witnesses (w), and T ∈
GT , A1, . . . , An ∈ G1, B1, . . . , Bm ∈ G2 and Γ := {γi,j}j∈[1,m],i∈[1,n] ∈
Zm×n

p are constant public values, known as instances.
GS proofs are commit-and-prove systems, in which the prover proves
that a quadratic equation is satisfying the committed assignments. This
process involves two steps: initially, the prover commits to the hidden
values, and then, it validates their correctness through a pre-defined
relation.

Since their initial development, SPS schemes have seen numerous
enhancements in areas such as achieving shorter signatures [Abe+11b; Abe+14;
Gha16; Gha17b; AGO11; Abe+18a], proposing schemes under standard
assumptions [Abe+12; CDH12; HJ12; KPW15; LPY15; JR17], and tight
security reductions [Abe+17; JOR18; Gay+18; Abe+18b; Abe+19; CH20].
Despite all these advancements, Threshold Structure-Preserving Signatures
(TSPS) were missing in the literature. In [Cri+23], we define them and propose
the first TSPS and further enhance their design in [Mit+24].
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3.1 Technical Challenges Towards Building a TSPS

In the process of developing the first TSPS, we encountered a series of technical
challenges primarily due to the unique properties of these signatures. Next, we
focus on building a threshold-friendly SPS which can serve as a basis for the
design of TSPS. Once more, a digital signature is called SPS if,

1. The message, signature and verification keys are only source group
elements.

2. To verify a signature of this type, only group membership test and
evaluation of pairing product equations are allowed.

Note 8. While these two conditions are essential for a digital signature to
be classified as a SPS, the second condition emphasizes that no non-linear
operations, such as hash functions, are used during the verification phase.
We refer to this requirement as the third condition.

Given the list of some existing Threshold Signatures and their properties
in Table 6.1 on page 77, we recall the well-known BLS signatures [BLS01], which
operates within Type-III bilinear groups (cf. Definition 1 on page 13). Note
that BLS signatures can be configured in two ways: either emphasizing short
signatures, where the signatures are elements of the first source group, G1, and
the verification keys with the second source group, G2, or focusing on short
verification keys, the opposite configuration. In below, we specifically recall the
short signature approach.

BLS Signatures [BLS01]. Given a hash function1, H : {0, 1}∗ → G1, the BLS
signature scheme is defined over the message space M := {0, 1}∗ and consists
of the following PPT algorithms:

- pp← Setup(1κ): run BGgen(κ), output pp := (p,G1,G2,GT , G1, G2, e).

- (sk, vk)← KeyGen(pp): sample sk ←$ Z∗
p and set vk := [sk]2. Output

(sk, vk).

- σ ← Sign(pp, sk, m): compute σ := [sk]H(m). Output σ.

- 0/1 ← Verify(pp, vk, m, σ): if the Pairing-Product Equation (PPE),
e(H(m), vk) = e(σ, G2) holds, output 1 (accept); else, output 0 (reject).

1This is a hash-to-curve function that can be modeled in the random oracle model.
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Boldyreva [Bol03] proposed threshold BLS signature schemes. It is easy to
observe that the single private signing key sk can be divided into multiple shares,
ski, using Shamir secret sharing (cf. Section 2.6). To partially sign a message,
the signer computes σi := [ski]H(m). If there are enough partial signatures then
one can aggregate them and obtain σ := [sk]H(m) which is verifiable by the
general verification key vk.

Although the BLS signature can easily be extended to a threshold signature,
it does not meet the conditions for a threshold structure-preserving signature
due to its reliance on hash functions during the verification phase, which are
non-linear operations and fail to meet the third condition described in Note 3.1.
Meanwhile, designing a BLS-style signature without hash functions is not trivial,
as discussed in [Cri+23]. To construct a TSPS, the study turns to Pointcheval-
Sanders signatures [PS16], PS in short, as the starting point. PS16 signatures
also operate within Type-III bilinear groups, similar to BLS signatures.

Pointcheval-Sanders Signatures [PS16]. The PS16 signature scheme is
defined over the message space M of scalar messages m ∈ Z∗

p and consists
of the following PPT algorithms:

- pp← Setup(κ): run BGgen(κ), output pp := (p,G1,G2,GT , G1, G2, e).

- (sk, vk)← KeyGen(pp): sample x, y ←$ Z∗
p and set sk := (sk1, sk2) = (x, y)

and vk := (vk1, vk2) = ([x]2, [y]2). Output (sk, vk).

- σ ← Sign(pp, sk, m): sample r ←$ Z∗
p and compute σ := (h, s) = ([r]1, [x +

my]h). Output σ.

- 0/1 ← Verify(pp, vk, m, σ): if h ∈ G1, h ̸= 1G1 , and the pairing product
equation e(h, vk1 +[m]vk2) = e(s, G2) holds, output 1 (accept); else, output
0 (reject).

As formally proved in [PS16], PS signatures are EUF-CMA secure under the
PS assumption (cf. Definition 5 on page 15).

PS signatures are not structure-preserving because their message is a field
element, however in an SPS the message should be a source group element.
Ghadafi [Gha16] proposed an SPS from the PS signatures over Diffie-Hellman
message spaces.
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Informal Definition 7. (Diffie-Hellman Message Space [Fuc09;
Abe+10]) Over a Type-III bilinear group (cf. Definition 1), a message
pair (M1, M2) ∈ G1×G2 is called a Diffie-Hellman (DH) message spacea,
i.e., MDH if e(M1, G2) = e(G1, M2).

aAlso known as Dual message space.

Ghadafi SPS [Gha16]. The Ghadafi SPS is defined over the DH message space
MDH := G1 ×G2 and consists of the following PPT algorithms:

- pp← Setup(κ): run BGgen(κ), output pp := (p,G1,G2,GT , G1, G2, e).

- (sk, vk)← KeyGen(pp): sample x, y ←$ Z∗
p and set sk := (sk1, sk2) = (x, y)

and vk := (vk1, vk2) = ([x]2, [y]2). Output (sk, vk).

- σ ← Sign(pp, sk, M1, M2): sample r ←$ Z∗
p and compute σ := (h, s, t) =

([r]1, [r]M1 , [x]h + [y]s). Output σ.

- 0/1← Verify(pp, vk, σ, M1, M2): if h, s, t ∈ G1, h ̸= 1G1 , and both pairing
product equations e(h, M2) = e(s, G2) and e(t, G2) = e(h, vk1)e(s, vk2)
hold, output 1 (accept); else, output 0 (reject).

As mentioned in Table 6.2 on page 78, and the fact that the Ghadafi SPS meets
all the conditions to be considered a structure-preserving, it does not lead to a
non-interactive TSPS. This limitation primarily comes from the variation in
randomness sources among signers, rendering the secret reconstruction process
in one round of communication impossible.

By merging these three digital signatures, and acknowledging that the source
of randomness in BLS signatures is derived from hash functions which forms a
consistent basis for partial signatures, we now propose our threshold-friendly
SPS.
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Note 9. (SPS Impossibility Results) Abe et al. in [Abe+11b]
provide a list of impossibility results for SPS schemes that have directly
influenced the design of our TSPS schemes. The authors showed that
no unilateral SPS exists. Unilateral SPS are ones where signatures
exclusively contain elements of one source group. It is known that it is
impossible to even build unilateral SPS that are secure against random
message attacks [Abe+11b]. Additionally, it is shown that no SPS with
signatures of less than three group elements exists. However, in an
asymmetric bilinear setting and over a DH message space [Abe+10],
where the message space is dual in both source groups, Ghadafi [Gha16]
has shown that building a unilateral SPS is indeed possible. Finally, it
is also formally shown in [Abe+11b] that to check the validity of a SPS
signature at least two PPEs are required.

3.2 A Threshold-Friendly SPS

In [Cri+23], we propose the first TSPS over a new but restricted classes of
messages called indexed Diffie-Hellman (iDH) message space. We take Ghadafi
SPS and slightly modify it to make it threshold-friendly. To be more precise,
from Ghadafi SPS we can observe that the randomness is message agnostic
and each signer samples distinct randomnesses to partially sign the message.
However, we extend DH message spaces to iDH such that the randomness,
similar to BLS signatures, comes from a hash function (random oracle in the
security proof) instead.

Note 10. (Threshold-Friendly Digital Signatures) In this thesis, a
digital signature is called threshold-friendly if it avoids certain forbidden
operations in its signature elements. These restrictions include avoiding
the inversion of the secret signing key or randomness, r, in the groups,
e.g., [1/r]1, not combining the secret key and fresh randomness in a group
element, e.g., [rsk]1a, and excluding any powers of the secret signing key
or randomness in the groups for powers greater than one, e.g.,

[
sk2]

1.
These criteria help ensure the compatibility with non-interactive threshold
schemes.

aNote that this is nonlinear because, in the non-interactive threshold setting, each
signer samples distinct randomness during the partial signing phase, and this prevents
signature aggregation through Lagrange interpolation.
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As an example, Ghadafi’s SPS [Gha16] is not considered threshold-friendly.
This is because in its design, the last element of the signature involves the
multiplication of the secret signing key with fresh randomness, i.e. [rsk1]1 +
[rsk2]M1 . However, the BLS signature is a threshold-friendly digital signature.

The hash function in BLS signatures take the message m as input and this
might cause privacy issues when we want to build a threshold blind signature
using this scheme. Thus, we use a more general term of “index” instead of the
plain message as the input for this source of randomness. The indexing function
can be an injective function such as commitments. For the sake of generality
we can define the indexing function as f : M→ I, where M is the message
space and I is the index space.

Informal Definition 8. (Blind Signatures) A digital signature is called
a blind signature when during the signing phase the signer learns nothing
about the message. The signing process takes a blinded format of the
message, typically a commitment to the message. These signatures
include an additional unblinding algorithm, which transforms a signature
on the blinded message into a signature on the original message.

From DH to iDH. To bring the index to the message space, in [Cri+23] we
extend the Diffie-Hellman (DH) message spaces to indexed Diffie-Hellman (iDH),
defined as follows:

Informal Definition 9. (Indexed Diffie-Hellman
message space [Cri+23]) Given a Type-III bilinear group
(p,G1,G2,GT , G1, G2, e) ← BGgen(1κ), an index set I, and a random
oracle H : I → G1, MH

iDH is an indexed Diffie-Hellman (iDH) message
space if we have:

MH
iDH ⊂ {(id, M̃) | id ∈ I, m ∈ Zp, M̃ = ([m]H(id), [m]2) ∈ G1 ×G2} ,

where for all (id, M̃) ∈MH
iDH, (id′, M̃ ′) ∈MH

iDH, id = id′ ⇒ M̃ = M̃ ′.

Figure 6.4 on page 85 depicts how one can obtain an iDH from an integer
message m ∈ Zp. Next, we recall our proposed threshold-friendly SPS, called
message-indexed SPS, from [Cri+23], which is crucial for the design of our
TSPS.
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Our Proposed Threshold-Friendly SPS [Cri+23]. Our proposed threshold-
friendly SPS is called message-indexed SPS over the iDH message space MH

iDH,
and consists of the following PPT algorithms:

- pp← Setup(κ): run BGgen(1κ), output pp := (p,G1,G2,GT , G1, G2, e).

- (sk, vk)← KeyGen(pp): sample x, y ←$ Z∗
p and set sk := (sk1, sk2) = (x, y)

and vk := (vk1, vk2) = ([x]2, [y]2). Output (sk, vk).

- σ ← Sign(pp, sk, id, M1, M2): run H(id) to obtain h′. If e(h′, M2) =
e(M1, G2), compute σ := (h, s) = (h′, [x]h + [y]M1).

- 0/1 ← Verify(pp, vk, σ, M1, M2): if h, s ∈ G1, h ̸= 1G1 , and both
pairing product equations e(h, M2) = e(M1, G2) and e(s, G2) =
e(h, vk1)e(M1, vk2) hold, output 1 (accept); else, output 0 (reject).

In Section 6.4.4 on page 89, we further expand this SPS to support multi-
messages iDH denoted by MH

MiDH.

The above threshold-friendly SPS allows for partial re-randomization. As the
verification process does not depend on the hash function H, it is possible to
re-randomize the base h and M1 individually. It is straightforward to see that
verification remains valid even when the message and signature are randomized.

3.3 An Introduction to EUF-CiMA Security

Given the fact that the message and signature pairs in our proposed threshold-
friendly SPS are partially re-randomizable, its unforgeability proof under the
EUF-CMA security (cf. Definition 15 on page 21) is not trivial. This is mainly
because the forgery checks in EUF-CMA only cover the freshness of the queried
messages, however we need to check their freshness within their equivalence
classes to avoid trivial forgeries.

Informal Definition 10. (Equivalence-Class of iDH messages)
Motivated by the notion of unforgeability in Structure-Preserving
Signatures on Equivalence-Classes (SPS-EQ) [HS14; FHS19], the
equivalence class for each iDH message M̃ = (M1, M2) ∈ M̃H

iDH can
be defined as EQiDH(M1, M2) = {(Mr

1 , M2) | ∀ r ∈ Zp}.

Additionally, the Existential Unforgeability against Chosen indexed Message
Attack (EUF-CiMA) security limits the adversary to querying each index only
once. The primary reason for this restriction is that, in our message-indexed



42 THRESHOLD STRUCTURE-PRESERVING SIGNATURES

SPS scheme, the randomness is derived from the hash function, leading to
identical indices producing the same random basis h. However, if the adversary
were to query two different messages with the same index, it could lead to the
second trivial forgery.

The formal definition of the EUF-CiMA security notion can be found
in Definition 41 on page 86.

GPS3 Assumption. Given the fact that our proposed SPS scheme is defined
over iDH message spaces, we introduce an extension to the GPS2 assumption
(cf. Definition 6), called the GPS3 assumption. This assumption generalizes
GPS2 to dual message spaces iDH by allowing that the message consists of both
source groups of G1 and G2. While this modification caused several challenges
in the security proof, it enabled us to circumvent one of the SPS impossibility
results, particularly avoiding the constraint of being a unilateral signature.

The formal definition of the GPS3 assumption can be found in Definition 39 on
page 82. Later in Theorem 1, we prove under the hardness of (2, 1)-DL problem
(cf. Definition 3) that this assumption holds in the AGM and ROM. Figure 6.7
on page 88 shows the relationship between these assumptions and the theorem.

3.4 TSPS over iDH Message Spaces

Given the formal definition of Threshold Signatures (TS) (cf. Definition 16
on page 23), next we recall the proposed TSPS over iDH message spaces
from [Cri+23].

- pp← Setup(κ): run BGgen(1κ), output (p,G1,G2,GT , G1, G2, e).

- ({ski, vki}i∈[1,n], vk) ← KeyGen(pp, n, t): sample x, y ←$ Zp and run
{xi}i∈[1,n] ← Share(x,Zp, n, t) and {yi}i∈[1,n] ← Share(y,Zp, n, t). output
{ski := (xi, yi)}i∈[1,n] and {vki := (vk1i, vk2i) = ([xi]2, [yi]2)}i∈[1,n] along
with vk := ([x]2, [y]2).

- Σi ← ParSign(pp, ski, M): parse M := (id, M1, M2) and run H(id) to
obtain basis h′. If e(h′, M2) = e(M1, G2), compute Σi := (h, si) =
(h′, [xi]h + [yi]M1). Output Σi.

- 0/1 ← ParVerify(pp, vki, M, Σi): if h, si ∈ G1, h ̸= 1G1 , and both PPEs
e(h, M2) = e(M1, G2) and e(si, G2) = e(h, vk1i)e(M1, vk2i) hold, output 1
(accept); else, output 0 (reject).
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- Σ← CombineSign(pp, T, {Σi}i∈T ): if for all i ∈ T the basis h is the same
and all partial signatures Σi pass the partial verification algorithm, output
Σ := (h,

∏
i∈T [λi]si

).

- 0/1 ← Verify(pp, vk, M, Σ): if h, s ∈ G1, h ̸= 1G1 , and both PPEs
e(h, M2) = e(M1, G2) and e(s, G2) = e(h, vk1)e(M1, vk2) hold, output
1 (accept); else, output 0 (reject).

This TSPS scheme is TS-UF-0 secure against threshold EUF-CiMA
unforgeability notion (cf. Definition 46 on page 93) based on the unforgeability
of the proposed message indexed SPS discussed in Section 3.2 and static
adversaries.

However, this TSPS scheme is the shortest possible scheme based on the SPS’s
impossibility results of [Abe+11b]. Its unforgeability is guaranteed based on a
weak security notion of TS-UF-0 and under an interactive assumption. Next,
we will briefly outline the key findings of the subsequent research and show how
it resolves these issues.

3.5 TSPS from Standard Assumptions

The design of the initial TSPS was inspired by Ghadafi’s SPS. However, for
building a TSPS capable of handling arbitrary group vectors and being proved
based on standard assumptions, we shifted our perspective and chose to build
a TSPS starting from the SPS scheme by Kiltz et al. [KPW15], KPW15 in
short. This SPS combines a one-time SPS with a randomized Pseudo-Random
Function (PRF), offering a new basis for our construction. This approach differs
from our initial starting point, enabling us to solve the open problems discussed
in [Cri+23].

Informal Definition 11. (Pseudo-Random Functions
(PRF) [GGM84]) A PRF produces random looking outputs in
a deterministic way. These functions take a public input along with a
secret key and generate an output in such a way that the output seems
random, even though it is generated under a repeatable function.

KPW15 SPS [KPW15]. Given the formal definition of Digital Signatures
(DS) (cf. Definition 13 on page 20), the KPW15 SPS is defined over arbitrary
group vectors of G1 of size ℓ, i.e., M := Gℓ

1, and defined as follows:

- pp← Setup(κ): run BGgen(1κ). Output pp := (p,G1,G2,GT , G1, G2, e).
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- (sk, vk)← KeyGen(pp): sample A, B ←$ Dk (cf. Definition 8 on
page 17), K ←$ Z(ℓ+1)×(k+1)

p and U, V ←$ Z(k+1)×(k+1)
p . Set sk :=(

K,
[
B⊤U

]
1 ,

[
B⊤V

]
1 , [B]1

)
and vk := ([A]2 , [UA]2 , [VA]2 , [KA]2).

Output (sk, vk).

- σ ← Sign(pp, sk, [m]1): sample random vector r ←$ Zk
p and

random integer τ ←$ Zp. Compute σ := (σ1, σ2, σ3, σ4) :=([(
1 m⊤)]

1 K + r⊤ [
B⊤(U + τV)

]
1 ,

[
r⊤B⊤]

1 ,
[
r⊤B⊤τ

]
1 , [τ ]2

)
. Out-

put σ.

- 0/1← Verify(pp, vk, σ, [m]1): if the following PPEs hold output 1 (accept);
else, output 0 (reject).

1. e(σ1, [A]2) = e
([(

1 m⊤)]
1 , [KA]2

)
e(σ2, [UA]2)e(σ3, [VA]2) ,

2. e(σ2, σ4) = e(σ3, G2) ·

The EUF-CMA security of this SPS is proved under the hardness of the Kernel
Matrix Diffie-Hellman (kerMDH) assumption (cf. Definition 10 on page 18)
and the MDDH assumption (cf. Definition 9 on page 18) which are known as
standard assumptions.

Meanwhile, to make the above SPS threshold-friendly we need to make a few
small modifications to the KPW15 SPS. Motivated by seminal work of Kiltz
and Wee [KW15], these adjustments involve shifting certain elements from the
secret and verification keys to public parameters created during the setup phase.
Additionally, to avoid non-linear operations in the signature components, the
tag τ is derived from a Collision Resistant Hash Function (CRHF) applied to
the message [m]1, rather than being randomly sampled by the signer. This
approach streamlines the structure to support threshold capabilities and still
remain secure. The modified version of KPW15 SPS is defined as follows:

Modified KPW15 SPS [KPW15]. The modified KPW15 SPS is defined over
the same message space M := Gℓ

1, and it assumes the existence of a CRHF,
H : {0, 1}∗ → Zp; it consists of the following PPT algorithms:

- pp ← Setup(κ): run BG ← BGgen(1κ), sample A, B ←$

Dk and U, V ←$ Z(k+1)×(k+1)
p . Set and output pp :=(

BG, [A]2 , [UA]2 , [VA]2 ,
[
B⊤U

]
1 ,

[
B⊤V

]
1 , [B]1

)
.

- (sk, vk)← KeyGen(pp): sample K ←$ Z(ℓ+1)×(k+1)
p and set sk := K and

vk := [KA]2. Output (sk, vk).

- σ ← Sign(pp, sk, [m]1): sample the random vector r ←$ Zk
p.

Obtain τ := H([m]1), and compute σ := (σ1, σ2, σ3, σ4) :=
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([(
1 m⊤)]

1 K + r⊤ [
B⊤(U + τV)

]
1 ,

[
r⊤B⊤]

1 ,
[
r⊤B⊤τ

]
1 , [τ ]2

)
. Out-

put σ.

- 0/1← Verify(pp, vk, σ, [m]1): if the following PPEs hold output 1 (accept);
else, output 0 (reject).

1. e(σ1, [A]2) = e
([(

1 m⊤)]
1 , vk

)
e(σ2, [UA]2) e(σ3, [VA]2) ,

2. e(σ2, σ4) = e(σ3, G2) ·

This SPS is considered threshold-friendly as it avoids any forbidden operations
in its signature elements. It serves as basis for the first TSPS with arbitrary
group element messages proved in the standard model. We recall this TSPS
below; for an in-depth details of this design, we refer the readers to Section 7.3.3
on page 118.

A new TSPS based on standard assumptions [Mit+24]. The first TSPS
under standard assumptions is defined over the message space M := Gℓ

1 and
assumes the existence of a CRHF, H : {0, 1}∗ → Zp; it consists of the following
PPT algorithms:

- pp ← Setup(κ): run BG ← BGgen(1κ), sample A, B ←$

Dk and U, V ←$ Z(k+1)×(k+1)
p . Set and output pp :=(

BG, [A]2 , [UA]2 , [VA]2 ,
[
B⊤U

]
1 ,

[
B⊤V

]
1 , [B]1

)
.

- ({ski, vki}i∈[1,n], vk) ← KeyGen(pp, n, t): sample K ←$ Z(ℓ+1)×(k+1)
p and

run K1, . . . , Kn ← Share(K,Z(ℓ+1)×(k+1)
p , n, t). Set vk := [KA]2 and

(ski, vki) := (Ki, [KiA]2).

- Σi ← ParSign(pp, ski, [m]1): sample the random vector ri ←$ Zk
p

and obtain τ := H([m]1). Compute Σi := (σ1, σ2, σ3, σ4) :=([(
1 m⊤)]

1 Ki + r⊤
i

[
B⊤(U + τV)

]
1 ,

[
r⊤

i B⊤]
1 ,

[
r⊤

i B⊤τ
]

1 , [τ ]2
)
.

Output Σi.

- 0/1← ParVerify(pp, vki, [m]1 , Σi): parse Σi := (σ1,i, σ2,i, σ3,i, σ4,i). If the
following PPEs hold output 1 (accept); else, output 0 (reject).

1. e(σi,1, [A]2) = e
([(

1 m⊤)]
1 , vki

)
e(σi,2, [UA]2)e(σi,3, [VA]2) ,

2. e(σi,2, σi,4) = e(σi,3, G2) ·

- Σ ← CombineSign(pp, T, {Σi}i∈T ): parse Σi = (σi,1, σi,2, σi,3, σ4) for all
i ∈ T . Compute the Lagrange polynomials λi for i ∈ T . Output
Σ := (σ̂1, σ̂2, σ̂3, σ̂4), where σ̂1 :=

∑
i∈T

λiσi,1 =
[(

1 m⊤) ∑
i∈T

λiKi

]
1

+
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∑
i∈T

λir⊤
i

[
B⊤(U + τV)

]
1, σ̂2 :=

∑
i∈T

λiσi,2 =
[ ∑

i∈T

λir⊤
i B⊤

]
1

=
[
r⊤B⊤]

1,

σ̂3 :=
∑
i∈T

λiσi,3 =
[ ∑

i∈T

τλir⊤
i B⊤

]
1

=
[
τr⊤B⊤]

1 and σ̂4 := σ4.

- 0/1← Verify(pp, vk, Σ, [m]1): if the following PPEs hold output 1 (accept);
else, output 0 (reject).

1. e(σ1, [A]2) = e
([(

1 m⊤)]
1 , [KA]2

)
e(σ2, [UA]2) e(σ3, [VA]2) ,

2. e(σ2, σ4) = e(σ3, G2) ·

As formally proved in Theorem 6 on page 126, this TSPS is TS-UF-1-secure
against static adversaries (cf. Definition 54 on page 117) under the hardness
of the Dk-MDDH assumption in G1 (cf. Definition 9 on page 18) and the Dk-
KerMDH assumption in G2 (cf. Definition 10 on page 18). In Theorem 7 on
page 128, we show TS-UF-1-security against adaptive adversaries.

However, achieving these advanced security features results in certain trade-offs,
such as increased sizes of signatures and verification keys, along with more
PPEs during the verification phase. Table 7.2 on page 109 compares these two
TSPS schemes.

3.6 Application to Threshold-Issuance Anonymous
Credential (TIAC)

Safeguarding our digital identities is shifted from the basic username and
password combinations to sophisticated multi-factor authentication mechanisms.
Authentication ensures that individuals accessing online services are who they
claim to be, and it forms the foundation of trust in digital interactions. However,
existing authentication methods that involve human factors such as fingerprint
scanning, facial recognition and more, allow service providers (verifiers) to
gather and exchange user-specific data, creating comprehensive user profiles
without the user’s consent. Anonymous Credentials (AC) were introduced
by Chaum [Cha85], as a now well-studied cryptographic tool which enables a
reliable and privacy-preserving authentication mechanism.

The “ACS protocol”2, Idemix3, and U-Prove4 are some prime examples of
open-source AC systems. Although there are multiple ways to design an

2https://github.com/facebookresearch/acs.
3https://github.com/IBM/idemix.
4https://www.microsoft.com/en-us/research/project/u-prove/.

https://github.com/facebookresearch/acs
https://github.com/IBM/idemix
https://www.microsoft.com/en-us/research/project/u-prove/
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AC, a prominent approach is to use re-randomizable signatures [CL03; CL04;
Lib+16; PS16]. Additionally, there are similar techniques such as redactable
signatures [Cam+15; San20], and equivalence class signatures [HS14; FHS19;
CL19; HS21; CLP22] which yields more efficient designs.

Example 10. To better understand AC systems, consider a simple
scenario where a user possesses a set of attributes certified by a central
authority, such as being under 26 years old ([age] < “26”), affiliated
with KU Leuven ([affiliation] = “KU Leuven”), and being a PhD student
([role] = “PhD_Student”). Imagine this user needs to show it is under
a certain age to be eligible for a public transport discount, e.g. [age] <
“26”.
Now, consider a different situation where the same user wants to prove
its status as a PhD student at KU Leuven, without disclosing its age, to
register a conference with student rate ([affiliation] = “KU Leuven” &
[role] = “PhD_Student”).

In AC, selective disclosures of user information is important; it enables to
reveal specific details only when necessary to meet particular requirements.
Additionally, unlinkability ensures that engaging in multiple interactions with
either the same or different verifiers remains untraceable. This is crucial because
failing to do so could lead to the de-anonymization of users within the system,
potentially compromising their privacy. To achieve this, most of the existing
AC systems in the literature rely on Non-Interactive Zero-Knowledge (NIZK)
(see Section 2.7 on page 26).

In the context of AC systems, NIZK proofs enable users to prove their knowledge
of a credential, i.e., a valid digital signature on a specific subset of certified
attributes, without revealing the credential itself. The zero-knowledge property
of NIZK proofs ensures that during the authentication phase and even when
observing multiple requests, verifier(s) cannot extract any extra information
beyond the validity of the statements. It is important to note that while NIZK
proofs offer unique and valuable features, they can introduce computational
overheads in the system, potentially slowing down the authentication process.
Exploring ways to reduce dependency on NIZK proofs or even eliminate their use
altogether is an interesting field of study, as it may lead to further improvements
in the system’s performance and functionality.

On the other hand, AC constructions are prone to compromise since they rely
on a single credential issuer authority such as Google, Meta or governments, to
manage user identities, which is a single point of failure. Consequently, there
is a growing attention towards developing decentralized AC systems, such as
Threshold-Issuance Anonymous Credential (TIAC), called Coconut [Son+19],
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that enables a subset of credential issuers to jointly generate credentials. This
improves the availability and also solves the single point of failure problem of
centralized AC schemes.

Example 11. (Fake Vaccine Certificates) A notable example of
credential fraud occurred during the COVID-19 pandemic, with some
entities in various countries issuing false vaccination certificates [Geo+23].
This highlights the challenges and risks associated with managing
certification processes.

Coconut, and some follow-up works such as PEReDi [KKS22], Coconut++ [RP22;
RP23] and PARScoin [SKK23], rely on a threshold version of PS
signatures [PS16] (cf. Section 3.1 on page 37) and distributes the signing
phase among n credential issuers where a cooperation of any t of them is
required to generate a valid credential. However, as we discuss in Section 6.6
on page 99, we can replace this threshold signature with our proposed TSPS
schemes. By retaining the structure of the scheme and avoiding structure-
destroying primitives such as hash functions, our suggested TSPS is compatible
with Groth-Sahai (GS) proofs [GS08], which makes them an attractive building
block for many more complex (privacy-preserving) cryptographic protocols.
Since GS proofs are straight-line extractable, they are particularly interesting
for constructions targeting security in composable security frameworks such as
the Universally Composable (UC) framework [Can01].

Informal Definition 12. (Universally Composable (UC) framework)
A UC protocol [Can01] operates without interfering with other protocols
and can be arbitrarily composed with other protocols. In simpler terms,
a protocol Ψ is considered UC-secure if you cannot tell the difference
between interacting with it and interacting with an ideal process that
performs the same task perfectly. Consider an adversary A attempting
to interfere with the protocol and the participating parties. In an ideal
scenario, this adversary and some dummy parties would interact perfectly
with an ideal functionality, let’s call it FΨ. Hence for a protocol to be
truly UC-secure, no one should be able to figure out if they are dealing
with the real-world protocol or this perfect, idealized version. Formally,
this means that the outcomes of these two scenarios, i.e. the ideal world
and real world should look identical for all environments Z.

Note that proving the knowledge of a PS-style signature requires Schnorr-
style proofs. The Fiat-Shamir transform is typically used to make these proof
systems non-interactive in the random oracle model. However, to achieve a
proof of knowledge, the extractor must be able to rewind the adversarial prover.
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This approach, known as a non-black-box technique, compromises concurrent
composability and UC security. As shown by Rial and Piotrowska [RP22], for
Coconut to be proven in the UC framework, we need to either use the Fischlin
transform or traditional black-box extraction techniques, such as encrypting
the witness. The primary obstacles to using the Fischlin transform in practice
are its computational cost and implementation complexity. However, very
recently, [CL24] evaluated the running time of this transform and suggested
several optimizations. Despite these improvements, it still presents an additional
overhead compared to proof systems that support straight-line extractability,
such as GS proofs, which inherently support black-box extraction.

In summary, the introduced TSPS schemes, especially the later scheme that
supports arbitrary group vector messages [Mit+24], can serve as a drop-in
replacement to current SPS schemes. Consequently, any complex system such
as AC, e-cash, electronic voting and others designed using these schemes can
be instantiated with this TSPS. It then reduces the risk of key compromise and
additionally make the output of the system GS proofs-friendly. This capability
enables achieving UC security with minimal modifications in the initial design.
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CHAPTER

4
Universal and Updatable
NIZKs: Security & Trust

A hair divides what is False and True.
Omar Khayyam

Content Source:

1. K. Baghery, A. Mertens, and M. Sedaghat. “Benchmarking the Setup of
Updatable zk-SNARKs”. In: 8th International Conference on Cryptology
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Aly and M. Tibouchi. Vol. 14168. Lecture Notes in Computer Science.
Springer, 2023, pp. 375–396. doi: 10.1007/978-3-031-44469-2_19

Contributions: In this paper, my contributions revolved around addressing
technical challenges to achieve the main achievements and novel ideas.
Additionally, I assisted the co-authors on forming the main PPE
checks for the setup of existing universal and updatable zk-SNARKs.
Furthermore, I participated in developing an early version of proof-of-concept
implementations.

2. K. Baghery and M. Sedaghat. “Tiramisu: Black-Box Simulation
Extractable NIZKs in the Updatable CRS Model”. In: Cryptology and
Network Security (CANS). ed. by M. Conti, M. Stevens, and S. Krenn.
Cham: Springer International Publishing, 2021, pp. 531–551. isbn: 978-3-
030-92548-2. doi: 10.1007/978-3-030-92548-2_28

Contributions: In this paper, I mainly worked on the definition of a novel
primitive, called the key-updatable public key encryption scheme and its
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this paper. Additionally, I developed an open source proof-of-concept for the
proposed schemes.
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As discussed in the previous chapters, Non-Interactive Zero-Knowledge (NIZK)
proofs enable a prover to reveal nothing beyond the truth of a statement
to a verifier. Non-interactivity implies that the prover can generate a single
proof element π without requiring any challenge or response from the verifier.
Conversely, the verifier can check the proof’s validity using only the proof
itself, i.e. π, and certain public parameters known as Common Reference String
(CRS).1

Note 11. (CRS, URS and SRS) In the rest of this thesis, we primarily
use the term of Structured Reference String (SRS) instead of Common
Reference String (CRS). However, as noted in [Ben+22], the CRS covers
a broader category, representing any output obtained from the setup
algorithm, in two possible formats: Uniform Random String (URS) and
Structured Reference String (SRS). URS refers to any random output
obtained from a specific distribution without including of any secrets
during its generation which yields to a transparent setup. SRS specifically
denotes an output that involves a secret trapdoor during its creation
either in universal or non-universal setting.

As formally defined in Definition 19, a NIZK is designed to fulfill several
security properties: 1 Completeness ensures that an honest prover can always
successfully convince any verifier. 2 Soundness prevents a dishonest prover
from convincing an honest verifier on wrong statements. 3 Zero-Knowledge
ensures that a proof, created honestly, does not reveal any information about
the hidden witness.

Stronger Notions of Soundness. Although completeness and zero-knowledge
are well-defined, in some applications the soundness definition (cf. Definition 22
on page 29) is not sufficient. For this aim, some stronger variations for soundness
definition have been discussed: 4 Simulation Soundness ensures a dishonest
prover cannot convince an honest verifier on a fake proof even after observing a
number of simulated proofs. 5 Knowledge Soundness (KS) (cf. Definition 23
on page 29) guarantees that a dishonest prover cannot convince an honest
verifier if it does not know a witness for the given statement. 6 Simulation
Extractability (SE) (cf. Definition 24 on page 30), also known as Simulation
Knowledge Soundness, strengthens the previous security notions by ensuring a
dishonest prover cannot convince an honest verifier, even after observing many

1Note that another family of NIZKs are defined in the Random Oracle Model (ROM),
however in this thesis we only focus on NIZKs in the Structured Reference String (SRS)
model.



NIZK IN THE UNIVERSAL AND UPDATABLE SRS MODEL 53

simulated proofs, unless it knows a valid witness for the given statement in two
possible scenarios: Black-Box and non-Black-Box.

NIZKs with subverted SRS. As discussed in Chapter 1, (pre-processing)
NIZK requires a trusted setup phase. Particularly, constructing zk-SNARKs
in the SRS model necessitates both the prover and verifier to trust the SRS
generator. To address this trust concern, in 2015, Ben Sasson et al. [Ben+15]
introduced an efficient Multi-Party Computation (MPC) protocol capable of
computing a SRS for some pairing-based zk-SNARKs. In this case, both prover
and verifier need to trust only 1 out of n parties, rather than relying entirely
on a single party, where n denotes the number of participating parties in the
MPC protocol [BGM17; BGG19; Abd+19]. In a separate research direction,
Bellare et al. [BFS16] examined the security of NIZK arguments in the event of
subverted SRS. They expanded the security properties of NIZKs in the following
way: 7 Subversion Soundness (Sub-SND) guarantees the protocol’s soundness
even if A manipulates the SRS, while 8 Subversion Zero-Knowledge (Sub-ZK)
ensures Zero-Knowledge (ZK) even if A manipulates the SRS.

Bellare et al. [BFS16] show an impossibility result: achieving both Sub-ZK
(Zero-Knowledge without reliance on a third party) and Black-Box Knowledge
Soundness (KS) simultaneously is impossible.

4.1 NIZK in the Universal and Updatable SRS
Model

At CRYPTO’18, Groth et al. [Gro+18] introduced a new family of NIZKs known
as NIZK in the universal and updatable SRS model. In these constructions,
universality allows for the creation of SRS components without knowing the
circuit (circuit agnostic), while the feature of updatability extends the MPC-
based setup ideas such that it permits continued participation in the setup
phase and ensures the engagement of a wide range of contributors. In addition,
the authors extend the security properties of NIZKs by considering the scenarios
where the SRS components could be set up or updated maliciously. However, the
Groth et al. construction results in a SRS size that is quadratic in the maximum
number of constraints in a circuit; many follow-up works such as Sonic [Mal+19],
Plonk [GWC19], Marlin [Chi+19], Lunar [Cam+21], Basilisk [RZ21], and
Counting Vampires [LSZ22] reduced this to linear size.
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Note 12. (Updatable NIZKs) The family of NIZKs in the universal
and updatable SRS model is valuable due to their dual attributes of
universality and the ability to update the SRS components. In the
subsequent sections of this thesis, our primary emphasis lies on exploring
this updatability feature and we usually refer to them as updatable
NIZKs.

In such a setting, one may also need to modify the properties in order to capture
the updatability feature.

9 Updatable Knowledge Soundness (Upd-KS) guarantees KS as long
as the initial SRS or one of SRS updates is performed honestly, and
10 Updateable Zero-Knoweldge (Upd-ZK) ensures Zero-Knowledge (ZK) under

similar conditions. 11 Updateable non-Black-Box Simulation Extractability
(Upd-nBB-SE) and Updateable Black-Box Simulation Extractability (Upd-BB-
SE) ensure Simulation Extractability (SE) with non-Black-Box and Black-Box
extractions, respectively, such that either the initial SRS or at least one of
the updates are computed, honestly. For the sake of completeness, below
we overview the formal definition of NIZKs in the universal and updatable
SRS model, along with their main security properties defined by Groth et
al. [Gro+18].

Definition 28. (NIZK in the Universal and Updatable SRS model [BMS23,
Section 4] [Gro+18]). More formally, a NIZK in the updatable SRS model for
R consists of the following PPT algorithms:

• (s⃗rs0, Πs⃗rs0 , t⃗s0, t⃗e0) ← Gensrs(κ, R): given security parameter κ and
R ∈ R(1κ), sample the trapdoors t⃗s′

0 and t⃗e′
0 and then generate s⃗rs0 along

with Πs⃗rs0 as a proof for its well-formedness. Then, store the trapdoors
associated with s⃗rs0 including the simulation trapdoor t⃗s0 := t⃗s′

0, and the
extraction trapdoor t⃗e0 := t⃗e′

0. Finally, return (s⃗rs0, Πs⃗rs0) as the output.

• (s⃗rsi, Πs⃗rsi
, t⃗si, t⃗ei) ← SU(R, s⃗rsi−1): given the tuple of R and the most

recent SRS, s⃗rsi−1, where s⃗rsi−1 is an input SRS, return the pair of
(s⃗rsi, Πs⃗rsi

), where s⃗rsi is the updated SRS and Πs⃗rsi
is a proof of correct

updating. Note that after each update, the simulation and extraction
trapdoors are updated, for instance t⃗si := t⃗si−1 + t⃗s′

i, and t⃗ei := t⃗ei−1 + t⃗e′
i.

• (⊥, 1)← SV(s⃗rsi, Πs⃗rsi
): given a potentially updated s⃗rsi, and Πs⃗rsi

return
either ⊥ on the condition that the s⃗rsi is incorrectly formed or 1.
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• (π,⊥) ← Prove(R, s⃗rsi, x, w): for SV(s⃗rsi, Πs⃗rsi
) = 1, given the tuple of

(R, s⃗rsi, x, w), such that (x, w) ∈ R, output an argument π. Otherwise,
return ⊥.

• (0, 1) ← Verify(R, s⃗rsi, x, π): for SV(s⃗rsi, Πs⃗rsi
) = 1, given the set of

parameters as (R, s⃗rsi, x, π), return either 0 (reject π) or 1 (accept π).

• (π) ← Sim(R, s⃗rsi, t⃗si, x): for SV(s⃗rsi, Πs⃗rsi
) = 1, given the tuple

(R, s⃗rsi, t⃗si, x), where t⃗si is the simulation trapdoor associated with the
latest SRS, namely s⃗rsi, output a simulated argument π.

Below we recall various security requirements that a NIZK argument can satisfy
in the updatable SRS model [Gro+18]. Note that in the following definitions, i is
the index of the final update, and w.l.o.g, we assume the initial SRS generation
is done honestly while A can maliciously update it to {s⃗rsj}i

j=1. We denote the
malicious updater by Sub.

Definition 29 (Updatable Completeness). A NIZK with Updatable SRS is
said to be updatable complete for R, if for all R ∈ R(1κ), and (x, w) ∈ R, we
have,

Pr


(s⃗rs0, Πs⃗rs0)← Gensrs(R),

({s⃗rsj , Πs⃗rsj
}i

j=1)← A(R, s⃗rs0), {SV(s⃗rsj , Πs⃗rsj
) = 1}i

j=0 :

(x, π)← Prove(R, s⃗rsi, x, w) ∧ Verify(R, s⃗rsi, x, π)

 ≥ 1− ν(κ) .

Definition 30 (Updateable Zero-Knoweldge (Upd-ZK)). A NIZK with
Updatable SRS meets the Updateable Zero-Knoweldge (Upd-ZK) for R, if for
all R ∈ R(1κ), any subvertor Sub, and computationally unbounded A, we have
|ε0 − ε1| ≤ ν(κ), where

εb := Pr


((s⃗rs0, Πs⃗rs0) ∥ t⃗s0 := t⃗s′

0)← Gensrs(R), rs ←$ RND(Sub),

(({s⃗rsj , Πs⃗rsj
}i

j=1, ξSub) ∥ {t⃗s′
j}i

j=1)← (Sub ∥ExtSub)(s⃗rs0, Πs⃗rs0 , rs) :

{SV(s⃗rsj , Πs⃗rsj
) = 1}i

j=0 ∧ A
Os⃗rsi,t⃗si,b(·,·)(R, ξSub, s⃗rsi) = 1

 .

The simulation oracle Os⃗rsi,t⃗si,b(·, ·) for b ∈ {0, 1} is defined in Figure 4.1.

We skip recalling the definition of updatable knowledge soundness and proceed
directly to discussing the Updateable non-Black-Box Simulation Extractability
(Upd-nBB-SE) property which plays a central role in the remaining parts of
this chapter.
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Os⃗rsi,t⃗si,b(x, w) :
1 : if (x, w) ̸∈ R return ⊥ else :

2 : if b = 0 : return π ← Prove(R, s⃗rsi, x, w)

3 : else return Sim(R, s⃗rsi, x, t⃗si := {t⃗s′
j}i

j=0)

Figure 4.1: Simulation Oracle for Updatable Zero-Knowledge property.

Definition 31 (Updateable non-Black-Box Simulation Extractability
(Upd-nBB-SE) [ARS20]). A NIZK satisfies Upd-nBB-SE for R, if for every PPT
A and any subvertor Sub, there exists an efficient extractor ExtA, and we have,

Pr



(s⃗rs0, Πs⃗rs0)← Gensrs(R), rs ←$ RND(Sub),

({s⃗rsj , Πs⃗rsj
}i

j=1, ξSub)← Sub(s⃗rs0, Πs⃗rs0 , rs),

{SV(s⃗rsj , Πs⃗rsj
) = 1}i

j=0, rA ←$ RND(A),

((x, π) ∥w)← (AOs⃗rsi,t⃗si
(.) ∥ExtA)(R, ξSub, s⃗rsi; rA) :

(x, π) ̸∈ QS ∧ (x, w) ̸∈ R ∧ Verify(R, s⃗rsi, x, π)


≤ ν(κ) ,

where the simulation oracle Os⃗rsi,t⃗si
(·) is defined in Figure 4.2.

Os⃗rsi,t⃗si
(x) :

1 : π ← Sim(R, s⃗rsi, x, t⃗si := {t⃗s′
j}i

j=0)

2 : QS ← QS ∪ {(x, π)}

3 : return π

Figure 4.2: Simulation Oracle for Updatable Simulation Extractability property.

4.2 On the Setup of Updatable zk-SNARKs

Considering the formal definition of standard NIZKs (cf. Section 2.7 on page 26)
and NIZKs with universal and updatable SRS (cf. Definition 28 on page 54), it
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is easy to observe that the latter schemes include two additional algorithms:
SRS update, i.e. SU and SRS verify, i.e. SV. In [BMS23], it was noted that
none of the subsequent universal and updatable zk-SNARKs, except for Groth
et al.’s initial work [Gro+18], define these algorithms. The authors often seem
content with a single sentence from Groth et al. [Gro+18], which suggests that
since the SRS consists of monomials, it can be demonstrated to be updatable.
However, we customized them and conducted a thorough comparison to assess
their efficiency. Next, we briefly summarize the main findings and techniques
used.

SRS Update & SRS Verify algorithms. W.l.o.g. the SRS in most of the
universal and updatable zk-SNARKs over bilinear groups except the initial
work typically consist of monomials of the form {[αk]ζ}k∈[0,ℓ], where α ∈ Zp,
ζ ∈ {1, 2}, and ℓ ∈ N. To update and verify the integrity of this set of monomials,
one can randomly sample an integer τ ←$ Z∗

p and compute {τk[αk]ζ}k∈[0,ℓ]. The
new (updated) randomness for these monomials can be denoted by α′ := τα,
and we have {[α′k]ζ}k∈[0,ℓ].

However, a malicious updater (i.e., subvertor) can assert any random group
elements as the set of updated monomials. Given the hardness of the DDH
problem in both G1 and G2, it is not possible to verify whether this party has
executed the update phase correctly. Therefore, we need to require each updater
to provide a proof of the form of Π = ([τ ]1, [τ ]2) to confirm its knowledge of the
randomizing factor τ . This is crucial because, in the security definitions of NIZK
proofs in the updatable SRS model, the extractor must be capable of extracting
the trapdoors. For instance, in Definition 30 on page 55, the extractor ExtSub
should be able to extract {t⃗s′

j}i
j=0 in order to execute the simulation oracle

defined in Figure 4.1.

By following this approach, one can update the random terms while ensuring
their secrecy of the final randomness as long as at least one participant behaves,
honestly. However, to meet the security requirements discussed for updatable
NIZKs (cf. Definition 28 on page 54), the randomness used in the malicious
updates must be extractable. For this case, the verifier checks the consistency
of updates by running the SRS verify algorithm.

Batched Verification Techniques. Suppose a verifier needs to verify ℓ distinct
PPEs of the form e(Aj , H2) = e(H1, Bj), where j ∈ [0, ℓ] and H1 ∈ G1, H2 ∈
G2 are fixed source group elements. Using the standard batching techniques
from [BGR98], we can batch all these equations to a single pairing equation of
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the following form,

e

∑
j∈ℓ

[rj ]Aj , H2

 = e

H1,
∑
j∈ℓ

[rj ]Bj

 ,

where the verifier samples rj ←$ Zp for all j ∈ [0, ℓ].

This technique works because of the bilinearity property of pairings, as outlined
in Definition 1. According to the DeMillo-Lipton-Schwartz-Zippel lemma, the
soundness error of this batching method is 1/p. In simpler terms, there exists
a small possibility that the batched equation holds, while at least one of the
original pairing equations is invalid.

Definition 32 (DeMillo-Lipton-Schwartz-Zippel Lemma2). Given a non-zero
polynomial F (x1, . . . , xn) ∈ Zp[X1, . . . , Xn] with total degree d ≥ 0, and a finite
and non-empty subset S ⊂ Zp we have,

Pr[∀ r1, . . . , rn ←$ S : F (r1, . . . , rn) = 0] ≤ d

|S|
·

In this scenario, we manage to decrease the number of pairing operations from
2ℓ to just 2. Despite the fact that the verifier still needs to compute ℓ source
group exponentiations in G1 and G2, the cost of source group exponentiations
is much lower compared to pairing operations. Table 4.1 compares the basic
operations on the widely-used BN-254 curve using the Charm-Crypto library3

ran on the HP Zbook 15 G6 laptop with 16 GB of RAM, an Intel Core i7-9850H
CPU 2.60 GHz. The reported execution times are averaged over 100 runs
without preprocessing.

Table 4.1: Cost of Basic Group Operations. Mi and Ei denote multiplication
and exponentiation costs in source groups Gi for i ∈ {1, 2, T}, and P denotes
pairing cost.

Operation M1/M2/MT E1/E2/ET P
Time 3.3/7.1/21.4 (µs) 0.9/1.6/4.8 (ms) 18.5 (ms)

To further enhance the efficiency in [BMS23], we took the approach to sample
the randomnesses rj from smaller subsets such as {0, 1}50 instead of sampling

2Also known as the Schwartz-Zippel lemma. For a detailed history of this lemma, we refer
the readers to https://rjlipton.wpcomstaging.com/2009/11/30/the-curious-history-of-
the-schwartz-zippel-lemma/.

3https://github.com/JHUISI/charm.

https://rjlipton.wpcomstaging.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/
https://rjlipton.wpcomstaging.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/
https://github.com/JHUISI/charm
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from Zp. Even with these smaller subsets, the soundness error for this batching
technique remains at 1/250 (approximately 1 in 1, 125, 899, 906, 842, 624). This
simple batching technique is the central idea for reducing the cost of SRS
verification algorithms in the existing universal and updatable zk-SNARKs.

Marlin’s SRS is not extractable! In our research [BMS23], we also identified
that the SRS of Marlin [Chi+19], one of the studied constructions, is not
extractable. We proposed a solution to address this limitation as an additional
contribution. Marlin [Chi+19] is proposed by Chiesa et al. (cf. Section 8.3.2
on page 151), a prominent zk-SNARK in the universal and updatable SRS
model. It stands out for its constant-size proofs and advancements in efficiency
compared to both earlier and subsequent designs. The authors prove Marlin
achieves KS in the Algebraic Group Model (AGM), and to show its Upd-KS, it
is necessary to show that the SRS trapdoors are extractable from a subverted
or maliciously updated SRS.

Note that this might not be a practical concern since the current deployments
for Marlin4 are unaffected by this. However, a potential theoretical concern
could still remain. In the security model, it is more realistic to let an adversary
be able to hash to an elliptic curve point and then generate the SRS components
as ([x]1 , [γx]1 , [1]2 , [x]2) without knowing γ. For example, they could sample a
group element from G1 without knowing its exponent and subsequently utilize a
known x to compute ([x]1 , [γx]1 , [1]2 , [x]2) for an undisclosed γ. This attack can
be executed by a malicious SRS updater such that the extractor in extracting
the trapdoors fails which is against the updatability definition.

Note 13. (Algebraic Group Model (AGM) with hashing) One
could argue that Marlin (and some subsequent schemes) are proven within
the original AGM framework [FKL18]. As discussed in Chapter 2, in the
AGM adversaries are purely algebraic and cannot generate random group
elements without knowing their discrete logarithms (i.e. representation
vector). While this argument holds true, real-world challenges persist.
Such constructions might not inherently achieve Sub-ZK, as adversaries
can leverage elliptic curve hashing [Ica09] to produce random group
elements without recovering the exponents.

To address these concerns, earlier Sub-ZK zk-SNARKs [Abd+17; Lip22] were
designed and validated in more practical models. These include the proofs in
the GGM with hashing [BFS16; Abd+17] and the AGM with hashing [Lip22].
The term of “with hashing” aspect signifies that adversaries are permitted

4https://github.com/arkworks-rs/marlin

https://github.com/arkworks-rs/marlin


60 UNIVERSAL AND UPDATABLE NIZK

to sample random group elements without the need for exponent knowledge,
using methods such as elliptic curve hashing [Ica09]. At TCC’23, Lipmaa et
al. [LPS23a] extended this concept to AGM with Oblivious Sampling. This
extension allows the adversary to gain access to an oracle in order to sample
group elements obliviously from a certain distribution.

4.3 Key-Updatable Public Key Encryption Schemes

In Tiramisu [BS21], we utilize Public-Key Encryption (PKE) schemes with
key updatability features. While similar definitions have been recently proposed
for zk-SNARKs [Gro+18] and digital signatures [ARS20], drawing on previous
definitions [CHK03; Fau+19], to the best of our knowledge, this type of PKE
was introduced for the first time in [BS21].

In contrast to subversion-resilient encryption schemes [ABK18], where the key-
generation phase might be subverted, here we consider scenarios where the
output of the key-generation phase is updatable, allowing parties to update the
keys. Our aim is to meet the standard security requirements of a Public-Key
Encryption (PKE) scheme (cf. Section 2.8 on page 31), as long as either the
original key generation or at least one of the updates was carried out honestly.
The formal definition of this cryptosystem can be found in Definition 59 on
page 180.

The primary security requirements for a public-key cryptosystem with
updatable keys are updatable correctness, updatable key hiding and Updatable
Indistinguishability under Chosen-Plaintext Attack (Upd-IND-CPA). For more
detail we refer the readers to Section 9.3 on page 180.

ElGamal Encryption. The ElGamal cryptosystem [ElG84] as a Public-Key
Encryption (PKE) scheme is a common basis for many systems. Given the
formal definition of Public-Key Encryption (PKE) schemes (cf. Section 2.8 on
page 31), let G be a finite group of prime order p and let the message space
M := G; then the ElGamal encryption can be defined as follows:

- (sk, pk) ← KeyGen(1κ): take security parameter κ as input. Sample
sk←$ Z∗

p. Set pk := [sk] and return (sk, pk).

- ct ← Encrypt(pk, M ; r): take pk and message M ∈ G. If r =⊥, sample
r ←$ Z∗

p. Output ct := (c1, c2) = ([r], M + r[sk]).

- M ← Decrypt(sk, ct): parse (c1, c2)← ct. Output M ← c2 − skc1.
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The Indistinguishability under Chosen-Plaintext Attack (IND-CPA) security of
ElGamal encryption is proved under the hardness of Decisional Diffie-Hellman
(DDH) assumption (cf. Definition 4 on page 15) [ElG84].

Informal Definition 13. (Lifted ElGamal encryption). In another
version of the ElGamal cryptosystem, referred to as the lifted ElGamala,
the message space is defined over field elements, denoted as M := Zp.
The encryption process operates the same as above, but first, we must
convert the message to its group format [m].
However, there is a constraint on the size of the message m; the bit-
length of the original message must be sufficiently small (usually less
than 40 bits) to allow for efficient computation of the discrete logarithm.
This limitation primarily arises from the requirement of the decryption
algorithm to return the original message m rather than [m].

aAlso known as exponent ElGamal encryption.

The ElGamal encryption can also be defined over (Type-III) bilinear groups.
For a given asymmetric bilinear setting description (p,G1,G2,GT , G1, G2, e)←
BGgen(κ) and message space M := GT , the ElGamal encryption is defined as
follows:

- (sk, pk) ← KeyGen(1κ): Take the security parameter κ in its unary
representation, and sample sk ←$ Z∗

p. Set pk := ([sk]1, [sk]2) and return
(sk, pk).

- ct← Encrypt(pk, M ; r): Take pk and message M ∈ GT . If r =⊥, sample
r ←$ Z∗

p. Output ct := (c1, c2) = ([r]T , Me([sk]1, [r]2)).

- M ← Decrypt(sk, ct): parse (c1, c2)← ct. Output M ← c2/csk
1 .

We can show that the above encryption scheme is IND-CPA secure
(cf. Definition 27 on page 32) under the hardness of Symmetric External Diffie-
Hellman (SXDH) assumption (cf. Section 8.2.2 on page 145).

Key updatability of ElGamal encryption. ElGamal secret/public key pairs
are updatable to a new pair and one can check the consistency of the update,
efficiently. More precisely, given the formal definition of key-updatable PKE
(cf. Definition 59 on page 180) we can extend the ElGamal algorithms as follows:

- (pki, Πpki
)← KU(pki−1): Given a correctly formed ElGamal’s public key

pki−1 := (pki−1,1, pki−1,2) := ([ski−1]1, [ski−1]2), one can update it to
pki := (pki,1, pki,2) := (τi[ski−1]1, τi[ski−1]2), where τi ←$ Z∗

p. It then
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outputs the new public key along with the proof Πpki
= ([τi]1, [τi]2). Note

that the corresponding secret key ski can be formulated as ski := τiski−1
and to derive ski, it is necessary to know both τi and ski−1.

- (1,⊥)← KV(pki, Πpki
): To check the consistency of the updates, one can

verify if the following PPE holds.

e(pki−1,1, [τi]2) = e(G1, pki,2) = e([τi]1, pki−1,2) = e(pki,1, G2) ·

As discussed in Theorem 8 on page 182, the ElGamal encryption with key
updatability meets all the security properties of perfect updatable completeness,
updatable key hiding and updatable IND-CPA (cf. Section 9.3 on page 180).

We use this PKE with key updatability as a main tool to our generic framework,
called Tiramisu to lift NIZKs in the updatable SRS model to stronger notion
of Updateable Black-Box Simulation Extractability (Upd-BB-SE).

4.4 A General Framework for Lifting to Upd-BB-SE

Tiramisu is a framework designed to lift the Knowledge Sound NIZK in the
updatable SRS model to a stronger notion of security called Updateable Black-
Box Simulation Extractability (Upd-BB-SE). This security feature extends the
Updateable non-Black-Box Simulation Extractability (Upd-nBB-SE) feature
defined in [ARS20] (cf. Definition 31 on page 56). Similarly, we assume i is the
index of the final update.

Note 14. (Non-Black-Box to Black-Box SE lifting Compilers)
Zk-SNARKs in the SRS model cannot naturally achieve Black-Box
SE.a However, certain compilers, such as [Kos+15; Bag19b; AB19],
are designed to lift these schemes to a stronger notion of Black-Box
SE. Broadly speaking, these methods use to the traditional approach of
encrypting the witness with the extractor’s public key. Consequently,
the extractor Ext(·) only needs access to the corresponding secret key
to decrypt (extract) the witness. Looking ahead, we aim to extend this
technique to achieve Updateable Black-Box Simulation Extractability
(Upd-BB-SE) in the next sections.

aA recent work [CF24] has shown some widely used zk-SNARKs in the ROM can
achieve UC-security unconditionally without modification.

Definition 33. (Updateable Black-Box Simulation Extractability (Upd-BB-
SE) [BS21, Definition 6]) A NIZK satisfies Upd-BB-SE for R if there is an
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extractor Ext(·) that for any PPT adversary A and subverter Sub, another
extractor ExtSub(·) exists, ensuring that the following probability is ≤ ν(κ):

Pr



((s⃗rs0, Πs⃗rs0), t⃗s0 := t⃗s′
0, t⃗e0 := t⃗e′

0)← Gensrs(R), rs ←$ RND(Sub),

(({s⃗rsj , Πs⃗rsj
}i

j=1, ξSub) ∥ {t⃗s′
j , t⃗e′

j}i
j=1)← (Sub ∥ExtSub)(s⃗rs0, Πs⃗rs0 , rs),

{SV(s⃗rsj , Πs⃗rsj
) = 1}i

j=0, rA ←$ RND(A),

(x, π)← AOs⃗rsi,t⃗si
(·)(R, s⃗rsi, ξSub; rA), w← Ext(R, s⃗rsi; t⃗ei) :

(x, π) ̸∈ QS ∧ (x, w) ̸∈ R ∧ Verify(R, s⃗rsi, x, π)


,

where the simulation oracle Os⃗rsi,t⃗si
(·) is defined in Figure 4.2.

This definition draws inspiration from the standard SE definition (cf. Defini-
tion 24), as defined by Groth [Gro06], which involves two extractors, one for the
setup phase and the other for the subsequent arguments. However, our definition
necessitates a non-black-box extractor in the setup phase, which appears to
be an unavoidable requirement for constructing Upd-BB-SE NIZKs without
relying on a trusted third party [BFS16]. Using arguments or assumptions with
non-black-box extraction techniques, such as rewinding [Dam+12] or knowledge
assumptions [BFS16; Abd+17; Gro+18], is a common approach to mitigate or
eliminate the need to trust the parameters of various cryptographic protocols.

Note 15. Note that in Definition 33, the extractor ExtSub(·) is a non-
Black-Box extractor, based on rewinding or Knowledge of Exponent
Assumption (KEA), meanwhile Ext(·) is a black-box extractor, e.g., using
a PKE with key updatability (cf. Section 4.3).

Figure 9.1 on page 178 depicts how Tiramisu compares with other similar
frameworks, namely the C∅C∅ framework [Kos+15] and the Lamassu
framework [ARS20].

In summary, the Black-Box extractor, Ext(·), can retrieve the witness by
decrypting the ciphertext without relying on the adversary’s source code or
rewinding techniques. However, in order to extend this technique to NIZKs
in the updatable SRS model, we had to introduce a new primitive to enable
the PKE key pairs’ updatability. Additionally, we needed to ensure that these
schemes satisfy the security properties, particularly the Upd-BB-SE, which also
requires secret key extraction for PKE trapdoors.
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4.5 Application to Privacy-Preserving Smart Con-
tracts

Blockchain as the main technology behind cryptocurrencies is a decentralized
ledger which operates on a distributed network of nodes. Blockchain is a
publicly-visible and append-only log protected by a consensus protocol, such as
Proof-of-Work (PoW) and Proof-of-Stake (PoS). Instead of centralized entities,
a group of validators, known as miners, collaboratively validate and record the
transactions in a tamper-resistant manner.

Note 16. (Programmable Blockchains and Smart Contracts)
While cryptocurrencies are the most popular application of blockchain,
they can enable functionalities beyond keeping track of funds in a ledger.
Programmable blockchains offer broader capabilities, particularly when
transactions must be initiated based on predefined events such as “Bob
should send x USD to Alice if Cond. A happens!”. Smart contracts enable
such functionalities within a blockchain environment.

In 2006, Groth [Gro06] has shown that a NIZK argument capable of achieving
Black-Box Simulation Extractability (BB-SE) can realize the ideal NIZK-
functionality FNIZK [GOS06]. Unfortunately, the default security of zk-SNARKs
is insufficient for direct deployment in UC protocols. This is because a zk-
SNARK achieves nBB extraction, and the extractor ExtA(·) requires access to
the source code and random coins of A. However, in UC-secure NIZKs, the
simulator of the ideal-world should be able to simulate the corrupted parties,
which necessitates the ability to extract witnesses without access to the source
code of the environment’s algorithm.

Following this, Kosba et al. [Kos+15] introduced the C∅C∅ framework, along
with various constructions, enabling the transformation of a sound NIZK
argument into a Black-Box Simulation Extractability (BB-SE) NIZK argument.
In short, given a sound NIZK argument for language LR, the C∅C∅ framework
defines a new extended language L̂R appended with some primitives and provides
a NIZK argument capable of achieving BB-SE. This lifted version can then be
used in UC protocols.

Moving forward, in applications aiming for Universally Composable
(UC) security, such as Hawk [Kos+16], Gyges [JKS16], and Ouroboros
Crypsinous [Ker+19], the underlying zk-SNARK is lifted by the C∅C∅
framework [Kos+15] to achieve BB-SE. Furthermore, Kachina [KKK21]
provides a comprehensive UC model for privacy-preserving smart contracts.
It aims to serve as a framework capturing Zexe [Bow+20], Hawk [Kos+16],
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Zether [Bün+20], and others, without compromising their privacy guarantees.
While the C∅C∅ and Kachina frameworks operate within the standard SRS
model, i.e. achieving BB-SE necessitate a trusted setup phase. However, prior
to Tiramisu [BS21] it was not formalized how to achieve this notion of security
for the zk-SNARKs in the universal and updatable SRS model.

In summary, Tiramisu [BS21] made one step towards achieving Upd-BB-
SE which serves as a basis for UC-security in the practical applications that
employ updatable zk-SNARKs. For example, VeriZEXE [Xio+23] employs
Plonk [GWC19] as a well-known zk-SNARK in the universal and updatable
SRS model, to develop an efficient Decentralized Private Computation (DPC)
system that can support a diverse range of applications. VeriZEXE improves
Zexe [Bow+20], which is limited to supporting only specific applications. While
the authors emphasized Plonk’s universality, VeriZEXE can be set up in the
updatable SRS model too which is a more realistic trust assumption, and then
one can prove its security in the UC model using Tiramisu [BS21] along with
some recent works such as [Abd+23] to avoid non-black-box ExtSub using the
Fischlin transform.



CHAPTER

5
Conclusion and
Open Problems

5.1 Summary of Research

In this thesis, we discussed two fundamental cryptographic building blocks with
a direct impact on enhancing the privacy and reducing the trust in distributed
systems. The main results of this thesis are the invension of a new cryptographic
primitive, called Threshold Structure-Preserving Signatures (TSPS) which is
compatible with the efficient Groth-Sahai (GS) NIZKs which forms a basis for
the design of distributed and complex privacy-preserving systems. Furthermore,
we delved into a crucial category of NIZKs termed universal and updatable
NIZKs. We emphasized how these can be used in scenarios where there is no
trusted entity available to generate trustworthy SRS.

In Chapter 3, we discussed two TSPS schemes. The first with the shortest
signature size and the most efficient verification, although supporting only
a restricted class of messages (iDH message space). This scheme is proven
secure under a weaker unforgeability notion called TS-UF-0. Moreover, we
explored the main techniques used in the subsequent TSPS scheme, designed in
the standard model. This latter scheme supports messages of arbitrary group
element vectors and offers enhanced unforgeability against adaptive adversaries
under the stronger notion of TS-UF-1. Additionally, we touched upon how
these schemes could be applied in certain privacy-preserving systems, such as
Threshold-Issuance Anonymous Credential (TIAC).

In Chapter 4, we emphasized the importance of trust mitigation techniques in
pre-processing NIZKs. We provided an overview of stronger notions of knowledge
soundness, focusing particularly on updatable NIZKs, where adversaries can
also join during the update process. Notably, except for the initial work of
Groth et al. [Gro+18], subsequent zk-SNARKs in the universal and updatable
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SRS model often neglect discussions on how their construction could be set up
and updated. Consequently, we summarized some techniques used for further
optimization such as smaller randomness distributions and batched verification
technique. Furthermore, we discussed Tiramisu as a general framework to lift
non-black-box updatable KS and Upd-nBB-SE to a stronger notion of Upd-BB-
SE. Additionally, we discussed on how this security property is important in
proving the security of some complex systems such as privacy-preserving smart
contracts in the Universally Composable (UC) framework.

5.2 Future Work

TSPS. The TSPS is the first multi-party structure-preserving primitive.
Considering that these primitives are not exclusively limited to Digital Signatures
(DS), a natural question arises: how can we expand this concept to other
cryptographic primitives?

Moreover, a TSPS with the same security advantages as [Mit+24] while shorter
signatures and fewer PPEs in the verification phase stands as another potential
future work. This may be feasible since we relied on matrix assumptions that
usually come with higher costs. In some parallel research e.g., [Bac+24; DR23],
the authors have obtained threshold signatures based on the standard DDH
assumption. One potential research on combining these two directions might
be how we can use their techniques to propose more efficient TSPS schemes in
the standard model.

Fuchsbauer et al. (AC’14, JoC’19) [HS14; FHS19] introduced SPS-EQ, which
enable signature adaptivity—a controlled form of malleability over both message
and signatures. This allows anyone to publicly transform any signature of
this type into a uniformly random signature on the equivalence class of the
initial message, thus avoiding complex zero-knowledge proofs. Considering that
the main applications for SPS-EQ involve a central signer, which introduces
vulnerabilities in the form of single points of failure, an interesting open problem
is to define and design threshold SPS-EQ. This could potentially enhance the
efficiency of TSPS in specific applications by eliminating the need for complex
NIZK proofs. Very recently, Nanri et al. [Nan+24] proposed an interactive
Mercurial signature. Their approach begins with the initial SPS-EQ, leading to
multiple rounds of communication to generate a partial signature. Meanwhile, a
non-interactive threshold structure-preserving signatures on equivalence-classes
remains as an intresting future work.

Standard Threshold Signatures (TS) lack accountability. Specifically, an
aggregated signature passes the verification phase if a sufficient number of
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signers agree by partially signing the message. With an aggregated signature,
it is impossible to determine which group of signers participated in the partial
signing phase. Accountable threshold signatures [BK22; BPR22] offer signer
traceability in two potential scenarios: private accountability, which allows
specific entities to identify the set of signers, and public accountability, which
provides public traceability. Thus we leave accountable TSPS schemes as an
interesting open problem.

As mentioned earlier, there are several works, such as [Gay+18; Abe+19],
focused on improving the tightness of security for SPS. An interesting direction
for future work is exploring how these techniques can be applied to develop a
tightly-secure TSPS.

Updatable NIZKs. Given that the results in Chapter 4 have been obtained
three years ago, we first summarize the findings of several subsequent works
that attempt to address the open problems in this field of study.

As we dicussed in Chapter 4, in [BMS23] we found that Marlin’s SRS is
not extractable, however its knowledge soundness is formally proved in the
Algebraic Group Model (AGM). We then briefly discussed why the AGM for
this family of zk-SNARKs is not realistic and referred to a more realistic notion
of security, called AGM with hashing [Lip22]. Upon taking this observation
and highlighting the inadequacy of the AGM for such constructions in [BMS23],
Lipmaa et al. [LPS23b] (TCC’23) formally introduced this concept.

Additionally, in [BMS23], we provided a detailed benchmarking of the setup
phase for some popular universal and updatable zk-SNARKs. Our findings
indicated that the setup of Basilisk [RZ21] (CRYPTO’21) outperforms other
constructions. However, an interesting extension would be to evaluate the
efficiency of these schemes based on other factors such as efficiency of proof
generation and verification. Recently, Ernstberger et al. in [Ern+23] introduced
zkBench, the first benchmarking framework and estimator tool for public key
cryptography. They provided a comprehensive comparison of universal and
updatable zk-SNARKs using this tool.

Moreover, as we noted in Definition 33, the extractor ExtSub(·) is still a non-black-
box extractor, and we need to either use rewinding or Knowledge of Exponent
Assumption (KEA) which contradicts universality, and we left this as an open
problem in [BS21]. To be more precise, this is a limitation on achieving both
universality and updatability for the NIZKs in the updatable SRS model. Some
subsequent works e.g. [Gan+22; Cam+23; Abd+23] address this problem using
techniques that we briefly discuss below.

Ganesh et al. [Gan+22] (SCN’22) show the simulation extractability of universal
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zk-SNARKs such as Plonk, Sonic, and Marlin in the Random Oracle Model
(ROM) without additional overhead. The authors study the Fiat-Shamir
(FS) transformation which plays a central role in making these schemes non-
interactive. They extend the FS transform to multi-round settings and updatable
SRS setting, yet do not ensure Updateable Black-Box Simulation Extractability
(Upd-BB-SE). The Fiat-Shamir transformation still depends on rewinding
techniques, contradicting the universality of these systems. However, Campanelli
et al. [Cam+23] (Africacrypt’23) formally proved that non-adaptive black-box
extractable zk-SNARKs for NP relations are impossible.

Recently, Abdolmaleki et al. [Abd+23] (IEEE CSF’24) show that composability
and updatability can be achieved in the updateable SRS model by relaxing the
succinctness property of the zk-SNARKs. The authors introduced a framework
that ensures the resulting construction is circuit-succinct, although it might not
necessarily yield a witness-succinct outcome.

However, the design of an updatable NIZK with full extractability with succinct
proofs remains as an interesting open problem.

Open-Sourced Implementations

All the implementations are available on my GitHub account under the username
https://github.com/Mahdi171.

• Unlinkable Policy-Compliant Signatures Python, Docker
Prototyping several ul-PCS schemes for [BSW24]. �

• Groth-Sahai Proofs Python
An efficient implementation for the Groth-Sahai proof system [GS08]. �

• Nirvana Payment Python
An anonymous and reusable payment guarantee system [Mad+23]. �

• Attribute-Based Access Control Encryption Python
Proof of concept for [SP21]. �

• Ciphertext-Policy Attribute-Based Encryption Python
A constant size CP-ABE proposed in [SP21, Section 5]. �

• Multi-Level Secure Attribute-Based Access Control Python
A proof of concept for [Agh+22]. �

https://github.com/Mahdi171
https://github.com/Mahdi171/Unlinkable_PCS
https://github.com/Mahdi171/Groth-Sahai
https://github.com/Mahdi171/CD-ABACE
https://github.com/Mahdi171/CD-ABACE
https://github.com/Mahdi171/CP-ABE
https://github.com/MLSABAC/MLSABAC
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6
Threshold Structure-
Preserving Signatures

Source. E. Crites, M. Kohlweiss, B. Preneel, M. Sedaghat, and D.
Slamanig. “Threshold Structure-Preserving Signatures”. In: Advances
in Cryptology – ASIACRYPT 2023. Ed. by J. Guo and R. Steinfeld.
Singapore: Springer Nature Singapore, 2023, pp. 348–382. isbn: 978-981-
99-8724-5. doi: 10.1007/978-981-99-8724-5_11

Abstract. Structure-preserving signatures (SPS) are an important building
block for privacy-preserving cryptographic primitives, such as electronic cash,
anonymous credentials, and delegatable anonymous credentials. In this work, we
introduce the first threshold structure-preserving signature scheme (TSPS). This
enables multiple parties to jointly sign a message, resulting in a standard, single-
party SPS signature, and can thus be used as a replacement for applications
based on SPS.

We begin by defining and constructing SPS for indexed messages, which are
messages defined relative to a unique index. We prove its security in the
random oracle model under a variant of the generalized Pointcheval-Sanders
assumption (PS). Moreover, we generalize this scheme to an indexed multi-
message SPS for signing vectors of indexed messages, which we prove secure
under the same assumption. We then formally define the notion of a TSPS
and propose a construction based on our indexed multi-message SPS. Our
TSPS construction is fully non-interactive, meaning that signers simply output
partial signatures without communicating with the other signers. Additionally,
signatures are short: they consist of 2 group elements and require 2 pairing
product equations to verify. We prove the security of our TSPS under the
security of our indexed multi-message SPS scheme. Finally, we show that our
TSPS may be used as a drop-in replacement for UC-secure Threshold-Issuance
Anonymous Credential (TIAC) schemes, such as Coconut, without the overhead
of the Fischlin transform.
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6.1 Introduction

Threshold cryptography [Des90; DF90; De +94] was designed to reduce the
trust in single entities and improve the availability of keying material. It allows
a secret key to be shared among a set of parties [Sha79; Bla79] such that
the task involving the key can only be performed if some threshold of them
collaborates. Threshold signatures [Sho00; DK01], threshold encryption [SG98;
Can+99], and threshold verifiable unpredictable functions [Gur+21] enable
distributed protocols, such as e-voting systems [Cra+96; CGS97] and multi-
party computation [CDN01; DN03].

Threshold signatures in particular have attracted significant interest recently,
in part because of advances in distributed ledger technologies, cryptocurrencies,
and decentralized identity management [Doe+19; KG20; Can+20; Kon+21;
CKM23]. They are also the subject of current standardization efforts by
NIST [BDV+20; BP23]. Signatures used by certification authorities to issue
credentials or to secure digital wallets make attractive targets for misuse or
forgery. To mitigate these risks, an (n, t)-threshold signature scheme distributes
the signing key among n parties such that any quorum of at least t signers can
jointly generate a signature, but the scheme remains secure as long as fewer
than t key shares are known to the adversary.

A threshold signature that is fully non-interactive consists of a single round
of communication. On input the message, each signer computes its partial
signature independently of other signers, and aggregation of at least t partial
signatures results in a single signature representing the group. Interactive
signing protocols involving two or more rounds add complexity and are error
prone [TS21; Dri+19]. Thus, fully non-interactive schemes are preferable, the
canonical example being threshold BLS [BLS04; Bol03].

Structure-preserving signatures. Structure-preserving signatures (SPS)
[Abe+10] are pairing-based signatures where the message, signature, and
verification key consist of source group elements only (in one or both source
groups), and signature verification consists of group membership checks and
pairing product equations only. SPS have been studied extensively, with a
main focus on short signatures [Abe+11b; Abe+14; Gha16; Gha17b], lower
bounds [Abe+11b; AGO11; Abe+18a], and (tight) security under well-known
assumptions [Abe+12; HJ12; KPW15; LPY15; JR17; Gay+18; Abe+19].

SPS are compatible with Groth-Sahai non-interactive zero-knowledge proofs
(NIZKs) [GS08] and, more generally, help to avoid the expensive extraction
of exponents in security proofs. This makes them attractive for the modular
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design of protocols relying on signatures and NIZKs. Indeed, SPS have seen
widespread adoption in privacy-preserving applications, such as group signatures
[Abe+10; LPY15], traceable signatures [Abe+11a], blind signatures [Abe+10;
FHS15], attribute-based signatures [EGK14], malleable signatures [ALP12],
anonymous credentials [Fuc11; Cam+15; FHS19], delegatable anonymous
credentials [Bel+09; CL19], and anonymous e-cash [Bla+11].

For such signature-based applications, compromise of the signing key represents
a single point of attack and failure. Replacing the use of SPS with TSPS
together with distributed key generation (DKG) would help to reduce the trust
in a single authority and increase the availability of the respective signing
service. While many of the aforementioned applications of SPS would benefit
from thresholdization, until now there was no known threshold construction
of SPS that could serve as their basis. We provide the first candidate TSPS
scheme as the main contribution of this work.

Towards constructing a threshold SPS. Our goal is to construct threshold
SPS that are fully non-interactive, i.e., there is no coordination among signers.
This puts some requirements on the used SPS and in particular prevents the
use of nonlinear operations of the signing randomness and secret keys (cf.
Section 6.2), which existing SPS fail to satisfy. Thus, as a starting point for
our TSPS, we consider the pairing-based Pointcheval-Sanders signature scheme
(PS) [PS16] (cf. Section 6.3.1), as its randomness is simply a random base group
element and it avoids hashing during verification. We recall that the PS scheme
is defined over an asymmetric bilinear group (G1,G2,GT , p, e, g, ĝ) with signing
key sk = (x, y) ∈ (Z∗

p)2 and corresponding verification key vk = (ĝx, ĝy) ∈ G2
2.

The signing algorithm takes as input a scalar message m ∈ Zp and outputs a
signature

σ = (h, s) = (gr, hx+my) ∈ G2
1 .

Importantly, the nonce r (or equivalently the base h) is sampled fresh for each
signature. This scheme fails to be an SPS because the message is not a group
element (or elements). Ghadafi [Gha16] made the observation that a PS-like SPS
scheme can be constructed for a group element message (M1, M2) ∈ G1×G2 for
which there exists a scalar message m ∈ Zp such that M1 = gm and M2 = ĝm.
This is referred to as a Diffie-Hellman (DH) message. (cf. Section 6.1 for more
on this message space.) A Ghadafi SPS signature (cf. Section 6.3.1) has the
form:

σ = (h, s, t) = (gr, Mr
1 , hxsy) ∈ G3

1 .

Let us see how one might construct a threshold version of this scheme. Suppose
each signer possesses a share ski = (xi, yi) of the secret key sk = (x, y). A first
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(non-interactive) attempt might have each signer output a partial signature of
the form:

σi = (hi, si, ti) = (gri , Mri
1 , hxi

i syi

i ) ,

with aggregation of the third term having the form:

t =
∏
i∈T

tλi
i =

∏
i∈T

grixiλiMriyiλi

1 ,

where λi is the Lagrange coefficient for party i in the signing set T of size at
least t (the threshold). As with other existing SPS, this however does not allow
reconstruction via Lagrange interpolation because each term in the exponent is
multiplied by a distinct random integer ri. To overcome this, due to the specific
form of the signatures, the signers would have to agree on a common random
element h = gr. Indeed, this will be our approach to solve this issue.

A second (interactive) attempt might have each signer output randomness
shares hi = gri and corresponding si = Mri

1 in a first round of signing, followed
by a second round in which each signer computes aggregate values h = gr =∏

i∈T hi = g
∑

i∈T
ri and s =

∏
i∈T si and outputs a partial signature of the

form:

σi = (h, s, ti = hxisyi) , (6.1)

with aggregation of the third term having the form:

t =
∏
i∈T

tλi
i =

∏
i∈T

grxiλiMryiλi

1 .

This allows reconstruction via Lagrange interpolation. In terms of security, the
unforgeability of this threshold scheme may be reduced to the unforgeability of
single-party Ghadafi SPS signatures. However, the reduction needs to obtain
the corrupt hj , sj values before revealing honest values hi, si. The addition of a
third signing round could achieve this, whereby all values hi, si are committed to
in the first round as H(hi), H′(si), for H and H′ modeled as random oracles, and
then revealed in the second round. However, the reduction needs to obtain the
nonces rj of the corrupt parties, which may be extracted from zero-knowledge
proofs appending the outputs hi, si in round two. These additional rounds and
zero-knowledge proofs add significant overhead.

Our approach is clean and straightforward: we instead have signers obtain
shared randomness h = gr via a random oracle, yielding a fully non-interactive
scheme. But observe that if partial signatures have the form of Equation (6.1),
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then s = Mr
1 cannot be computed without knowledge of the discrete logarithm

dlogh(M1). Thus, we borrow techniques from Sonnino et al. [Son+19] and
Camenisch et al. [Cam+20], which implicitly sign indexed Diffie-Hellman
messages (id, M1, M2), a concept we define and formalize rigorously in this
work. Indexing can be understood as requiring the existence of an injective
function f that maps each scalar message m ∈ Zp to an index id = f(m). We
then have h = H(id), where H is modeled as a random oracle, and M1 = H(id)m.
Then each partial signature has the form:

σi = (h, si) = (H(id), hxiMyi

1 ) ,

and the aggregated signature has the form:

σ = (h, s) = (H(id), hxMy
1 ) . (6.2)

This is exactly our TSPS construction, with the underlying SPS signature
defined by Equation (6.2). We extend these techniques to vectors of indexed
Diffie-Hellman messages (id, M⃗1, M⃗2), which allows additional elements to be
signed, e.g., attributes when used within anonymous credential systems [PS16;
Son+19]. It is important to note that the index is not needed for verification
(and therefore H(id) is not computed), so our schemes are indeed structure
preserving.

We define an appropriate notion of unforgeability for indexed messages:
existential unforgeability under chosen indexed message attack (EUF-CiMA)
and prove the security of our constructions under this notion. We discuss various
ways of defining the index function, depending on the application. For example,
if privacy is not required and the message and public key are known, the index
function may simply be the identity function: id = f(m) = m, capturing the
intuitive notion that each nonce r is associated with a single scalar message m.

Why Diffie-Hellman messages?

Diffie-Hellman messages can be traced back to the introduction of automorphic
signatures [Fuc09] and SPS [Abe+10], and have since appeared in various other
SPS constructions [Gha16; Gha17b; Gha17a; Gha19]. Their use is largely
motivated by an impossibility result by Abe et al. [Abe+11b], which proves
that any SPS in the Type-III setting must have at least 3 group elements and 2
pairing product equations in the verification. Furthermore, the result rules out
unilateral signatures (those containing elements from only one source group)
meeting this lower bound. However, if messages are in both source groups, it is
possible to construct a unilateral SPS meeting this lower bound. This is what
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Diffie-Hellman messages and the Ghadafi construction [Gha16] achieve. We
follow the same approach to construct efficient TSPS.

Constructing a TSPS over standard, unilateral message spaces remains an
interesting open problem. However, such a scheme would necessarily contain
more group elements in the signature and more pairing product equations to
verify, due to this impossibility result. This is an important consideration
when combining with Groth-Sahai NIZK proofs in applications, as the number
of pairings required for verification scales linearly with the number of source
pairings.

6.1.1 Our Contributions

Our contributions can be summarized as follows:

• We formalize the concept of indexed message spaces and formally define
the notion of structure-preserving signatures (SPS) over indexed message
spaces and corresponding notion of security: existential unforgeability
under chosen indexed message attack (EUF-CiMA).

• We propose a concrete SPS construction over indexed Diffie-Hellman
messages, called IM-SPS, and prove its EUF-CiMA security under a new
variant of the generalized Pointcheval-Sanders assumption. We reduce
this assumption to the hardness of the (2, 1)-discrete logarithm problem
in the algebraic group model (AGM).

• We provide an indexed multi-message SPS construction, called IMM-SPS,
which allows vectors of indexed Diffie-Hellman messages to be signed, and
prove its EUF-CiMA security under the same assumption.

• We introduce the notion of a threshold structure-preserving signature
(TSPS) scheme and propose a fully non-interactive TSPS based on our
EUF-CiMA secure SPS scheme. Signatures contain only 2 group elements
and verification consists of 2 pairing product equations. We prove the
security of our TSPS under the EUF-CiMA security of IMM-SPS.

• We discuss applications of our TSPS construction and, in particular, blind
signing of messages. This represents a core functionality in Threshold-
Issuance Anonymous Credential (TIAC) systems. We outline how our
TSPS can be used in TIAC systems as a drop-in replacement that avoids
rewinding extractors for the required non-interactive zero-knowledge
(NIZK) proofs.
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6.2 Related Work

We provide an overview of pairing-based non-interactive threshold signature
schemes in Table 6.1 and structure-preserving signature schemes (SPS) in
Table 6.2 and discuss how these schemes fail to meet our requirements.

Table 6.1: Table of pairing-based non-interactive threshold signature schemes.
iDH refers to indexed Diffie-Hellman messages (Definition 40). ✓: Satisfied. ✗:
Not satisfied.

Scheme Message Space Signature Size Structure-Preserving

BLS [Bol03; BL22] {0, 1}∗ 1G1 ✗

LJY ‡1 [LJY16] {0, 1}∗ 2G1 ✗

LJY ‡2 [LJY16] {0, 1}∗ 4G1 + 2G2 ✗

GJMMST [Gur+21] {0, 1}∗ 4G1 + 2G2 ✗

PS [Son+19; Tom+22] Zp 2G1 ✗

Our TSPS iDH 2G1 ✓

Threshold Signatures. BLS [BLS04] and its threshold version [Bol03; BL22]
are not structure preserving, as they map bitstring messages {0, 1}∗ to the
group using a random oracle. Libert et al. [LJY16] propose a secure non-
interactive threshold signature scheme based on linearly-homomorphic SPS
(LHSPS) [Lib+13]. While this construction meets many of our requirements,
the resulting threshold signature is not structure preserving. It either relies on
random oracles to hash bitstring messages to group elements (‡1 [LJY16])
or, when avoiding random oracles, a bit-wise encoding of the message is
required (‡2 [LJY16]). Gurkan et al. [Gur+21] propose a pairing-based threshold
Verifiable Unpredictable Function (VUF), which is essentially a unique threshold
signature [MRV99]. However, their construction is not structure preserving:
it hashes bitstring messages to the group using a random oracle. Sonnino et
al. [Son+19] and Tomescu et al. [Tom+22] present non-interactive threshold
versions of Pointcheval-Sanders (PS) signatures; however, verification takes
place over scalar vectors, and is thus not structure preserving. We note that
signatures for scalar vectors are intuitively closer to SPS than ones for bitstring
messages, as evidenced, for example, by Ghadafi’s scheme [Gha16]. We do not
know of a general conversion technique, however.



78 THRESHOLD STRUCTURE-PRESERVING SIGNATURES (TSPS)

Structure-Preserving Signatures. Most structure-preserving signatures in
the literature fail to be good candidates for thresholdization due to nonlinear
operations of signer-specific randomness and secret key elements, which are
not amenable to Lagrange interpolation (e.g., [Abe+10; Abe+11b; Abe+14;
Bar+15; Gha17b; Gro15]). However, there are two promising approaches:
linearly-homomorphic SPS (LHSPS) [Lib+13] and the SPS by Ghadafi [Gha16].
The former is a one-time signature, meaning that a key pair can only sign a
single message1. The SPS by Ghadafi [Gha16] lends itself to thresholdization,
but it requires multiple communication rounds and incurs significant overhead.

Table 6.2: Table of structure-preserving signature schemes (SPS). DH refers
to Diffie-Hellman messages (Definition 35), and iDH refers to indexed Diffie-
Hellman messages (Definition 40). Avoids Nonlinearity refers to operations of
the signing randomness and secret keys. ✓: Satisfied. ✗: Not satisfied.

Scheme Message Space Signature Size Avoids Nonlinearity

AFGHO[Abe+10] G1 5G1 + 2G2 ✗

AGHO [Abe+11b] G1 ×G2 / G2 2G1 + 1G2 ✗

AGOT [Abe+14] G1 2G1 + 1G2 ✗

BFFSST [Bar+15] G2 1G1 + 2G2 ✗

Ghadafi [Gha17b] DH 2G1 ✗

Ghadafi [Gha16] DH 3G1 ✗

Groth [Gro15] G2 1G1 + 2G2 ✗

LPJY [Lib+13]∗ G1 2G1 ✓

Our SPS iDH 2G1 ✓

*One-time: a key pair can only sign a single message.

6.3 Preliminaries and Definitions

General. Let κ ∈ N denote the security parameter and κ its unary
representation. Let p be a κ-bit prime. For all positive polynomials f(κ),
a function ν : N → R+ is called negligible if ∃ κ0 ∈ N such that ∀ κ > κ0 it
holds that ν(κ) < 1/f(κ). We denote by G∗ the set G \ 1G, where 1G is the

1Note that the LHSPS in [Lib+13] is designed over symmetric bilinear groups with
signatures consisting of 3 group elements. The authors in [LJY16] extend this LHSPS over
asymmetric bilinear groups with signatures of size 2.
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identity element of the group G. We denote the group of integers mod p by
Zp = Z/pZ, its multiplicative group of units by Z∗

p, and the polynomial ring over
Zp by Zp[X]. For a group G of order p with generator g, we denote the discrete
logarithm m ∈ Zp of M ∈ G base g by dlogg(M) (i.e., M = gm). We denote
the set of integers {1, . . . , n} by [1, n] and the vector A by A⃗. Let Y ←$ F (X)
denote running probabilistic algorithm F on input X and assigning its output
to Y . Let x←$ Zp denote sampling an element of Zp uniformly at random. All
algorithms are randomized unless expressly stated otherwise. PPT refers to
probabilistic polynomial time. We denote the output of a security game GGame

between a challenger and a PPT adversary A by GGame
A , where A wins the

game if GGame
A = 1.

Definition 34 (Bilinear Group). A bilinear group generator BG(κ) returns a
tuple (G1,G2,GT , p, e, g, ĝ) such that G1, G2 and GT are finite groups of the
same prime order p, g ∈ G1 and ĝ ∈ G2 are generators, and e : G1×G2 → GT is
an efficiently computable bilinear pairing, which satisfies the following properties:

1. e(g, ĝ) ̸= 1GT
(non-degeneracy).

2. ∀ a, b ∈ Zp, e(ga, ĝb) = e(g, ĝ)ab = e(gb, ĝa) (bilinearity).

We rely on bilinear groups G1 and G2 with no efficiently computable isomorphism
between them [GPS08], also called Type-III or asymmetric bilinear groups. To
date, they are the most efficient choice for relevant security levels.

Definition 35 (Diffie-Hellman Message Space [Fuc09; Abe+10]). Over an
asymmetric bilinear group (G1,G2,GT , p, e, g, ĝ), a pair (M1, M2) ∈ G1 × G2
belongs to the Diffie-Hellman (DH) message space MDH if there exists m ∈ Zp

such that M1 = gm and M2 = ĝm.

One can efficiently verify whether (M1, M2) ∈ MDH by checking e(M1, ĝ) =
e(g, M2).

Definition 36 (Algebraic Group Model [FKL18]). An adversary is algebraic
if for every group element h ∈ G = ⟨g⟩ that it outputs, it is required to
output a representation h⃗ = (η0, η1, η2, . . . ) such that h = gη0

∏
gi

ηi , where
g, g1, g2, · · · ∈ G are group elements that the adversary has seen thus far.

The original definition of the algebraic group model (AGM) [FKL18] only
captured regular cyclic groups G = ⟨g⟩. Mizuide et al. [MTT19] extended
this definition to include symmetric pairing groups (G1 = G2), such that the
adversary is also allowed to output target group elements (in GT ) and their
representations. Recently, Couteau and Hartmann [CH20] defined the Algebraic
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Asymmetric Bilinear Group Model, which extends the AGM definition for
asymmetric pairings by allowing the adversary to output multiple elements from
all three groups. The definition can be found in the full version [Cri+22].

6.3.1 Schemes

Pointcheval-Sanders Signatures [PS16]. The PS signature scheme is
defined over the message space M of scalar messages m ∈ Zp and consists of
the following PPT algorithms:

• pp← Setup(κ): Output pp = (G1,G2,GT , p, e, g, ĝ)← BG(κ).

• (sk, vk)← KGen(pp): Sample x, y ←$ Z∗
p and set sk = (sk1, sk2) = (x, y)

and vk = (vk1, vk2) = (ĝx, ĝy). Output (sk, vk).

• σ ← σ(pp, sk, m): Sample r ←$ Z∗
p and compute σ = (h, s) = (gr, hx+my).

Output σ.

• 0/1 ← Verify(pp, vk, m, σ): If h ∈ G1, h ̸= 1G1 , and the pairing product
equation e(h, vk1vkm

2 ) = e(s, ĝ) holds, output 1 (accept); else, output 0
(reject).

Pointcheval-Sanders signatures are EUF-CMA secure under the PS assumption
(Definition 38) [PS16].
Ghadafi SPS [Gha16]. The Ghadafi structure-preserving signature scheme is
defined over the message spaceMDH of Diffie-Hellman pairs (M1, M2) ∈ G1×G2
such that e(M1, ĝ) = e(g, M2) and consists of the following PPT algorithms:

• pp← Setup(κ): Output pp = (G1,G2,GT , p, e, g, ĝ)← BG(κ).

• (sk, vk)← KGen(pp): Sample x, y ←$ Z∗
p and set sk = (sk1, sk2) = (x, y)

and vk = (vk1, vk2) = (ĝx, ĝy). Output (sk, vk).

• σ ← σ(pp, sk, M1, M2): Sample r ←$ Z∗
p and compute σ = (h, s, t) =

(gr, Mr
1 , hxsy). Output σ.

• 0/1← Verify(pp, vk, σ, M1, M2): If h, s, t ∈ G1, h ̸= 1G1 , and both pairing
product equations e(h, M2) = e(s, ĝ) and e(t, ĝ) = e(h, vk1)e(s, vk2) hold,
output 1 (accept); else, output 0 (reject).

The Ghadafi SPS is weakly EUF-CMA secure in the generic group model
(GGM) [Gha16].
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Shamir Secret Sharing [Sha79]. An (n, t)-Shamir secret sharing divides a
secret s among n shareholders such that each subset of at least t shareholders can
reconstruct s, but fewer than t cannot (and s remains information-theoretically
hidden). A dealer who knows the secret s forms a polynomial f(x) of degree t
with randomly chosen coefficients from Zp such that f(0) = s. The dealer
then securely provides each shareholder with si = f(i), i ∈ [1, n]. Let
s⃗←$ Share(s, p, n, t) denote the process of computing shares s⃗ = (s1, . . . , sn) of
a secret s. Each subset T ⊂ [1, n] of size at least t can pool their shares
to reconstruct the secret s using Lagrange interpolation, as s = f(0) =∑

i∈T siλi, where λi =
∏

j∈T ,j ̸=i
j

j−i .

6.3.2 Assumptions

Definition 37 ((2, 1)-Discrete Logarithm Assumption [BFL20]). Let pp =
(G1,G2,GT , p, e, g, ĝ) ← BG(κ) be an asymmetric bilinear group. The (2, 1)-
discrete logarithm assumption holds with respect to BG if for all PPT adversaries
A, there exists a negligible function ν such that

Pr
[
z ←$ Z∗

p; (Z, Z ′, Ẑ)← (gz, gz2
, ĝz); z′ ←$A(pp, Z, Z ′, Ẑ) : z′ = z

]
< ν(κ) .

Definition 38 (PS Assumption [PS16]). Let the advantage of an adversary A
against the PS game GPS, as defined in Figure 6.1, be as follows:

AdvPS
A (κ) = Pr

[
GPS

A = 1
]

.

The PS assumption holds if for all PPT adversaries A, there exists a negligible
function ν such that AdvPS

A (κ) < ν(κ).

The validity of the tuple (m∗, h∗, s∗) is decidable by checking e(s∗, ĝ) =
e(h∗, ĝx(ĝy)m∗). The PS assumption is an interactive assumption defined by
Pointcheval and Sanders [PS16] to construct an efficient randomizable signature
and has been shown to hold in the GGM.

Kim et al. [Kim+20] introduced a generalized version of the PS assumption
(GPS) that splits the PS oracle OPS(·) into two oracles OGPS

0 (),OGPS
1 (·): the

first samples h←$ G1, and the second takes h and m as input and generates the
PS value hx+my. Recently, Kim et al. [Kim+22] extended the GPS assumption
(GPS2), replacing field element inputs, such as m, with group element inputs.
The GPS2 assumption holds under the (2, 1)-DL assumption (Definition 37)
in the AGM. Both the GPS and GPS2 assumptions can be found in the full
version [Cri+22].
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GPS(κ)
1 : pp = (G1,G2,GT , p, e, g, ĝ)← BG(κ)

2 : x, y ←$ Z∗
p

3 : (m∗, h∗, s∗)← AOPS
(pp, ĝx, ĝy)

4 : return
(
(1) h∗ ̸= 1G1 ∧ m∗ ̸= 0 ∧

5 : (2) s∗ = h∗x+m∗y

∧

6 : (3) m∗ ̸∈ Q
)

OPS(m) // m ∈ Zp

1 : h←$ G1

2 : Q ← Q∪ {m}

3 : return (h, hx+my)

Figure 6.1: Game Defining the PS Assumption.

Owing to the fact that our SPS and TSPS constructions rely on a different
message space, we introduce an analogous generalized PS assumption (GPS3),
defined as follows.

Definition 39 (GPS3 Assumption). Let the advantage of an adversary A
against the GPS3 game GGPS3 , as defined in Figure 6.2, be as follows:

AdvGPS3
A (κ) = Pr

[
GGPS3

A = 1
]

.

The GPS3 assumption holds if for all PPT adversaries A, there exists a negligible
function ν such that AdvGPS3

A (κ) < ν(κ).

We prove that this assumption holds in the AGM if the (2, 1)-DL problem is
hard (Theorem 1).

6.4 Indexed Message Structure-Preserving Signa-
tures

In this section, we introduce the notion of structure-preserving signatures (SPS)
on indexed messages as well as a corresponding notion of security: unforgeability
against chosen indexed message attack (EUF-CiMA). We provide an indexed
message SPS construction, called IM-SPS, and prove its EUF-CiMA security
under the GPS3 assumption (Definition 39) in the random oracle model (ROM)
(Theorem 2). We also propose an indexed multi-message SPS construction,
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GGPS3(κ)
1 : pp = (G1,G2,GT , p, e, g, ĝ)← BG(κ)

2 : x, y ←$ Z∗
p

3 : (M∗
1 , M∗

2 , h∗, s∗)← AOGPS3
0 ,OGPS3

1 (pp, ĝx, ĝy, gy )

4 : return
(
(1) M∗

1 ̸= 1G1 ∧ h∗ ̸= 1G1 ∧

5 : (2) s∗ = h∗x

M∗y

1 ∧

6 : (3) dlogh∗ (M∗
1 ) = dlogĝ(M∗

2 ) ∧

7 : (4) (⋆, M∗
2 ) ̸∈ Q1

)
OGPS3

0 ()
1 : h←$ G1

2 : Q0 ← Q0 ∪ {h}

3 : return h

OGPS3
1 (h, M1, M2)

1 : if
(
h ̸∈ Q0 ∨ dlogh(M1) ̸= dlogĝ(M2)

)
:

2 : return ⊥

3 : if (h, ⋆) ∈ Q1 :

4 : return ⊥

5 : Q1 ← Q1 ∪ {(h, M2)}

6 : return hxMy
1

Figure 6.2: Game defining our GPS3 assumption. The additional element in
the solid box is required for blind signing only (cf. Section 6.6.1).

called IMM-SPS, which allows vectors of indexed messages to be signed, and
prove its EUF-CiMA security under the same assumptions (Theorem 3). IMM-
SPS are useful for applications where additional elements, such as attributes,
are signed.

Indexing can be understood as requiring the existence of an injective function
f that maps each message to an index. We model this by requiring that for all
index/message pairs in an indexed message space M, the following uniqueness
property holds: (id, M̃) ∈ M, (id′, M̃ ′) ∈ M, id = id′ ⇒ M̃ = M̃ ′. That
is, no two messages use the same index. We refer to index/message pairs as
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M = (id, M̃).

Indexing is useful, as signatures can depend on the index; for example, in our
schemes, signing involves evaluating a hash-to-curve function H on the index to
obtain a base element h← H(id). Verifying a message/signature pair does not
require availability of the index, making it structure preserving. Consequently,
the verification message space M̃ is obtained from M by omitting the index.

For our schemes, we need to consider that in verification one can provide a base
element hr obtained by randomizing the original base element h. This is due to
the partial randomizability of the signatures. Thus, different messages M̃, M̃ ′

may be valid representations for the same scalar message m. Consequently,
similar to SPS on equivalence classes (SPS-EQ) [FHS19], the verification message
space M̃ is expanded to consider equivalent (randomized) messages: M̃ = {M̃ |
∃ (·, M̃ ′) ∈ M , M̃ ∈ EQ(M̃ ′)}. The function EQ depends on the concrete
message space and determines the respective set of equivalent messages.

Next, we define the indexed Diffie-Hellman message space used by our IM-SPS
scheme (cf. Figure 6.3 for its encoding function).

Definition 40 (Indexed Diffie-Hellman Message Space). Given an asymmetric
bilinear group (G1,G2,GT , p, e, g, ĝ) ← BG(κ), an index set I, and a random
oracle H : I → G1, MH

iDH is an indexed Diffie-Hellman (DH) message space
if MH

iDH ⊂ {(id, M̃) | id ∈ I, m ∈ Zp, M̃ = (H(id)m, ĝm) ∈ G1 × G2} and the
following index uniqueness property holds: for all (id, M̃) ∈MH

iDH, (id′, M̃ ′) ∈
MH

iDH, id = id′ ⇒ M̃ = M̃ ′.

We define the equivalence class for each message M̃ = (M1, M2) ∈ M̃H
iDH as

EQiDH(M1, M2) = {(Mr
1 , M2) | ∃ r ∈ Zp}.

iDHH(id, m)
1 : h← H(id)

2 : M̃ ← (hm, ĝm)

3 : return (id, M̃)

H(id)
1 : if QH[id] =⊥:

2 : QH[id]←$ G1

3 : return QH[id]

Figure 6.3: Encoding Function of Indexed Diffie-Hellman Message Space in the
ROM.

The subset membership is efficiently decidable by checking e(M1, ĝ) = e(h, M2)
for h ← H(id). Note that, in addition, one needs to guarantee that no two



INDEXED MESSAGE STRUCTURE-PRESERVING SIGNATURES 85

messages use the same index. This is the responsibility of the signer.2 As
mentioned above, messages M̃ lie in a different verification message space M̃H

iDH
that is uniquely determined by MH

iDH and EQiDH. Note that most M̃ ∈ M̃H
iDH

are not indexed Diffie-Hellman messages. In particular, when expanding the
definition of EQiDH, the verification message space is M̃H

iDH = {(Mr
1 , M2) | ∃ r ∈

Zp , ∃ (·, M1, M2) ∈MH
iDH}.

m ∈ Zp
f−→ id︸ ︷︷ ︸

Message Indexing

Indexed DH Message Space in ROM︷ ︸︸ ︷
iDHH(id,m)−−−−−−−→ (id, M1, M2) ∈MH

iDH −−−→ (M̂1, M2)︸ ︷︷ ︸
Randomization of M1

Figure 6.4: From M̃ to M and back again: The first message component is
randomizable; the second fixes the index.

Does M̃ depend on id or does id depend on M̃?

One might observe the above apparent circularity with respect to the indexing
technique. On the one hand, we require existence of an injective function f
that maps (M1, M2) to id. On the other hand, M1 is computed as M1 =
H(id)dlogĝ(M2). This circularity is avoided by computing id from the partial
message M2, or more commonly its discrete logarithm m.

As illustrated in Figure 6.4, the indexing function f assigns an index id to
each scalar message m ∈ Zp. Then, a hash-to-curve function H : {0, 1}∗ → G1
(modeled as a random oracle) is used to generate a unique base element h. A
source group message (M1, M2) can then be obtained using h. In an indexed
message SPS, the signing algorithm takes as input the source group message
together with an index and generates the underlying signature with access to H.
Note that the index does not destroy the structure since the verifier does not
need to know id to verify a signature on message M̃ = (M1, M2).

Indexing function instantiations. Depending on the application, the
indexing function f can be instantiated in different ways. For example, if
messages and signatures are allowed to be public, the indexing function can be
instantiated by using the scalar message m itself as the index: f(m) 7→ m = id.

2To highlight this responsibility, we enforce uniqueness both in the message space and
later on in Line 1 of the of OSign(·) oracle of Figure 6.5.
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If message and signatures must be hidden, as in the case of applications to
anonymous credentials, one can take the approach of committing to the scalar
message and providing a proof of well-formedness of the commitment, as done
by Sonnino et al. [Son+19]. As it is infeasible to open a well-formed commitment
to two different messages, this guarantees uniqueness of the index. Camenisch
et al. [Cam+20] take yet another approach for indexing messages: they assume
the existence of a pre-defined and publicly available indexing function. That is,
there is a unique index value for each message that is known to all signers. The
corresponding base element can be obtained by evaluating the hash-to-curve
function at the given index. As the authors note, if the size of the message
space is polynomial and known in advance, then this approach is secure, since it
is equivalent to including the base element in the public parameters. However,
this is impractical for large message spaces.

6.4.1 Definition of Unforgeability for Indexed Message SPS

We adapt the notion of EUF-CMA security for digital signatures (cf. Definition 13)
to existential unforgeability against chosen indexed message attack (EUF-CiMA).
There are two adjustments: (1) the adversary makes queries to the signing oracle
by providing index/message pairs, and (2) we expand the set of signed messages
QS = {(idi, M̃i)}i to the set of trivially forgeable messages QEQ = {EQ(M̃i)}i,
i.e., all equivalent messages in the verification message space, and use it in the
winning condition of the adversary.

Definition 41 (Existential Unforgeability under Chosen Indexed Message
Attack (EUF-CiMA)). A digital signature scheme over indexed message space
M is EUF-CiMA secure if for all PPT adversaries A playing game GEUF-CiMA

(Figure 6.5), there exists a negligible function ν such that

AdvEUF-CiMA
A (κ) = Pr

[
GEUF-CiMA

A (κ) = 1
]
≤ ν(κ) .

6.4.2 Our Indexed Message SPS

In Figure 6.6, we present our indexed message SPS construction IM-SPS over
the indexed Diffie-Hellman message space MH

iDH.
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GEUF-CiMA
A (κ)

1 : pp← Setup(κ)

2 : (sk, vk)←$ KGen(pp)

3 : (M̃∗, σ∗)←$AOSign (pp, vk)

4 : return
(
M̃∗ ̸∈ QEQ ∧

5 : Verify(pp, vk, M̃∗, σ∗)
)

OSign(id, M̃)
1 : if (id, ⋆) ∈ QS :

2 : return ⊥

3 : else : σ ← Sign(pp, sk, (id, M̃))

4 : QS ← QS ∪ {(id, M̃)}

5 : QEQ ← QEQ ∪ {EQ(M̃)}

6 : return σ

Figure 6.5: Game Defining GEUF-CiMA
A (κ).

Setup(κ)
1 : (G1,G2,GT , p, e, g, ĝ)← BG(κ)

2 : H : {0, 1}∗ → G1

3 : // select hash function

4 : pp← ((G1,G2,GT , p, e, g, ĝ), H)

5 : return pp

Sign(pp, sk, (id, M1, M2))
1 : h← H(id)

2 : if e(h, M2) = e(M1, ĝ) :

3 : (h, s)← (h, hsk1 M sk2
1 )

4 : return σ ← (h, s)

5 : else : return ⊥

KGen(pp)
1 : x, y ←$ Z∗

p

2 : sk← (sk1, sk2) = (x, y)

3 : vk← (vk1, vk2, vk⋆
2 )

4 : = (ĝx, ĝy, gy )

5 : return (sk, vk)

Verify(pp, vk, (M1, M2), σ)
1 : // does not invoke H

2 : parse σ = (h, s)

3 : return
(
h ̸= 1G1 ∧M1 ̸= 1G1 ∧

4 : e(h, M2) = e(M1, ĝ) ∧

5 : e(h, vk1)e(M1, vk2) = e(s, ĝ)
)

Figure 6.6: Our Indexed Message SPS Construction IM-SPS. The additional
elements in solid boxes are required for blind signing only (cf. Section 6.6.1).
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6.4.3 Security of IM-SPS

We prove that our proposed IM-SPS construction (Figure 6.6) is EUF-CiMA
secure under the GPS3 assumption (Definition 39) in the random oracle model.

The GPS3 assumption underpins both the security of IM-SPS as well as our
indexed multi-message SPS construction IMM-SPS (Section 6.4.4). Our security
reductions from IM-SPS and IMM-SPS to GPS3 are tight. Furthermore, we
show the tight security of our TSPS (Section 6.5) under the security of IMM-SPS.
Figure 6.7 defines a roadmap for our IM-SPS, IMM-SPS, and TSPS constructions
and their underlying assumptions. Thus, as a starting point, we reduce the
GPS3 assumption to the hardness of the (2, 1)-DL problem (Definition 37) in
the algebraic group model.

(2, 1)-DL IM-SPS

TSPSIMM-SPS

GPS3
Thm. 1 (AGM) Thm. 2 (ROM)

Thm. 3 (ROM) Thm. 4 (ROM)

Figure 6.7: The proposed constructions and underlying assumptions.

Theorem 1. The GPS3 assumption (Definition 39) holds in the asymmetric
algebraic bilinear group model under the hardness of the (2, 1)-DL problem
(Definition 37).

The proof is provided in the full version [Cri+22].

Theorem 2. The indexed message SPS scheme IM-SPS (Figure 6.6) is correct
and EUF-CiMA secure (Definition 41) under the GPS3 assumption (Definition 39)
in the random oracle model.

We first present an attack to motivate the need for uniqueness in the indexed
message space. Assume there were no uniqueness requirement, and suppose
the redundant check in Line 1 of the of OSign(·) oracle of Figure 6.5 were not
present. Then, a forger could obtain two signatures s = hxMy

1 , s′ = hxM ′
1

y

and compute a forgery s∗ = s2/s′ = hx(M2
1 /M ′

1)y.

Proof Outline. Let A be a PPT adversary against the EUF-CiMA security of
IM-SPS. We construct a PPT reduction B against the GPS3 assumption as
follows. When A queries the random oracle H on a fresh id, B queries its oracle
OGPS3

0 () to obtain a random base element h, which it stores and returns to A.
When A queries its signing oracle Oσ(·) on (id, M1, M2), B looks up h = H(id)
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and queries its oracle OGPS3
1 (·) on (h, M1, M2) to receive hxMy

1 . Finally, B
returns the signature σ = (h, hxMy

1 ) to A. B correctly simulates the EUF-CiMA
game, and the success probability of A and B is the same.

The attack above would violate the condition (h, ⋆) /∈ Q1 in Line 3 of
the OGPS3

1 (·) oracle in Figure 6.2. The full proof is provided in the full
version [Cri+22].

6.4.4 Our Indexed Multi-Message SPS

We extend our IM-SPS construction to an indexed multi-message SPS
construction IMM-SPS, which allows vectors of indexed messages to be signed,
and prove its EUF-CiMA security. Extending the message space to allow vectors
of any length is desirable for applications in which several attributes may be
signed. The number of pairings required for verification scales linearly with the
length of the message vectors, but signatures remain constant sized (2 group
elements).

MiDHH(id, m⃗)
1 : h← H(id)

2 : for j ∈ [1, ℓ] :

3 : M1j ← hmj ; M2j ← ĝmj

4 : return
(
id, (M⃗1, M⃗2)

)

H(id)
1 : if QH[id] =⊥:

2 : QH[id]←$ G1

3 : return QH[id]

Figure 6.8: Encoding function of iDH multi-message space in the ROM.

We first generalize the notion of an indexed message space to the multi-message
setting. In Figure 6.8, we present the encoding function MiDHH(id, m⃗) of a
multi-message variant of the indexed Diffie-Hellman message space that maps,
for any ℓ > 1, ℓ-scalar message vectors m⃗ = (m1, . . . , mℓ) ∈ Zℓ

p to 2ℓ-source
group message vectors (M⃗1, M⃗2) = ((M11, . . . , M1ℓ), (M21, . . . , M2ℓ)) ∈ Gℓ

1×Gℓ
2

based on a given index id.

Definition 42 (Indexed Diffie-Hellman Multi-Message Space). Given an
asymmetric bilinear group (G1,G2,GT , p, e, g, ĝ) ← BG(κ), an index set I,
and a random oracle H : I → G1, MH

MiDH is an indexed Diffie-Hellman (DH)
message space if MH

MiDH ⊂ {(id, M̃) | id ∈ I, m⃗ ∈ Zℓ
p, M̃ = MiDHH(id, m⃗)}
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Setup(κ)
1 : (G1,G2,GT , p, e, g, ĝ)← BG(κ)

2 : H : {0, 1}∗ → G1

3 : // select hash function

4 : pp← ((G1,G2,GT , p, e, g, ĝ), H)

5 : return pp

KGen(pp, ℓ)
1 : x, y1, . . . , yℓ ←$ Z∗

p

2 : s⃗k← (sk0, . . . , skℓ) = (x, y1, . . . , yℓ)

3 : v⃗k← (vk0, vk1, vk⋆
1 , . . . , vkℓ, vk⋆

ℓ )

4 : = (ĝx, ĝy1 , gy1 , . . . , ĝyℓ , gyℓ )

5 : return (s⃗k, v⃗k)

Sign(pp, s⃗k, (id, M⃗1, M⃗2))
1 : h← H(id)

2 : if ∃ j ∈ [1, ℓ] | e(h, M2j) ̸= e(M1j , ĝ) :

3 : return ⊥

4 : else : return σ ← (h, s) = (h, hsk0

ℓ∏
j=1

M
skj

1j )

Verify(pp, v⃗k, (M⃗1, M⃗2), σ)
1 : // does not invoke H

2 : parse σ = (h, s)

3 : return
(
h ̸= 1G1 ∧ {M1j}j∈[1,ℓ] ̸= 1G1 ∧

{
e(h, M2j) = e(M1j , ĝ)

}
j∈[1,ℓ]

∧

4 : e(h, vk0)
ℓ∏

j=1

e(M1j , vkj) = e(s, ĝ)
)

Figure 6.9: Our Indexed Multi-Message SPS Construction IMM-SPS. The
additional elements in solid boxes are required for blind signing only (cf.
Section 6.6.1).

and the following index uniqueness property holds: for all (id, M̃) ∈ MH
MiDH,

(id′, M̃ ′) ∈MH
MiDH, id = id′ ⇒ M̃ = M̃ ′.

We define the equivalence class for each multi-message M̃ = (M⃗1, M⃗2) ∈ M̃H
MiDH

as EQMiDH(M⃗1, M⃗2) = {(M⃗r
1 , M⃗2) | ∃ r ∈ Zp}.
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This generalization of the indexed Diffie-Hellman message space leads us to an
indexed multi-message SPS, described in Figure 6.9.

Theorem 3. The indexed multi-message SPS scheme IMM-SPS (Figure 6.9)
is correct and EUF-CiMA secure (Definition 41) under the GPS3 assumption
(Definition 39) in the random oracle model.

The proof is provided in the full version [Cri+22].

6.5 Threshold Structure-Preserving Signatures

We now define the syntax and security notions for non-interactive (n, t)-
Threshold Structure-Preserving Signatures (TSPS) for indexed message spaces.
We then propose an efficient instantiation for an indexed Diffie-Hellman multi-
message space. In an (n, t)-TSPS, the signing key is distributed among n
parties, and the generation of any signature requires the cooperation of a subset
of at least t parties. We assume a centralized key generation algorithm for
distributing the signing key, but a decentralized key generation protocol (DKG),
such as Pedersen’s DKG [Ped92], may be used instead.

Definition 43 (Threshold Structure-Preserving Signature). For a given security
parameter κ and bilinear group BG, an (n, t)-TSPS over indexed message space
M consists of a tuple (Setup, KGen, ParSign, ParVerify, Reconst, Verify) of PPT
algorithms defined as follows:

• pp ← Setup(κ): The setup algorithm takes the security parameter κ as
input and returns the public parameters pp.

• (s⃗k, v⃗k, vk) ← KGen(pp, ℓ, n, t): The key generation algorithm takes the
public parameters pp and length ℓ along with two integers t, n ∈ poly(κ)
such that 1 ≤ t ≤ n as inputs. It returns two vectors of size n of
signing/verification keys s⃗k = (sk1, . . . , skn) and v⃗k = (vk1, . . . , vkn) such
that each party Pi for i ∈ {1, . . . , n} receives a pair (ski, vki) along with
the global verification key vk.

• σi ← ParSign(pp, ski, M): The partial signing algorithm takes the public
parameters pp, a secret signing key ski, and a message M ∈M as inputs
and returns a partial signature σi.

• 0/1 ← ParVerify(pp, vki, M̃ , σi): The partial verification algorithm is a
deterministic algorithm that takes the public parameters pp, a verification
key vki, message M̃ ∈ M̃, and a purported partial signature σi as inputs.
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If σi is a valid partial signature, it returns 1 (accept); else, it returns 0
(reject).

• (σ,⊥) ← Reconst(pp, {i, σi}i∈T ): The reconstruction algorithm is a
deterministic algorithm that takes public parameters pp and a set T
of t partial signatures {i, σi} with corresponding indices as inputs and
returns an aggregated signature σ or ⊥.

• 0/1← Verify(pp, vk, M̃ , σ): The verification algorithm is a deterministic
algorithm that takes the public parameters pp, the global verification key
vk, a message M̃ ∈ M̃, and a purported signature σ as inputs. If σ is a
valid signature, it returns 1 (accept); else, it returns 0 (reject).

Three main security properties for TSPS defined over indexed message spaces are
partial verification correctness, evaluation correctness, and threshold existential
unforgeability against chosen indexed message attack (Threshold EUF-CiMA).
Intuitively, partial verification correctness means that any correctly generated
partial signature via the ParSign algorithm passes the ParVerify verification
checks, and evaluation correctness means that the Reconst algorithm for a set
of well-formed partial signatures {i, σi}i∈T (meaning all with the same index,
on a message M) results in a valid aggregated signature σ.

Definition 44 (Partial Verification Correctness). An (n, t)-TSPS scheme
satisfies partial verification correctness if for all correctly indexed messages
M ∈M, pp← Setup(κ), (s⃗k, v⃗k, vk)← KGen(pp, ℓ, n, t) and i ∈ [1, n] that

Pr
[
ParVerify(pp, vki, M̃ , ParSign(pp, ski, M)) = 1

]
= 1 .

Definition 45 (Evaluation Correctness). An (n, t)-TSPS scheme satisfies
evaluation correctness if for all correctly indexed messages M ∈ M, pp ←
Setup(κ), (s⃗k, v⃗k, vk)← KGen(pp, ℓ, n, t) and T ⊆ [1, n], |T | = t that

Pr
[
σ ← Reconst(pp, {i, ParSign(pp, ski, M)}i∈T ) : Verify(pp, vk, M̃ , σ) = 1

]
= 1.

Threshold Unforgeability. We next define the notion of threshold
unforgeability for non-interactive (n, t)-TSPS schemes. The Threshold EUF-
CiMA game is defined formally in Figure 6.10. Given a set of party indices
P = {1, . . . , n}, we assume that the adversary can corrupt up to t− 1 parties
and that there is at least one honest party. We denote the set of corrupt parties
by C and the set of honest parties by H = P \ C.

In the unforgeability game, the challenger generates public parameters pp and
returns them to the adversary. The adversary chooses the set of corrupted



THRESHOLD STRUCTURE-PRESERVING SIGNATURES 93

GT-EUF-CiMA
A (κ)

1 : pp← Setup(κ)

2 : C ←$A(pp) // set of corrupt signers

3 : if C /∈ [1, n] ∨ |C| > t− 1 :

4 : return ⊥

5 : else : H ← [1, n] \ C // set of honest signers

6 : (s⃗k, v⃗k, vk)← KGen(pp, ℓ, n, t)

7 : (M̃∗, σ∗)←$AOPSign
(
{ski}i∈C , v⃗k, vk

)
8 : return (M̃∗ ̸∈ QEQ ∧ Verify(pp, vk, M̃∗, σ∗))

OPSign(k, id, M̃) // M = (id, M̃)
1 : if (k /∈ H ∨ (k, id, ⋆) ∈ QS ∨ (⋆, id, M̃ ′) ∈ QS, M̃ ′ ̸= M̃) :

2 : return ⊥

3 : else : σk ← ParSign(pp, skk, (id, M̃))

4 : QS ← QS ∪ {(k, id, M̃)}

5 : QEQ ← QEQ ∪ {EQ(M̃)}

6 : return σk

Figure 6.10: Game GT-EUF-CiMA
A (κ).

participants C. The challenger then runs KGen to derive the global verification
key vk, the individual verification keys {vki}n

i=1, and the secret signing shares
{ski}n

i=1. It returns vk, {vki}n
i=1, and the set of corrupt signing shares {skj}j∈C

to the adversary. We assume the adversary maintains state before and after
KGen.

After key generation, the adversary can request partial signatures on messages
of its choosing from honest signers by querying oracle OPSign(·).

The adversary wins if it can produce a valid forgery (M̃∗, σ∗) with respect to
the global verification key vk representing the set of n signers, on a message
M̃∗ for which no equivalent M̃∗′ has been previously queried to OPSign(·).
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Setup(κ)
1 : (G1,G2,GT , p, e, g, G2)← BG(κ); H : {0, 1}∗ → G1 // select hash function

2 : return pp← ((G1,G2,GT , p, e, g, G2), H)

KGen(pp, ℓ, n, t)
1 : x, y1, . . . , yℓ ←$ Z∗

p

2 : x⃗←$ Share(x, p, n, t), {y⃗j ←$ Share(yj , p, n, t)}j∈[1,ℓ]

3 : for i ∈ [1, n] :

4 : ski ← (ski0, ski1, . . . , skiℓ) = (xi, yi1, . . . , yiℓ)

5 : vki ← (vki0, vki1, vk⋆
i1 , . . . , vkiℓ, vk⋆

iℓ ) = (Gxi
2 , Gyi1

2 , gyi1 , . . . , Gyiℓ
2 , gyiℓ )

6 : s⃗k← (sk1, . . . , skn)

7 : v⃗k← (vk1, . . . , vkn)

8 : vk← (vk00, vk01, vk⋆
01 , . . . , vk0ℓ, vk⋆

0ℓ ) = (Gx
2 , Gy1

2 , gy1 , . . . , Gyℓ
2 , gyℓ )

9 : return (s⃗k, v⃗k, vk)

Figure 6.11: Our Threshold SPS Construction TSPS. The additional elements
in solid boxes are required for blind signing only (cf. Section 6.6.1).

Definition 46 (Threshold EUF-CiMA). A non-interactive (n, t)-TSPS scheme
over indexed message space M is Threshold EUF-CiMA secure if for all PPT
adversaries A playing game GT-EUF-CiMA (Figure 6.10), there exists a negligible
function ν such that

AdvT-EUF-CiMA
A (κ) = Pr

[
GT-EUF-CiMA

A (κ) = 1
]
≤ ν(κ) .

6.5.1 Our Indexed Multi-Message TSPS

In Figure 6.11, we present our (n, t)-TSPS scheme TSPS over an indexed
Diffie-Hellman multi-message space MH

MiDH, as defined in Figure 6.8.
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ParSign
(

pp, ski, (id, M⃗1, M⃗2)
)

1 : h← H(id)

2 : if ∃ j ∈ [1, ℓ] |

3 : e(h, M2j) ̸= e(M1j , G2) :

4 : return ⊥

5 : else : si ← hski0

ℓ∏
j=1

M1j
skij

6 : return σi ← (h, si)

ParVerify
(

pp, vki, (M⃗1, M⃗2), σi

)
1 : // does not invoke H

2 : parse σi = (hi, si)

3 : return
(
hi ̸= 1G1 ∧

4 : {M1j}j∈[1,ℓ] ̸= 1G1 ∧

5 : {e(hi, M2j) = e(M1j , G2)}j∈[1,ℓ] ∧

6 : e(hi, vki0)
ℓ∏

j=1

e(M1j , vkij) = e(si, G2)

Reconst
(

pp, v⃗k, (M⃗1, M⃗2), {i, σi}i∈T

)
1 : parse σi = (hi, si)

2 : if ∃ i, j ∈ T , i ̸= j | hi ̸= hj

3 : ∨ ∃ i ∈ T |

4 : ParVerify(pp, vki, (M⃗1, M⃗2), σi) = 0

5 : return ⊥

6 : else : h← hi

7 : return σ ← (h, s) = (h,
∏
i∈T

sλi
i )

Verify
(

pp, vk, (M⃗1, M⃗2), σ
)

1 : // does not invoke H

2 : parse σ = (h, s)

3 : return
(
h ̸= 1G1∧

4 : {M1j}j∈[1,ℓ] ̸= 1G1 ∧

5 : {e(h, M2j) = e(M1j , G2)}j∈[1,ℓ] ∧

6 : e(h, vk00)
ℓ∏

j=1

e(M1j , vk0j) = e(s, G2)

Figure 6.11: Our Threshold SPS Construction TSPS. The additional elements
in solid boxes are required for blind signing only (cf. Section 6.6.1).

6.5.2 Security of TSPS

Theorem 4. The indexed multi-message (n, t)-Threshold SPS scheme TSPS is
correct and Threshold EUF-CiMA secure (Definition 46) in the random oracle
model under the EUF-CiMA security of IMM-SPS (Theorem 3).

Proof. Correctness. We first show that the proposed TSPS satisfies partial
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verification correctness (Definition 44), i.e., any correctly generated partial
signature via the ParSign algorithm passes the ParVerify verification checks.
Indeed, for all i ∈ [1, n] and correctly indexed messages M = (id, M⃗1, M⃗2) ∈
MH

MiDH, we have:

e(h, vki0)
ℓ∏

j=1
e(M1j , vkij) = e(h, ĝxi)

ℓ∏
j=1

e(M1j , ĝyij )e(hxi

ℓ∏
j=1

M
yij

1j , ĝ) = e(si, ĝ) .

Next, we show that TSPS satisfies evaluation correctness (Definition 45); that is,
the Reconst algorithm for a set of partial signatures {i, σi}i∈T , T ⊆ [1, n], |T | = t,
on a message M = (id, M⃗1, M⃗2) with the same h ← H(id) results in a valid
aggregated signature σ = (h, s). Indeed,

s =
∏
i∈T

sλi
i =

∏
i∈T

(hski0

ℓ∏
j=1

M
skij

1j )λi = h
∑

i∈T
ski0λi

ℓ∏
j=1

M

∑
i∈T

skijλi

1j

= hsk0

ℓ∏
j=1

M
skj

1j

where λi is the Lagrange coefficient for party Pi with respect to the signing set
T . Next, we show that verification holds for the above aggregated signature
σ on message M̃ = (M⃗1, M⃗2). Indeed, ∀ j ∈ [1, ℓ] we have that e(h, M2j) =
e(h, ĝmj ) = e(hmj , ĝ) = e(M1j , ĝ) and

e(h, vk0)
ℓ∏

j=1
e(M1j , vkj) = e(h, ĝx)

ℓ∏
j=1

e(M1j , ĝyj ) = e(hx
ℓ∏

j=1
M

yj

1j , ĝ) = e(s, ĝ) .

Note that successful partial signature verification using ParVerify and consistency
of h guarantee successful reconstruction.

Need for Uniqueness. The hypothetical attack described after Theorem 2
also works with a partial signing oracle OPSign(·). Assume an (n, t)-TSPS with
n > 2t, and suppose there were no uniqueness requirement for the message space
and that the redundant check in Line 2 of the OPSign(·) oracle of Figure 6.10 were
not present. Then, a forger could obtain 2t partial signatures to reconstruct
signatures s = hxMy

1 , s′ = hxM ′
1

y and compute a forgery s∗ = s2/s′ =
hx(M2

1 /M ′
1)y that is a valid signature on fresh message M2

1 /M ′
1 .

Threshold EUF-CiMA. Our proof of security for TSPS resembles that of
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threshold BLS in [Bol03]. We wish to show that if there exists a PPT adversary
A that breaks the Threshold EUF-CiMA security (Figure 6.10) of TSPS with
non-negligible probability, then we can construct a PPT adversary B that
breaks the EUF-CiMA security (Figure 6.5) of the underlying IMM-SPS scheme
(Figure 6.6) with non-negligible probability.

Suppose there exists such a PPT adversary A. Then, running A as a subroutine,
we construct a reduction B breaking the EUF-CiMA security of IMM-SPS as
follows.

The reduction B is responsible for simulating oracle responses for queries to
OPSign(·) and H. Let QH be the set of H queries id and their responses. B
may program the random oracle H. Let QS be the set of OPSign(·) queries
(k, id, M̃) and QEQ the set of equivalence classes of messages M̃ . B initializes
QH,QS,QEQ to the empty set.

Initialization. B takes as input public parameters pp← (G1,G2,GT , p, e, g, ĝ)
and an IMM-SPS verification key vk′. In the EUF-CiMA game, B has access
to oracles O′

Sign(·) and H′. B uses vk′ = (vk′
00, vk′

01, vk′⋆
01, . . . , vk′

0ℓ, vk′⋆
0ℓ) as the

TSPS verification key vk = (vk00, vk01, vk⋆
01, . . . , vk0ℓ, vk⋆

0ℓ).

Simulating Key Generation. B simulates the key generation algorithm as follows.

• B defines the pair of secret/verification keys of the corrupted parties Pi, i ∈
C, as follows. Assume without loss of generality that |C| = t−1. For all i ∈
C, B samples random values xi0, yi1, . . . , yiℓ ←$ (Z∗

p)ℓ+1 and defines party
Pi’s secret key as ski ← (ski0, ski1, . . . , skiℓ) = (xi0, yi1, . . . , yiℓ) and the
corresponding verification key as vki ← (vki0, vki1, vk⋆

i1, . . . , vkiℓ, vk⋆
iℓ) =

(ĝxi0 , ĝyi1 , gyi1 , . . . , ĝyiℓ , gyiℓ).

• To generate the verification key of the honest parties Pk, k ∈ H,H =
[1, n] \ C, B proceeds as follows:

1. For all i ∈ T̃ := C ∪ {0}, it computes the Lagrange polynomials
evaluated at point k:

λ̃ki = LT̃
i (k) =

∏
j∈T̃ j ̸=i

(j − k)
(j − i) . (6.3)

2. It takes the verification keys of corrupted parties {vki}i∈C and the
global verification key vk and then computes
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vkk = (vkk0, vkk1, vk⋆
k1, . . . , vkkℓ, vk⋆

kℓ)

=
(

vkλ̃k0
00

∏
i∈C

vkλ̃ki
i0 , vkλ̃k0

01

∏
i∈C

vkλ̃ki
i1 , vk⋆

01
λ̃k0

∏
i∈C

vk⋆
i1

λ̃ki , . . . ,

vkλ̃k0
0ℓ

∏
i∈C

vkλ̃ki

iℓ , vk⋆
0ℓ

λ̃k0
∏
i∈C

vk⋆
iℓ

λ̃ki

)
.

B returns the global verification key vk, v⃗k = (vk1, . . . , vkn), and secret keys
{skj}j∈C to A.

Simulating Random Oracle H(id): When A queries H on index id, if QH[id] =⊥,
then B queries H′(id), receives a base element h, and sets QH[id]← h. B returns
QH[id] to A.

Simulating Signing Oracle OPSign(k, id, M̃): When A queries OPSign(·) on
(k, id, M̃) for honest party identifier k ∈ H and message M = (id, M̃) =
(id, M⃗1, M⃗2), if k /∈ H or (k, id, ⋆) ∈ QS or (⋆, id, M̃ ′) ∈ QS, M̃ ′ ≠ M̃ , B returns
⊥. Otherwise, B does the following:

1. B looks up h = QH[id], queries O′
σ(id, M⃗1, M⃗2), and receives the signature

σ0 = (h, s0).

2. For all i ∈ C, B computes the partial signatures σi = (h, si) =
(h, hski0

∏ℓ
j=1 M

skij

1j ), as it knows the secret keys of corrupted parties.

3. For all i ∈ T̃ = C ∪ {0}, B computes Lagrange coefficients λ̃ki as
in Equation (6.3).

4. B updates QS ← QS ∪ {(k, id, M̃)} and QEQ ← QEQ ∪ {EQ(M̃)}.

5. B computes (h, sk) = (h, sλ̃k0
0

∏
i∈C sλ̃ki

i ) and returns σk = (h, sk) to A.

Output. At the end of the game, A produces a valid forgery σ∗ = (h∗, s∗) on
message M̃∗ = (M⃗∗

1 , M⃗∗
2 ), and B returns (M̃∗, σ∗) as its forgery.

B correctly simulates key generation and A’s hash and signing queries. Since
A’s forgery satisfies M̃∗ /∈ QEQ and Verify(pp, vk, M̃∗, σ∗) = 1, B’s winning
conditions are also satisfied and AdvT-EUF-CiMA

TSPS,A (κ) ≤ AdvEUF-CiMA
IMM-SPS,B(κ).
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6.6 Applications to Threshold-Issuance Anonymous
Credentials

Threshold-Issuance Anonymous Credential (TIAC) systems are a prime use-case
of threshold SPS. TIAC systems, defined by Sonnino et al. [Son+19], are used
in various applications [KKS22; Tom+22]. A TIAC is an anonymous credential
scheme that enables a group of signers (or issuers) to jointly sign a blind
message, i.e., issue a credential, without learning the original message. The core
ingredient is a blind signing protocol for the used threshold signature scheme.
Besides the threshold signature, this protocol relies on two main cryptographic
primitives: NIZKs and commitment schemes.

The TIAC protocol of [Son+19], known as Coconut, lacks a rigorous security
proof. Recently, Rial and Piotrowska [RP22] conducted a security analysis
that required some modifications to the original Coconut scheme, resulting in
Coconut++. Coconut and Coconut++ are based on a threshold Pointcheval-
Sanders signature scheme that supports an efficient blind signing protocol.

6.6.1 Blind Signing for TSPS

In Figure 6.11, we show that our TSPS construction also supports threshold
blind signing. In addition to the TSPS parameters, the public parameters pp
now contain the common reference string (CRS) of a NIZK and the public
parameters of a commitment scheme.

For intuition, we note that in PrepareBlindSign, the index is computed as a
commitment to m⃗, using the generalized Pedersen commitment scheme. The
single messages are also committed in a Pedersen commitment, where one
commitment parameter is computed on the fly via a random oracle as h = H(id).
The hiding property of commitments and the zero-knowledge property of NIZK
ensure the blindness.

We note that the construction in Figure 6.11 follows the blind signing protocol
for Coconut++ closely, with only minor syntactical changes due to the indexed
DH message space (highlighted in the figure). Consequently, the validity of the
blinding operations readily follows from that of Coconut++. The key generation
phase is the same as in Figure 6.11.
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PrepareBlindSign(pp, m⃗) // pp = (ppc, CRS, H)
1 : parse m⃗ = (m1, . . . , mℓ)

2 : ω ←$ Z∗
p, id← Com(ppc, m⃗, ω) = Gω

0

ℓ∏
i=1

Gmi
i

3 :
(
id, (M⃗1, M⃗2)

)
← MiDHH(id, m⃗)

4 : for j ∈ [1, ℓ] :

5 : ω1j , ω2j ←$ Z∗
p

6 : (cm1j , cm2j)←
(

gω1j M1j , Gω2j

2 M2j

)
7 : c⃗m = {(cm1j , cm2j)}ℓ

j=1

8 : Ω← (ω, ω11, ω21, . . . , ω1ℓ, ω2ℓ)

9 : πs ← NIZK.Prove
{

Ω, m⃗ | id = Gω
0

ℓ∏
i=1

Gmi
i ∧

10 :
{

cm1j = gω1j H(id)mj}ℓ
j=1 ∧

{
cm2j = gω2j Gmj

2
}ℓ

j=1

}
11 : return (Ω, id, c⃗m, πs)

Figure 6.11: A Threshold Blind Signature with straight-line extraction. Grey
boxes mark the changes from Coconut++.
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BlindSign(pp, ski, id, c⃗m, πs)
1 : parse ski = (sk1, . . . , skn)

2 : h← H(id)

3 : if NIZK.Verify(CRS, (id, c⃗m, h), πs) = 0 :

4 : return ⊥

5 : else : s̄i ← hski0

ℓ∏
j=1

cm1j
skij

6 : return σ̄i ← (h, s̄i)

AggCred(pp, {i, σ̄i}i∈T )
1 : parse σ̄i = (hi, s̄i)

2 : if ∃ i, j ∈ T , i ̸= j | hi ̸= hj : return ⊥

3 : else : h← hi

4 : return σ̄ ← (h, s̄) = (h,
∏
i∈T

sλi
i )

UnBlind(pp, vk, σ̄, Ω)
1 : parse σ̄ = (h, s̄)

2 : return σ := (h, s)← (h, s̄

ℓ∏
j=1

(gyj )−ωj )

Figure 6.11: A Threshold Blind Signature with straight-line extraction.
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6.6.2 Removing Rewinding Extractors in TIAC

The TIAC constructions Coconut and Coconut++ combine threshold signatures
(with blind signing) with generalized Schnorr proofs [Sch90] turned into
extractable (knowledge-sound) NIZK proofs via the Fiat-Shamir (FS)
heuristic [FS87] in the random oracle model. This, however, is problematic
if used within the universal composability (UC) framework [Can01], as
extractability for such NIZK proofs requires rewinding. For instance, Coconut++

is modeled in the UC framework but requires rewinding to prove that it realizes
FAC [RP22, Theorem 3]. This, in turn, makes the formal security guarantees in
the UC framework questionable.

Fischlin’s framework [Fis06], also in the random oracle model, is a well-
known technique to avoid rewinding. However, this adds significant overhead
that negatively affects its practical applicability. Groth-Sahai (GS) NIZK
proofs [GS08] are an efficient alternative NIZK proof system. GS proofs
are secure in the standard model and support straight-line extraction of the
witnesses, i.e., avoid the rewinding required by the Fischlin transform. This
makes them particularly attractive if one is interested in achieving composable
security, e.g., UC security. We note that there are known transformations
like [Gro06; GOS06; Cha+12] to make GS proofs UC secure despite their
malleability. However, GS proofs can only extract group elements.

Towards achieving efficient straight-line extraction without the need of rewinding,
we propose to replace the blind issuance threshold Pointcheval-Sanders signature
of Coconut++ with our blind issuance TSPS. We make the reasonable assumption
that the scalar messages (attributes in the TIAC) come from some polynomially
bounded message space, e.g., in practice, attributes can be encoded in small
scalar values. This modification enables us to provide a GS proof of a valid
signature for the showing of a credential with non-revealed messages. Noticing
that GS NIZKs are commit-and-proof NIZKs, we can use an additional Schnorr
NIZK obtained via Fiat-Shamir to prove a predicate over the scalar messages in
the GS commitments. The interesting point is that the latter NIZK only needs
to be sound, but does not need to be extractable, as GS commitments can be
perfectly binding. Thus, we can avoid rewinding and, due to the polynomially
bounded message space, we can extract the scalar messages (attributes in TIAC)
efficiently from the straight-line extracted messages from the commitments of
the GS proof.
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6.7 Conclusion and Open Problems

In this work, we introduce the notion of a threshold structure-preserving
signature (TSPS) and present an efficient fully non-interactive TSPS
construction. We prove that the proposed TSPS is secure under a new variant
of the generalized Pointcheval-Sanders (PS) assumption in the random oracle
model. We have shown that our TSPS can be used as a drop-in replacement in
TIAC systems to remove the need for rewinding extractors.

While we use a message indexing method in order to construct a non-interactive
scheme, a non-interactive TSPS without indexing is an interesting open problem.
Moreover, it is interesting to construct schemes that rely on weaker assumptions
and avoid the use of the random oracle model. When it comes to the security
model, the following two challenging problems remain open: obtaining security
under adaptive corruptions more tightly than via a guessing argument from
static corruptions, and achieving the strongest notion possible for fully non-
interactive schemes (TS-UF-1) [Bel+22]. In general, we believe this work can
open a new line of research for structure-preserving multi-party protocols, such
as threshold structure-preserving encryption. Moreover, we expect that TSPS
will have further applications beyond TIAC systems.
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Abstract. Structure-preserving signatures (SPS) have emerged as an important
cryptographic building block, as their compatibility with the Groth-Sahai (GS)
NIZK framework allows to construct protocols under standard assumptions with
reasonable efficiency. Over the last years there has been a significant interest in
the design of threshold signature schemes. However, only very recently Crites
et al. (ASIACRYPT 2023) have introduced threshold SPS (TSPS) along with a
fully non-interactive construction. While this is an important step, their work
comes with several limitations. With respect to the construction, they require
the use of random oracles, interactive complexity assumptions and are restricted
to so called indexed Diffie-Hellman message spaces. Latter limits the use of
their construction as a drop-in replacement for SPS. When it comes to security,
they only support static corruptions and do not allow partial signature queries
for the forgery.

In this paper, we ask whether it is possible to construct TSPS without such
restrictions. We start from an SPS from Kiltz, Pan and Wee (CRYPTO
2015) which has an interesting structure, but thresholdizing it requires some
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modifications. Interestingly, we can prove it secure in the strongest model (TS-
UF-1) for fully non-interactive threshold signatures (Bellare et al., CRYPTO
2022) and even under fully adaptive corruptions. Surprisingly, we can show the
latter under a standard assumption without requiring any idealized model. All
known constructions of efficient threshold signatures in the discrete logarithm
setting require interactive assumptions and idealized models.

Concretely, our scheme in type III bilinear groups under the SXDH assumption
has signatures consisting of 7 group elements. Compared to the TSPS from
Crites et al. (2 group elements), this comes at the cost of efficiency. However,
our scheme is secure under standard assumptions, achieves strong and adaptive
security guarantees and supports general message spaces, i.e., represents a drop-
in replacement for many SPS applications. Given these features, the increase in
the size of the signature seems acceptable even for practical applications.

7.1 Introduction

Structure-Preserving Signatures. Structure-preserving signature schemes
(SPS for short) introduced by Abe et al. [Abe+10] are signatures defined over
bilinear groups where the messages, public keys and signatures are required
to be source group elements. Moreover, signature verification just consists of
group membership testing and evaluating pairing product equations (PPE). SPS
are very attractive as they can be combined with efficient pairing-based non-
interactive zero-knowledge (NIZK) proofs due to Groth and Sahai (GS) [GS08].
This allows to construct many privacy-preserving cryptographic primitives and
protocols under standard assumptions with reasonable practical efficiency.

SPS have been used in the literature to construct numerous cryptographic
primitives and building blocks. Among them are many variants of signatures
such as blind signatures [Abe+10; FHS15], group signatures [Abe+10;
LPY15], traceable signatures [Abe+11a], policy-compliant signatures [BMW21;
BSW24], homomorphic and network coding signatures [Lib+13; ALP12] and
protocols such as anonymous credentials [Cam+15], delegatable anonymous
credentials [Fuc11], compact verifiable shuffles [Cha+12] or anonymous e-
cash [Bla+11]. Due to their wide range of applications, SPS have attracted
significant research interest. Looking ahead to the threshold setting (i.e., TSPS),
we note that typical applications of SPS in privacy-preserving applications
are as follows: a user obtains a signature from some entity and then prove
possession of a valid signature without revealing it using GS NIZK. Consequently,
thresholdizing the SPS signing process does not have any impact on the
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remaining protocol and thus, TSPS can be considered a drop-in replacement
for SPS.

The first SPS scheme presented by Abe et al. in [Abe+10] was followed by
a line of research to obtain SPS with short signatures in the generic group
model (GGM) [Abe+11b; Abe+14; Gha16; Gha17b], lower bounds [Abe+11b;
AGO11; Abe+18a], security under standard assumptions [Abe+12; CDH12;
HJ12; KPW15; LPY15; JR17] as well as tight security reductions [Abe+17;
JOR18; Gay+18; Abe+18b; Abe+19; CH20].

Threshold Signatures. Motivated by real-world deployments in decentral-
ized systems such as distributed ledger technologies, cryptocurrencies, and
decentralized identity management, the use of threshold cryptography [DF90]
and in particular threshold signatures has become a very active field of research
in the last years with a main focus on ECDSA [GG18; Can+20; Dal+20; Abr+22;
Den+21; BS23; Won+23], Schnorr [KG20; CKM23] and BLS [BL22] signatures.
We recall that an (n, t) threshold signature allows a set of n potential signers
to jointly compute a signature for a message m, which verifies under a single
verification key, as long as at least a threshold t many signers participate.

There are different types of constructions in the literature; ones that require
multiple rounds of interaction (e.g., ECDSA [GG18; Can+20]), ones that require
a pre-processing round that does not depend on the message (often called non-
interactive schemes), e.g,. FROST [KG20] and finally, ones that are fully
non-interactive. The latter are schemes where all the participating signers can
simply send a partial signature and the final signatures can then be combined
from threshold many valid partial signatures, e.g., BLS [Bol03].

Security of Threshold Signatures. Although many works on threshold
signatures were known in the literature, the rigorous study of security notions
was done only very recently. In particular, Bellare et al. in [Bel+22] studied a
hierarchy of different notions of security for non-interactive schemes. As our work
focuses on fully non-interactive schemes, we do not recall the entire hierarchy
but only the ones relevant for this setting. In particular, the TS-UF-0 notion
is the weaker one and prohibits adversaries from querying the signing oracle
for partial signatures on the challenge message, i.e., the message corresponding
to the forged signature. The stronger TS-UF-1 notion, which will be our main
focus, allows adversaries to query the signing oracle up to t − |CS| times for
partial signatures, even on the challenge message. Here CS with |CS| < t denotes
the set of (statically corrupted) signers. Surprisingly, the majority of works on
threshold signatures in the literature relied on weaker TS-UF-0-style notions
instead of the much more realistic TS-UF-1 notion.
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Another dimension in the security of threshold signatures is whether they
support static or adaptive corruptions. In the case of static corruptions, the
adversary has to declare the set of corrupted signers, CS, before seeing any
parameters of the system apart from (n, t). In contrast, an adaptive adversary
can choose the set of corrupted signers within a security game based on its
view of the execution, which is a realistic assumption in the decentralized
setting. All the notions in [Bel+22] consider only a static setting and refer to a
complexity leveraging argument for adaptive security. Precisely, it suggests that
for small number of parties, a guessing argument can yield adaptive security
for any statically secure scheme with a loss of

(
n

t−1
)
, i.e., guessing the set of

corrupted parties and aborting if the guess is wrong. However, this exponential
loss of security can become significant as the number of parties increases, e.g.,
supporting n ≥ 1024 (cf. [CKM23]). While there are known generic techniques
to lift statically secure schemes to adaptively secure ones [Can+99; JL00; LP01],
they all have undesirable side-effects such as relying on additional heavy tools,
e.g., non-committing encryption [Can+96], or relying on strong assumptions
such as reliable erasure of secret states (cf. [CKM23]).

Apart from the adaptively secure threshold RSA signatures [ADN06], until
recently there were no results on adaptively secure threshold signatures based
on popular signature schemes in the discrete logarithm or pairing setting. Only
very recently Bacho and Loss [BL22] as well as Crites et al. [CKM23] have shown
tight adaptive security for threshold versions of the popular BLS [BLS01] and
Schnorr schemes [Sch91], respectively. Interestingly, all these adaptive security
proofs need to rely on interactive assumptions and in particular variants of
the One-More Discrete Logarithm Assumption [Bel+03], which is known as a
strong assumption. Only very recently and concurrent to this work, Bacho et
al. [Bac+24] as well as Das and Ren [DR23] present schemes from standard
and non-interactive assumptions in the pairing-free discrete logarithm setting
and pairing setting, respectively. It is interesting that only few of the existing
works achieve adaptive security under the TS-UF-1 notion, e.g., [LJY16; BL22;
DR23], with [LJY16] being the only one from standard assumptions and without
requiring idealized models.

Threshold SPS. Recently, Crites et al. [Cri+23] have extended the concept
of threshold signatures to threshold SPS (TSPS). They introduce a definitional
framework for fully non-interactive TSPS and provide a construction that is
proven secure in the Random Oracle Model (ROM) [BR93] under the hardness
of a new interactive assumption, called the GPS3 assumption, which is analyzed
in the Algebraic Group Model (AGM) [FKL18]. The authors start from an SPS
proposed by Ghadafi [Gha16], that is secure in the Generic Group Model (GGM),
and introduce a message indexing technique to avoid non-linear operations in
the signature components and thus to obtain a fully non-interactive threshold
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version. While the TSPS proposed in [Cri+23] is highly efficient and compact
(only 2 group elements), the defined message space is restricted to a so called
indexed Diffie-Hellman message space. This prevents its use as a drop-in-
replacement for SPS in arbitrary applications of SPS that are desired to be
thresholdized. Additionally, the security of their proposed TSPS is only shown
in the TS-UF-0 model, i.e., under static corruptions.

7.1.1 Our Contributions

In this paper, we ask if it is possible to construct TSPS without the
aforementioned restrictions and we answer this question affirmatively. We
start with an observation that the SPS from Kiltz, Pan and Wee [KPW15] has
an interesting structure that makes it amenable for thresholdizing although
this process requires some modifications of the original scheme. While Crites et
al. [Cri+23] prove security in the TS-UF-0 model, i.e., under static corruptions,
we are able to prove our construction is secure in the strongest model (TS-UF-1)
for non-interactive threshold signatures [Bel+22] and even under fully adaptive
corruptions (which we denote as adp-TS-UF-1 security). We provide a brief
overview in Table 7.1 about our results.

Table 7.1: Overview of security notions and our results. t denotes the threshold,
M∗ the message corresponding to the forgery, S1 the set recording signer indices
of issued partial signatures and CS the set of corrupted signers.

Security Notion Corruption Model Winning Condition Our Scheme (proof)

TS-UF-0 static corruptions S1(M∗) = ∅ Theorem 5
TS-UF-1 static corruptions |S1(M∗)| < t− |CS| Theorem 6

adp-TS-UF-1 adaptive corruptions |S1(M∗)| < t− |CS| Theorem 7

Interestingly, we can do so by relying on standard assumptions, i.e., the Matrix
Diffie-Hellman (MDDH) assumption family [Esc+17; MRV16]. While this comes
at some cost in concrete efficiency, as shown in Table 7.2, the overhead is still
not significant. For instance, when instantiated in type III bilinear groups under
the SXDH assumption (k = 1), then signatures consist of 7 group elements.
When taking the popular BLS12-381 curve giving around 110 bit of security,
this amounts to signatures of size around 380 bytes. Compared to 256 bytes
for an RSA signature with comparable security (2048 bit modulus), this gives
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an increase of around 50%. This seems perfectly tolerable for most practical
applications.

As can be seen from Table 7.2, an important benefit of our TSPS over the
one by Crites et al. [Cri+23] is that it is not limited to an indexed Diffie-
Hellman message space, but works for arbitrary group message vectors. Thus,
it represents a drop-in replacement for SPS when aiming to thresholdize its
applications (such as anonymous credentials, e-cash, etc). Moreover, we prove
the unforgeability of the proposed TSPS scheme against an adaptive adversary
under a stronger TS-UF-1 notion of security. We recall that in contrast, the
TSPS proposed by Crites et al. in [Cri+23] only achieves TS-UF-0 security
against a static adversary based on an interactive assumption, called GPS3, in
the AGM and ROM.

Table 7.2: Comparison with the existing threshold structure-preserving signature
by Crites et al. [Cri+23]. iDH refers to the indexed Diffie-Hellman message
spaces. ℓ is the length of the message vector to be signed. |Gi| denote the
bit-length of elements in groups Gi for i ∈ {1, 2}. NI stands for Non-Interactive.

Scheme Message
Space

Signature
Size

Number of
Pairings

Security
Notion

Security
Model

Underlying
Assumption

[Cri+23] iDH 2|G1| ℓ + 2 TS-UF-0
(Static)

AGM+
ROM

GPS3

(Interactive)

[Mit+24] G1
(3k + 3)|G1|

+|G2|
5k+
ℓ + 6

TS-UF-1
(Adaptive)

Standard
Model

Dk-MDDH
(NI)

7.1.2 Technical Overview

Considering the insights discussed in [Cri+23, Section 1], it can be deduced
that a fully non-interactive TSPS scheme does not involve any non-linear
operations during the partial signing phase. The use of non-linear operations
prevents the reconstruction of the final signature from the partial signatures via
Lagrange interpolation. These non-linear operations include the inversion of
secret share keys (i.e., [1/ski]), performing multiplication of distinct randomness
and secret shares (i.e., [riski]), as well as raising either secret shares or distinct
randomness to a power (e.g., [skζ

i ] or [rζ
i ] for any ζ > 1). By employing an

indexing approach, the authors in [Cri+23] were able to circumvent the need for
multiplying randomness and secret keys, as required by Ghadafi’s SPS [Gha16].
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In contrast, in our proposed TSPS scheme, we adopt a distinct perspective for
avoiding the non-linear operations.

We start from an observation regarding the SPS construction of Kiltz et al.
[KPW15] which computes the first and second components of signature on a
message [m]1 ∈ Gℓ

1 as:

KPW15 : (σ1, σ2) :=

[(
1 m⊤)]

1 K︸ ︷︷ ︸
SP-OTS

+
randomized PRF︷ ︸︸ ︷

r⊤ [
B⊤(U + τ ·V)

]
1 ,

[
r⊤B⊤]

1

 ,

where τ is a fresh random integer and r is a fresh random vector of proper size.1
Additionally, the secret signing and verification keys are defined as follows:

KPW15 : sk := (K,
[
B⊤U

]
1 ,

[
B⊤V

]
1 , [B]1) ,

vk := ([KA]2 , [UA]2 , [VA]2 , [A]2) ,

where K, A, B, U and V are random matrices of appropriate dimensions.

As noted by Kiltz et al. in their work [KPW15], their SPS is build based on
two fundamental primitives: (i) a structure-preserving one-time signature (SP-
OTS), (

[(
1 m⊤)]

1 K), and (ii) a randomized pseudorandom function (PRF),
(r⊤ [

B⊤(U + τ ·V)
]

1 ,
[
r⊤B⊤]

1). In their proof of security, we observe that
both the building blocks are involved in a loose manner. In particular, in most of
their proofs, the reduction samples the SP-OTS signing key K. It is easy to verify
that this observation still holds even when they are arguing about the security of
the randomized PRF. Our approach in this work is motivated by this fact which
further inspires us to modify Kiltz et al.’s SPS. This adjustment involves defining
the secret key as sk := K and transferring the remaining parameters to the set of
public parameters, i.e., pp := ([A]2, [UA]2, [VA]2, [B]1, [B⊤U]1, [B⊤V]1) and
the verification is defined as vk := [KA]2. This rather simple structure allows to
obtain the first TSPS for general message spaces in the standard model that can
withhold adaptive corruptions without the exponential degradation [Bel+22]
and can be proven secure in the TS-UF-1 model.

Consider the following setting. Imagine there are n signers, each equipped with
their own signing key, either obtained through the involvement of a trusted

1Here we follow the group notation by Escala et al. [Esc+17]. See Definition 48 for more
details.
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dealer or by conducting a Distributed Key Generation (DKG). Their collective
objective is to generate a signature for a given message [m]1 ∈ Gℓ

1. It is clear that
the linear structure of the SP-OTS {

[(
1 m⊤)]

1 Ki}i∈S allows for effortless
aggregation when dealing with a collection of them over any subset S ⊆ [1, n].
Since the random quantities τi and ri are independently sampled from a uniform
distribution by each signer i ∈ [1, n], aggregating the PRF elements is still
challenging. Consequently, we must explore potential modifications needed
to enable the aggregation of these components in comparison to Kiltz et al.’s
SPS. We choose to make the tag τ dependent on the message. Thus, the
randomized PRF computed by every signer, while still being a random element
in the respective space, now allows aggregation. Moreover, by establishing an
injective mapping between [m]1 and τ , we can observe that the randomized
PRF structure still guarantees the unforgeability in [KPW15] when attempting
to forge a signature on a distinct message. We employ a collision-resistant
hash function (CRHF), H(.), to derive τ from [m]1. This gives the basis of our
construction, where each signer i ∈ [1, n] computes a partial signature on [m]1
as

(σ1, σ2) =
([(

1 m⊤)]
1 Ki + r⊤

i

[
B⊤(U + τ ·V)

]
1 ,

[
r⊤

i B⊤]
1

)
.

Here the signer i is holding the secret share Ki and chooses a random quantity
ri of appropriate size and uses τ = H([m]1). It is easy to verify that this
signature can be aggregated in a non-interactive manner. Looking ahead, as a
first step we prove that this construction achieves TS-UF-0 security, relying on
the well-established and non-interactive standard assumption, i.e., the MDDH
assumption.

In case of a TS-UF-1 adversary, we need to deal with the fact that the adversary
is allowed to obtain partial signatures on the forged message [m∗]1. Let us
first consider the case of static corruptions. We cannot apply the unforgeability
of [KPW15] here as it did not consider strong Uf-CMA security.2 To overcome
this problem, we introduce an information theoretic step to argue that given a
number of partial signatures on the forged message [m∗]1 below the threshold,
the adversary does not gather extra information. In particular, we use Shamir’s
secret reconstruction security to ensure that partial signatures do not really leak
much information. In this argument, we implicitly use the “selective security”
of Shamir’s secret sharing where all the parties in the corrupted set are fixed at
the start of the game.

2A signature is called strongly unforgeable when the adversary is not only incapable of
producing a valid signature for a fresh message but also, it cannot generate a new signature
for a challenge message M∗, by observing a valid signature for the same message M∗.
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In the case of adaptive corruptions, an adp-TS-UF-1 adversary not only is
allowed to obtain partial signatures on the forged message [m∗]1, but also it can
corrupt different users to get the corresponding secret keys within the security
game, adaptively. We obviously could follow a standard guessing argument
to achieve adp-TS-UF-1 security based on TS-UF-1 security. However, that
direction unfortunately induces a significant security loss. We critically look
at our proof of TS-UF-1 security we have briefly discussed above. To make our
construction adp-TS-UF-1 secure, we show that it is sufficient to argue that the
underlying secret sharing achieves “adaptive security”. In this work, we indeed
form an argument that Shamir’s secret sharing achieves “adaptive security”
which in turn makes our construction adp-TS-UF-1 secure.

Next, we provide a brief intuition of the formal argument for the “adaptive
security” of Shamir’s secret sharing. Informally speaking, we produce a reduction
B to break the “selective security” of Shamir’s secret sharing given an adaptive
adversary A of the secret sharing. Being an information theoretic reduction, B
basically runs the adaptive adversary A an exponential number of times. Since
B chooses the target set S independently of A’s run, the expected number of
parallel runs of A required to ensure all the parties whose secrets A queried
are indeed from S is upper bounded by exponential. Being an information
theoretically secure secret sharing scheme, Shamir’s secret sharing basically
achieves “adaptive security” due to complexity leveraging but without any
degradation in the advantage of the adversary. While we use Shamir secret
sharing as our canonical choice, we believe that all information-theoretically
secure Linear Secret Sharing schemes can be used instead.

7.2 Preliminaries

Notation. Throughout the paper, we let κ ∈ N denote the security parameter
and 1κ as its unary representation. Given a polynomial p(·), an efficient
randomized algorithm, A, is called probabilistic polynomial time, PPT in short,
if its running time is bounded by a polynomial p(|x|) for every input x. A
function ν(κ) : N → R+ is called negligible if for every positive polynomial
f(x), there exists x0 such that for all x > x0 : ν(κ) < 1/f(x). If clear from the
context, we sometimes omit κ for improved readability. The set {1, . . . , n} is
denoted as [1, n] for a positive integer n. For the equality check of two elements,
we use “=”. The assign operator is denoted with “:=”, whereas the randomized
assignment is denoted by a←$ A, with a randomized algorithm A and where
the randomness is not explicit. We use D1 ≈c D2 to show two distributions like
D1 and D2 are computationally indistinguishable.
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Definition 47 (Secret Sharing). For any two positive integers n, t < n, an
(n, t)Za×b

p
-secret-sharing scheme over Za×b

p for a, b ∈ N consists of two functions
Share and Rec. Share is a randomized function that takes a secret M⃗ ∈ Za×b

p

and outputs (M⃗1, . . . , M⃗n)← Share(M⃗,Za×b
p , n, t) where M⃗i ∈ Za×b

p ∀i ∈ [1, n].
The pair of functions (Share, Rec) satisfy the following requirements.

• Correctness: For any secret M⃗ ∈ Za×b
p and a set of parties

{i1, i2, . . . , ik} ⊆ [1, n] such that k ≥ t, we have

Pr[Rec(M⃗i1 , . . . , M⃗ik
: (M⃗1, . . . , M⃗n)← Share(M⃗,Za×b

p , n, t)) = M⃗ ] = 1 .

• Security: For any secret M⃗ ∈ Za×b
p and a set of parties S ⊆ [1, n] such

that |S| = k < t, for all information-theoretic adversary A we have

Pr

S = {ii}i∈[1,k] ∧ M⃗∗ = M⃗

∣∣∣∣∣∣∣∣∣∣
(M⃗1, . . . , M⃗n)← Share(M⃗,Za×b

p , n, t)

S ← rA()

M⃗∗ ← rA(M⃗i1 , . . . , M⃗ik
)

 = 1/p .

We follow standard nomenclature to call this “selective security”. In case of
“adaptive security”, A adaptively chooses ij ∈ [1, n] to get M⃗ij

one at a time.

We briefly recall the well-known secret sharing scheme due to Shamir [Sha79]. In
(n, t)-Shamir Secret Sharing, a secret s is shared to n parties via n evaluations
of a polynomial of degree (t − 1). Reconstruction of the secret is essentially
Lagrange interpolation where one computes Lagrange polynomials {λij (x)}j∈S

and linearly combine them with the given polynomial evaluations. The degree of
the original polynomial confirms that one needs at least |S| = t many polynomial
evaluations. In this work, we use Shamir Secret Sharing to secret share a matrix
of size a×b, i.e., we use ab-many parallel instances of Shamir Secret Sharing. To
keep our exposition simpler, we however assume that we have an (n, t)-Shamir
Secret Sharing scheme (Share, Rec) which operates on matrices. Since, our work
here uses Shamir Secret Sharing quite generically, it is convenient to make such
abstraction without going into the details.

Definition 48 (Bilinear Groups). Let an asymmetric bilinear group generator,
ABSGen(1κ), that returns a tuple BG := (p,G1,G2,GT , G1, G2, e), such that G1,
G2 and GT are cyclic groups of the same prime order p such that there is no
known homomorphism between G1 and G2. G1 and G2 are the generators of
G1 and G2, respectively, where e : G1 ×G2 → GT is an efficiently computable
(non-degenerate) bilinear map with the following properties:
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- ∀ a, b ∈ Zp, e([a]1, [b]2) = [ab]T = e([b]1, [a]2) ,

- ∀ a, b ∈ Zp, e([a + b]1, [1]2) = e([a]1, [1]2)e([b]1, [1]2) ,

where we use an implicit representation of group elements, in which for ζ ∈
{1, 2, T} and an integer α ∈ Zp, the implicit representation of integer α in group
Gζ is defined by [α]ζ = αGζ ∈ Gζ , where GT = e(G1, G2). To be more general,
the implicit representation of a matrix A = (αij) ∈ Zm×n

p in Gζ is defined by
[A]ζ and we have:

[A]ζ =


α1,1Gζ · · · α1,nGζ

α2,1Gζ · · · α2,nGζ

... . . . ...
αm,1Gζ · · · αm,nGζ

 .

For two matrices A and B with matching dimensions we define e([A]1, [B]2) =
[AB]T .

Definition 49 (Matrix Distribution). Let k, ℓ ∈ N∗ s.t. k < ℓ. We call Dℓ,k a
matrix distribution if it outputs matrices over Zℓ×k

p of full rank k in polynomial
time. W.l.o.g, we assume the first k rows of matrix A←$ Dℓ,k form an invertible
matrix. For ℓ = k + 1, we write Dk in short.

Next, we recall the Matrix Decisional Diffie-Hellman assumption, which
defines over Gζ for any ζ = {1, 2} and states two distributions ([A]ζ , [Ar]ζ)
and ([A]ζ , [u]ζ), where A ←$ Dℓ,k, r ←$ Zk

p, u ←$ Zℓ
p are computationally

indistinguishable.

Definition 50 (Dℓ,k-Matrix Decisional Diffie-Hellman (Dℓ,k-MDDH) Assump-
tion [Esc+17]). For a given security parameter κ, let k, ℓ ∈ N∗ s.t. k < ℓ and
Dℓ,k be a matrix distribution, defined in Definition 49. We say Dℓ,k-MDDH
assumption over Gζ for ζ = {1, 2} holds, if for all PPT adversaries A we have:

AdvMDDH
Dℓ,k,Gζ ,A(κ) =

∣∣∣ Pr [A(BG, [A]ζ , [Ar]ζ) = 1]−

Pr [A(BG, [A]ζ , [u]ζ) = 1]
∣∣∣ ≤ ν(κ) ,

where BG ←$ ABSGen(1κ), A←$ Dℓ,k, r←$ Zk
p and u←$ Zℓ

p.

Definition 51 (Dk-Kernel Matrix Diffie-Hellman (Dk-KerMDH) Assump-
tion [MRV16]). For a given security parameter κ, let k ∈ N∗ and Dk is a
matrix distribution, defined in Definition 49. We say Dk-KerMDH assumption
over Gζ for ζ = {1, 2} holds, if for all PPT adversaries A we have:
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AdvKerMDH
Dk,Gζ ,A(κ) = Pr [c ∈ orth(A) | [c]3−ζ ← A(BG, [A]ζ))] ≤ ν(κ) ·

The Kernel Matrix Diffie-Hellman assumption is a natural computational analog
of the MDDH assumption. It is well-known that for all k ≥ 1, Dk-MDDH ⇒
Dk-KerMDH [KPW15; MRV16].

7.3 Threshold Structure-Preserving Signatures

In this section, we first present our security model for Threshold Structure-
Preserving Signatures (TSPS) and then present our construction and prove its
security.

7.3.1 TSPS: Syntax and Security Definitions

First, we recall the definition of the Threshold Structure-Preserving Signatures
(TSPS) from [Cri+23] and their main security properties: correctness and
threshold unforgeability. Informally, a threshold signature scheme enables a
group of servers S of size n to collaboratively sign a message. In this paper,
we assume the existence of a trusted dealer who shares the secret key among
the signers. However, there are straightforward and well-known techniques
in particular distributed key generation (DKG) protocols (e.g., [Ped92]) that
eliminate this needed trust.

Definition 52 (Threshold Structure-Preserving Signatures [Cri+23]). Over a
security parameter κ and a bilinear group, an (n, t)-TSPS contains the following
PPT algorithms:

• pp← Setup(1κ): The setup algorithm takes the security parameter κ as
input and returns the set of public parameters pp as output.

• ({ski, vki}i∈[1,n], vk) ← KeyGen(pp, n, t): The key generation algorithm
takes the public parameters pp along with two integers n, t s.t. 1 ≤ t ≤ n
as inputs. It then returns secret/verification keys (ski, vki) for i ∈ [1, n]
along with a global verification key vk as output.

• Σi ← ParSign(pp, ski, [m]): The partial signing algorithm takes pp, the ith

party’s secret key, ski, and a message [m] ∈M as inputs. It then returns
a partial signature Σi as output.
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• 0/1 ← ParVerify(pp, vki, [m], Σi): The partial verification algorithm as
a deterministic algorithm, takes pp, the ith verification key, vki, and
a message [m] ∈ M along with partial signature Σi as inputs. It then
returns 1 (accept), if the partial signature is valid and 0 (reject), otherwise.

• Σ← CombineSign(pp, T, {Σi}i∈T ): The combine algorithm takes a set of
partial signatures Σi for i ∈ T along with T ⊆ [1, n] and then returns an
aggregated signature Σ as output.

• 0/1← Verify(pp, vk, [m], Σ): The verification algorithm as a deterministic
algorithm, takes pp, the global verification key, vk, and message [m] ∈M
along with an aggregated signature Σ as inputs. It then returns 1 (accept),
if the aggregated signature is valid and 0 (reject), otherwise.

Correctness. Correctness guarantees that a signature obtained from a set
T ⊆ [1, n] s.t. |T | ≥ t of honest signers always verifies.

Definition 53 (Correctness). An (n, t)-TSPS scheme is called correct if we
have:

Pr


∀ pp← Setup(1κ), ({ski, vki}i∈[1,n], vk)← KeyGen(pp, n, t), [m] ∈M,

Σi ← ParSign(pp, ski, [m]) for i ∈ [1, n],∀ T ⊆ [1, n], |T | ≥ t,

Σ← CombineSign
(
pp, T, {Σi}i∈T

)
: Verify (pp, vk, [m], Σ) = 1

 = 1 .

Unforgeability. Our security model for threshold unforgeability extends the
one from Crites et al. [Cri+23]. Therefore, we need to recall a recent work
by Bellare et al. [Bel+22], which investigates existing security notions and
proposes stronger and more realistic security notions for threshold signatures
under static corruptions. In particular, the authors in [Bel+22] present a
hierarchy of different notions of security for non-interactive schemes. We focus
on fully non-interactive schemes, i.e., ones that do not require one round of
pre-processing, and thus in this paper only the TS-UF-0 and TS-UF-1 notions
are relevant. The TS-UF-0 notion is a less stringent notion of unforgeability.
In this context, if the adversary has previously seen a partial signature on a
challenge message [m∗], the act of forging a signature for that specific message
is considered as a trivial forgery. The security of the original TSPS is proved
under this notion of unforgeability.

The stronger TS-UF-1 notion, which is our main focus, allows adversaries to
query the signing oracle up to t − |CS| times for partial signatures, even on
the challenge message. Here CS with |CS| < t denotes the set of (statically



THRESHOLD STRUCTURE-PRESERVING SIGNATURES 117

corrupted) signers. Moreover, the model in [Bel+22] as well as the TSPS
construction in [Cri+23] only considers static corruptions. But we also integrate
the core elements of the model introduced in the recent work by Crites et
al. [CKM23], adapted to fully non-interactive schemes, to support fully adaptive
corruptions. Our model is depicted in Figure 7.1. The dashed box as well as
the solid white box in the winning condition apply to the TS-UF-0 and TS-UF-1
notions, respectively. Grey boxes are only present in the adaptive version of
the game, i.e., adp-TS-UF-0 and adp-TS-UF-1.

Definition 54 (Threshold Unforgeability). Let TSPS =
(Setup, KeyGen, ParSign, ParVerify, CombineSign, Verify) be an (n, t)-TSPS
scheme over message space M and let prop ∈ {TS-UF-b, adp-TS-UF-b}b∈{0,1}.
The advantage of a PPT adversary A playing described security games
in Figure 7.1, is defined as,

Advprop
TSPS,A(κ) = Pr

[
Gprop

TS,A(κ) = 1
]

.

A TSPS achieves prop-security if we have, Advprop
TSPS,A(κ) ≤ ν(κ).

7.3.2 Core Lemma

Prior to introducing our construction, we first present the core lemma that
forms a basis in the proofs of our proposed TSPS. It extends the core lemmas
from [KW15; KPW15], however it is important to note that both of these
schemes are standard SPS, where there was no need to simulate signatures
on forged messages. In contrast, both the TS-UF-1 and adp-TS-UF-1 security
models necessitate the simulation of partial signature queries on forged messages.
Thus we define our core lemma with a key difference being the introduction of
a new oracle, denoted as O∗∗(·).

Lemma 1 (Core Lemma). Let the game GCore
Dk,ABSGen(κ) be defined

as Figure 7.2. For any adversary A with the advantage of AdvCore
Dk,ABSGen,A(κ) :=

|Pr[GCore
Dk,ABSGen(κ)]− 1/2|, there exists an adversary B against the Dk-MDDH

assumption such that with the running time T(A) ≈ T(B) it holds that

AdvCore
Dk,ABSGen,A(κ) ≤ 2qAdvMDDH

Dk,G1,B(κ) + q/p ,

where q is a bound on the number of queries requested by adversary A for oracle
Ob(·). Note that A can only query the other oracles only once.
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GGGTS-UF-0
TS,A (κ) , GGGTS-UF-1

TS,A (κ) , GGGadp-TS-UF-0
TS,A (κ) , GGGadp-TS-UF-1

TS,A (κ) :

pp← Setup(1κ)
(n, t, CS, st0)← A(pp)
HS := [1, n] \ CS
(vk, {ski}i∈[1,n], {vki}i∈[1,n])←$ KeyGen(pp, n, t)

([m∗], Σ∗, st1)← AOPSign(.), OCorrupt(.) (st0, vk, {ski}i∈CS, {vki}i∈[1,n])
return

(
Verify(pp, vk, [m∗], Σ∗) ∧ |CS| < t ∧

( S1([m∗]) = ∅ ∨ |S1([m∗])| < t− |CS| )
)

OPSign(i, [m]):
Assert

(
[m] ∈M ∧ i ∈ HS

)
Σi ←$ ParSign(pp, ski, [m])
if Σi ̸= ⊥ :

S1([m])← S1([m]) ∪ {i}
return (Σi)

OCorrupt(k):
if k ∈ CS :

return ⊥
else : CS← CS ∪ {k}

HS← HS \ {k}
return (skk)

Figure 7.1: Games defining the TS-UF-0 , TS-UF-1 , adp-TS-UF-0 , and

adp-TS-UF-1 unforgeability notions of threshold signatures.

Proof Sketch. The proof of this lemma uses the proof of core lemma in [KW15;
KPW15]. The fundamental concept of these proofs is primarily an information-
theoretic argument that (t⊤(U + τV), U + τ∗V) is identically distributed to
(µa⊥⊤ + t⊤(U + τV), U + τ∗V) for µ ←$ Zp, a⊥, t ←$ Zk+1

p and τ ̸= τ∗.
We use

[
bµa⊥⊤ + t⊤(U + τV)

]
1

to simulate Ob([τ ]1), [U + τ∗V]2 to simulate
O∗([τ∗]2) and

[
B⊤(U + τ∗V)

]
1 to simulate O∗∗([τ∗]1). The detailed proof can

be found in Section 7.3.5.

7.3.3 Our Threshold SPS Construction

Given a collision resistant hash function, H : {0, 1}∗ → Zp, and message space
M := Gℓ

1, we present our (n, t)-TSPS construction in Figure 7.3. This consists
of six main PPT algorithms – Setup, KeyGen, ParSign, ParVerify, CombineSign
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Init():
A, B← Dk, U, V ← Z(k+1)×(k+1)

p

vk := (A, UA, VA, [B]1, [B⊤U]1, [B⊤V]1)
b← {0, 1}
Let a⊥ ← Z1×(k+1)

p such that a⊥A = 0
q := 0, Qtag := ∅
return vk

O∗([τ∗]2):
return [U + τ∗V]2

O∗∗([τ∗]1):
return

[
B⊤(U + τ∗V)

]
1

Ob([τ ]1):
µ← Zp, r← Zk

p, q := q + 1
Qtag := Qtag ∪ {τ}
return

([
bµa⊥ + r⊤B⊤(U + τV)

]
1 ,

[
r⊤B⊤]

1

)
Figure 7.2: Game defining the core lemma, GCore

Dk,ABSGen(κ).

and Verify, as defined in Definition 52. Similar to the settings of Bellare et al.
[Bel+22], we also assume there is a dealer who is responsible for generating key
pairs for all signers and a general verification key.

7.3.4 Security

Theorem 5. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH
Assumption in G2, the proposed Threshold Structure-Preserving Signature
construction in Figure 7.3 achieves TS-UF-0 security against an efficient
adversary making at most q partial signature queries.

Proof. We prove the above theorem through a series of games and we use Advi

to denote the advantage of the adversary A in winning the Game i. The games
are described below.

Game 0. This is the TS-UF-0 security game described in Definition 54. As
shown in Figure 7.4, an adversary A after receiving the set of public
parameters, pp, returns (n, t, CS), where n, t and CS represents the
total number of signers, the threshold, and the set of corrupted signers,
respectively. The adversary can query the partial signing oracle OPSign(·)
to receive partial signatures and q represents the total number of these
queries. In the end, the adversary outputs a message [m∗]1 and a forged
signature Σ∗.
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Setup(1κ):
1: BG := (p,G1,G2,GT, G1, G2, e)←$ ABSGen(1κ).
2: A, B←$ Dk, U, V ←$ Z(k+1)×(k+1)

p .
3: pp :=

(
[A]2 , [UA]2 , [VA]2 , [B]1 ,

[
B⊤U

]
1 ,

[
B⊤V

]
1

)
.

KeyGen(pp, n, t):
1: K ←$ Z(ℓ+1)×(k+1)

p .
2: K1, . . . , Kn ← Share(K,Z(ℓ+1)×(k+1)

p , n, t).
3: Set vk := [KA]2 and (ski, vki) := (Ki, [KiA]2).

ParSign(pp, ski, [m]1):
1: ri ←$ Zk

p.
2: τ := H([m]1).
3: Output Σi := (σ1, σ2, σ3, σ4) s.t.
4: σ1 :=

[(
1 m⊤

)]
1

Ki + r⊤
i

[
B⊤(U + τV)

]
1 ,

σ2 :=
[
r⊤

i B⊤]
1 ,

σ3 :=
[
τr⊤

i B⊤]
1 ,

σ4 := [τ ]2 .
ParVerify(pp, vki, [m]1 , Σi): Output 1 if the following checks hold; else output
0.

1: e(σ1, [A]2) = e
([(

1 m⊤
)]

1
, vki

)
· e (σ2, [UA]2) · e (σ3, [VA]2) .

2: e(σ2, σ4) = e(σ3, [1]2).

CombineSign(pp, S, {Σi}i∈S):
1: Parse Σi = (σi,1, σi,2, σi,3, σ4) for all i ∈ S.
2: Compute Lagrange polynomials λi for i ∈ S.
3: Output Σ := (σ̂1, σ̂2, σ̂3, σ̂4) s.t.

4: σ̂1 :=
∏

i∈S

σλi
i,1 =

[(
1 m⊤

) ∑
i∈S

λiKi

]
1

+
∑
i∈S

λir⊤
i

[
B⊤(U + τV)

]
1 =[(

1 m⊤
)

K
]

1
+ r⊤ [

B⊤(U + τV)
]

1 ,

σ̂2 :=
∏

i∈S

σλi
i,2 =

[ ∑
i∈S

λir⊤
i B⊤

]
1

=
[
r⊤B⊤]

1 ,

σ̂3 :=
∏

i∈S

σλi
i,3 =

[ ∑
i∈S

τλir⊤
i B⊤

]
1

=
[
τr⊤B⊤]

1 ,

σ̂4 := σ4 .
Verify(pp, vk, [m]1 , Σ): Output 1 if the following checks satisfy; else output 0.

1: e(σ̂1, [A]2) = e
([(

1 m⊤
)]

1
, vk

)
· e(σ̂2, [UA]2) · e(σ̂3, [VA]2) .

2: e(σ̂2, σ̂4) = e(σ̂3, [1]2) .

Figure 7.3: Our proposed TSPS construction.
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GGG0(κ):
1: BG ← ABSGen(1κ),
2: A, B←$ Dk,
3: U, V ←$ Z(k+1)×(k+1)

p .
4: pp := ([A]2, [UA]2, [VA]2, [B]1, [B⊤U]1, [B⊤V]1).
5: (n, t, CS, st0)← A(pp).
6: Assert CS ⊂ [1, n].
7: Sample K ←$ Z(ℓ+1)×(k+1)

p .
8: (K1, . . . , Kn)← Share(K,Z(ℓ+1)×(k+1)

p , n, t).
9: vk := [KA]2.

10: for i ∈ [1, n]:
11: ski := Ki, vki := [KiA]2.
12: ([m∗]1, Σ∗, st1)← AOPSign(.) (

st0, vk, {ski}i∈CS, {vki}i∈[1,n]
)
.

13: return (Verify(pp, vk, [m∗]1, Σ∗) ∧ |CS| < t ∧ S1([m∗]1) = ∅)

OPSign(i, [m]1):
1: Assert

(
[m]1 ∈M ∧ i ∈ HS

)
.

2: ri ←$ Zk
p.

3: τ := H([m]1).
4: σ1 :=

[(
1 m⊤

)
Ki + r⊤

i B⊤(U + τV)]
]

1
,

σ2 := [r⊤
i B⊤]1,

σ3 := [τr⊤
i B⊤]1,

σ4 := [τ ]2.
5: Σi := (σ1, σ2, σ3, σ4).
6: if Σi ̸= ⊥ :
7: S1([m]1) := S1([m]1) ∪ {i}.
8: return Σi

Verify(pp, vk, [m∗]1, Σ∗) :
1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4).

2: return
(

e(σ̂1, [A]2) = e
([(

1 m∗⊤
)]

1
, [KA]2

)
· e(σ̂2, [UA]2) ·

e(σ̂3, [VA]2) ∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Figure 7.4: Game0.
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Game 1. We modify the verification procedure to the one described
in Figure 7.5. Consider any forged message/signature pair ([m∗]1, Σ∗ =
(σ̂1, σ̂2, σ̂3, σ̂4)), where e(σ̂2, σ̂4) = e(σ̂3, [1]2), |CS| < t and S1([m∗]1) = ∅.
It is easy to observe that if the pair ([m∗]1, Σ∗) meets the Verify∗(·) criteria,
outlined in Figure 7.5, it also satisfies Verify(·) procedure, described
in Figure 7.4. This is primarily due to the fact that:

e(σ̂1, [A]2) = e
(
[
(
1 m∗⊤)

]1, [KA]2
)
· e(σ̂2, [UA]2) · e(σ̂3, [VA]2)

⇐= e(σ̂1, [1]2) = e([
(
1 m∗⊤)

]1, [K]2) · e(σ̂2, [U]2) · e(σ̂3, [V]2)

⇐⇒e(σ̂1, [1]2) = e([
(
1 m∗⊤)

K]1, [1]2) · e(σ̂2, [U + τ∗V]2) ·

Assume there exists a message/signature pair like ([m∗]1, Σ∗ =
(σ̂1, σ̂2, σ̂3, σ̂4)) that satisifies Verify(·) and not Verify∗(·), then we can
compute a non-zero vector c in the kernal of A as follows:

c := σ̂1 − ([
(
1 m∗⊤)

K]1 + σ̂2U + σ̂3V) ∈ G1×(k+1)
1 ·

According to Dk-KerMDH assumption over G2 described in Definition 51,
computing such a vector c is considered computationally hard. Thus,

|Adv0 −Adv1| ≤ AdvKerMDH
Dk,G2,B0

(κ) ·

Verify∗(pp, vk, [m∗]1, Σ∗):
1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4 = [τ∗]2).
2: return

(
e(σ̂1, [1]2) = e

(
[
(
1 m∗⊤)

K]1, [1]2
)
· e(σ̂2, [U + τ∗V]2) ∧

e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Figure 7.5: Modifications in Game1.

Game 2. On receiving a partial signature query on a message [mi]1, the query
list is updated to include the message [mi]1 along with its corresponding
tag, τi := H([mi]1). The challenger aborts if an adversary can generate
two tuples ([mi]1, τi), ([mj ]1, τj) with [mi]1 ̸= [mj ]1 and τi = τj . By the
collision resistance property of the underlying hash function we have,

|Adv1 −Adv2| ≤ AdvCRHF
H (κ) ·

Game 3. In this game, we introduce randomness to the partial signatures
by adding µa⊥ to each partial signature, where µ is chosen uniformly
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OPSign∗(i, [m]1):
1: Assert

(
[m]1 ∈M ∧ i ∈ HS

)
.

2: ri ←$ Zk
p, τ := H([m]1), µ←$ Zp.

3: σ1 := [
(
1 m⊤)

Ki + µa⊥ + r⊤
i B⊤(U + τV)]1,

σ2 := [r⊤
i B⊤]1 ,

σ3 := [τr⊤
i B⊤]1 ,

σ4 := [τ ]2 .
4: Σi := (σ1, σ2, σ3, σ4).
5: if Σi ̸= ⊥ :
6: S1([m]1) := S1([m]1) ∪ {i}.
7: return Σi

Figure 7.6: Modifications in Game3.

at random and the vector a⊥ is a non-zero vector in the kernel of A.
The new partial signatures satisfy the verification procedure as a⊥A = 0.
Figure 7.6 describes the new partial signing oracle, OPSign∗(.).

Lemma 2. |Adv2 −Adv3| ≤ 2qAdvMDDH
Dk,G1,B1

(κ) + q/p.

Proof. We prove this lemma through a reduction to the core lemma, Lemma 1.
Let us assume there exists an adversary A that can distinguish the games Game2
and Game3, we can use it to build an adversary B1, defined in Figure 7.7, which
breaks the core lemma, Lemma 1. The adversary B1 has access to four oracles,
Init(·),Ob(·),O∗(·),O∗∗(·), however in this reduction, we only use the first three
oracles, defined as follows:

Oracle Init(·): The oracle Init provides the set of public parameters pp.

Oracle Ob(·): On the i-th query to this oracle on [τ ]1, it outputs(
[bµa⊥ + r⊤

i B⊤(U + τ ·V)]1, [r⊤
i B⊤]1

)
depending on a random bit b.

Oracle O∗(·): On input [τ∗]2, it returns [U + τ∗V]2.

When the lemma challenger selects the challenge bit as b = 0, it leads to the
game Game2, and when b = 1, it results in the game Game3. All the other values
are simulated perfectly. Thus, |Adv2 −Adv3| ≤ AdvCore

Dk,ABSGen,B1
(κ) holds and

therefore we have,

|Adv2 −Adv3| ≤ 2qAdvMDDH
Dk,G1,B(κ) + q/p ·
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BInit(·),Ob(·),O∗(·),O∗∗(·)
1 :
1: Assert

(
[m]1 ∈M ∧ i ∈ HS

)
.

2: (A, UA, VA, [B]1, [B⊤U]1, [B⊤V]1)← Init().
3: pp := ([A]2, [UA]2, [VA]2, [B]1, [B⊤U]1, [B⊤V]1).
4: (n, t, CS, st0)← A(pp).
5: Assert CS ⊂ [1, n].
6: Sample K ←$ Z(ℓ+1)×(k+1)

p .
7: (K1, . . . , Kn)← Share(K,Z(ℓ+1)×(k+1)

p , n, t).
8: vk := [KA]2.
9: for i ∈ [1, n]:

10: ski := Ki, vki := [KiA]2.
11: (m∗, Σ∗, st1)← AOPSign∗(.)(st0, vk, {ski}i∈CS, {vki}i∈[1,n]).
12: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4)
13: if (Verify∗(pp, vk, [m∗]1, Σ∗) ∧ |CS| < t ∧ S1([m∗]1) = ∅) :
14: result := true
15: else : result := false
16: return b̃← A(result)

OPSign∗(i, [m]1):
1: τ := H([m]1).
2: (val1, val2)← Ob(τ).
3: σ1 :=

[(
1 m⊤

)
Ki

]
1
· val1.

σ2 := val2,
σ3 := [τ ]1 · val2,
σ4 := [τ ]2.

4: Σi := (σ1, σ2, σ3, σ4).
5: if Σi ̸= ⊥ :
6: S1([m]1) := S1([m]1) ∪ {i}.
7: return Σi

Verify∗(pp, vk, [m∗]1, Σ∗) :
1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4).

2: return
(

e (σ̂1, [1]2) = e
([(

1 m∗⊤
)

K
]

1
, [1]2

)
· e(σ̂2,O∗(σ̂4))

∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Figure 7.7: Reduction to the core lemma in Lemma 1.
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GGG3(κ): GGG4(κ):
1: BG ← ABSGen(1κ),
2: A, B←$ Dk,
3: U, V ←$ Z(k+1)×(k+1)

p .
4: pp := ([A]2, [UA]2, [VA]2, [B]1, [B⊤U]1, [B⊤V]1).
5: (n, t, CS, st0)← A(pp).
6: Assert CS ⊂ [1, n].
7: Sample K ←$ Z(ℓ+1)×(k+1)

p .
8: (K1, . . . , Kn)← Share(K,Z(ℓ+1)×(k+1)

p , n, t)

Sample u0 ← Zℓ+1
p

(u1, . . . , un)← Share(u0,Z(ℓ+1)
p , n, t)

(K̃1, . . . , K̃n)← Share(K,Z(ℓ+1)×(k+1)
p , n, t)

Ki := K̃i + uia⊥,∀i ∈ [1, n]
9: vk := [KA]2.

10: for i ∈ [1, n]:
11: ski := Ki, vki := [KiA]2.
12: ([m∗]1, Σ∗, st1)← AOPSign(.)(st0, vk, {ski}i∈CS, {vki}i∈[1,n]) .

13: return
(

Verify∗(pp, vk, [m∗]1, Σ∗) ∧ |CS| < t ∧ S1([m∗]1) = ∅
)

Verify∗(pp, vk, [m∗]1, Σ∗) :
1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4 = [τ∗]2).

2: return
(

e(σ̂1, [1]2) = e
([(

1 m∗⊤
)

(K + u0a⊥ )
]

1
, [1]2

)
e (σ̂2, [U + τ∗V]2) ∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)

)

Figure 7.8: Modification from Game3 to Game4.
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Game 4. In this game, we apply the modifications described in Figure 7.8.
Shamir secret sharing (see Definition 47) ensures that (K1, . . . , Kn) in
Game3 and (K̃1, . . . , K̃n) in Game4 have identical distributions. W.l.o.g,
Ki in Game3 and K̃i in Game4 are identically distributed. In Game4,
on the other hand, K̃i and Ki = K̃i − uia⊥ are identically distributed.
Combining these observations, it follows that Ki in Game3 and Ki in
Game4 are identically distributed for all i ∈ [1, n]. Consequently, it can
be deduced that K in Game3 and K + u0a⊥ in Game4 are identically
distributed. Therefore, this change is just a conceptual change and we
have,

|Adv3 −Adv4| = 0 ·

Now, we give a bound on Adv4 via an information-theoretic argument. We
first consider the information about u0 (and subsequently {ui}i∈[1,n]\CS)
leaked from vk (and subsequently {vki}i∈[1,n]) and partial signing queries:

• vk := [KA]2 =
[
K̃A

]
2

and vki := [KiA]2 =
[
K̃iA

]
2

for all i ∈
[1, n].

• The output of the jth partial signature query on (i, [m]1) for [m]1 ̸=
[m∗]1 completely hides {ui}i∈[1,n]\CS (and subsequently u0 as the
adversary has only |CS| many ui with |CS| < t), since(

1 m⊤)
Ki + µja⊥ =

(
1 m⊤)

K̃i +
(
1 m⊤)

uia⊥ + µja⊥ .

distributed identically to
(
1 m⊤)

K̃i + µja⊥. This is because µja⊥

already hides
(
1 m⊤)

uia⊥ for uniformly random µj ←$ Zp.

The only way to successfully convince the verification to accept a signature
Σ∗ on m∗, the adversary must correctly compute

(
1 m∗⊤)

(K + u0a⊥)
and thus

(
1 m∗⊤)

u0. Observe that, {ui}i∈[1,n]\CS (and thereby u0) are
completely hidden to the adversary,

(
1 m∗⊤)

u0 is uniformly random
from Zp from the adversary’s viewpoint. Therefore, Adv4 = 1/p.

Theorem 6. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH
Assumption in G2, our Threshold Structure-Preserving Signature construction
achieves TS-UF-1 security against an efficient adversary making at most q partial
signature queries.
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OPSign∗(i, [m]1):
1: assert

(
[m]1 ∈M ∧ i ∈ HS

)
2: ri ←$ Zk

p, τ := H([m]1), µ←$ Zp If [m]1 = [m∗]1, set µ := 0
3: σ1 :=

[(
1 m⊤)

Ki + µa⊥ + r⊤
i B⊤(U + τ ·V)

]
1,

σ2 := [r⊤
i B⊤]1,

σ3 := [τr⊤
i B⊤]1,

σ4 := [τ ]2
4: Σi := (σ1, σ2, σ3, σ4)
5: if Σi ̸= ⊥ :
6: S1([m]1) := S1([m]1) ∪ {i}
7: return Σi

Figure 7.9: Game′
3 in the proof of Theorem 6.

Proof Sketch. The difference between TS-UF-0 and TS-UF-1 lies in the fact that,
in the latter model, an adversary can request OPSign(·) queries on [m∗]1 for
which it aims to forge a signature. The natural restriction in Figure 7.1 is
expressed as |S1([m∗]1)| < t − |CS|, where t is the threshold value and the
corrupted parties CS are fixed at the beginning of the game. As this security
model allows partial signature oracle queries on [m∗]1, we next explore the
changes we need to make on the proof of Theorem 5.

Game0, Game1 and Game2 stay the same. To handle TS-UF-1 adversaries, we
introduce an additional game Game′

2 to handle partial signature queries on the
forged message. In Game′

2, the challenger makes a list of all the partial signature
queries and guesses the message on which forgery will be done. However, the
guess will be made on the list of partial signature queries. More precisely, let A
make partial signature queries on [m1]1 , . . . , [mQ]1 s.t. Q ≤ q, the challenger of
Game′

2 rightly guesses the forged message with 1/Q probability which introduces
a degradation in the advantage. This small yet powerful modification allows the
challenger in Game3 to add a uniformly random quantity µ to partial signature
oracle queries on [m]1 ̸= [m∗]1. This concept is formulated by adding an
additional line between lines number 2 and 3 in Figure 7.6. In particular, the
new Game′

3 (See Figure 7.9) would set µ = 0 if [m]1 = [m∗]1. Next, we give
an intuitive explanation of the indistinguishability of Game′

2 and Game′
3 which

basically is a modification of the proof of Lemma 2.

The novelty of this research lies in the need to simulate partial signature
queries on the forged message [m∗]1, a challenge not addressed in previous
works like [KW15; KPW15] upon which this study is based. It’s important to
mention that an extra oracle, termed O∗∗(·), is sufficient for our objectives. On
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any partial signature query on the forged message [m∗]1, the reduction calls
O∗∗([τ∗]1) for τ∗ ← H([m∗]1). Next we see that a single query to O∗∗([τ∗]1) is
sufficient to handle multiple partial signature queries on [m∗]1. In particular,
given a partial signature oracle query on (i, [m∗]1), the reduction uses O∗∗(·) of
the so-called core-lemma (in Lemma 1) to get X =

[
B⊤(U + τ∗V)

]
1, where

τ∗ = H([m∗]1). The reduction then replies with
( [(

1 m∗⊤)]
1 Ki + r⊤ ·X,[

r⊤B⊤]
1,

[
τ∗r⊤B⊤]

1, [τ∗]2
)

as a partial signature response to A. Thus, a
single call to O∗∗(·) suffices to handle all partial signature queries on [m∗]1.

We define Game4 as being identical to the proof of Theorem 5. In fact, the
argument for the indistinguishability of Game3 and Game4 from the proof
of Theorem 5 applies here as well. The argument that Adv4 is negligible
however requires a small modification. Similar to the proof of Theorem 5, we can
show that all verification keys vk and {vki}i∈[1,n] stay the same. Furthermore,
all partial signature queries on [m]1 ̸= [m∗]1 do not leak any information
about {ui}i∈[1,n]\CS. Since, partial signature oracle queries are allowed on
[m∗]1, observe that at most {ui}i∈S1([m∗]1) are leaked to the adversary. To
summarise, an adversary in TS-UF-1 gets at most {ui}i∈S1([m∗]1)⊔CS even when it
is unbounded. Due to the natural restriction, |S1([m∗]1)|+ |CS| < t ensures that
u0 stays completely hidden to the adversary. Thus,

(
1 m∗⊤)

u0 is uniformly
random from Zp from the adversary’s viewpoint. Therefore, Adv4 ≤ 1/p.

Theorem 7. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH
Assumption in G2, the proposed Threshold Structure-Preserving Signature
construction in Figure 7.3 achieves adp-TS-UF-1 security against an efficient
adversary making at most q partial signature queries.

Proof. The difference between TS-UF-1 and adp-TS-UF-1 is that an adversary
of the later model has access to OCorrupt(.) oracle and can corrupt the honest
signers, adaptively. As per Figure 7.1, an adp-TS-UF-1 adversary proposes a
corrupted set CS at the start of the game which it updates incrementally as the
game progresses. At the time of forgery, the natural restriction in Figure 7.1
formulates as |S1([m∗]1)| < t − |CS|, where t is the threshold value and CS
contains the list of corrupted signers at the forgery phase. Given that this
security model permits an adversary to obtain the secret keys of users it may
have queried using the OPSign(.) oracle in the past, our next step involves
investigating the main modifications required for the proof in Theorem 6.

Game0, Game1, Game2, and Game′
2 stay the same. In the proof of Theorem 6,

we also have showed that Game′
2 and Game′

3 to be indistinguishable due to
the so-called core lemma, Lemma 1. We reuse the reduction in Figure 7.7
towards this purpose. The reduction in Figure 7.7 samples K ←$ Z(ℓ+1)×(k+1)

p

and generates (K1, . . . , Kn) ← Share(K,Z(ℓ+1)×(k+1)
p , n, t). Recall that, the
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adp-TS-UF-1 adversary A of Lemma 2 corrupts a party i ∈ [1, n] adaptively.
Since the reduction of Lemma 2 already knows Ki in plain, it can handle the
OCorrupt(.) oracle queries quite naturally.

The indistinguishability of Game3 and Game4 are argued exactly the same as in
Theorem 6. We now focus on Adv4. In Game4, the adversary gets to update
CS adaptively. Intuitively, all Ki are independently sampled. Giving out a few
of them to the adversary does not change the adversary’s view. In the proof of
Theorem 6, we already have managed to address partial signature queries on
forged message. Except a few details, this ensures our proof will work out. We
next give a formal argument.

We prove this theorem through a series of games and we use Advi to denote the
advantage of the adversary A in winning the Game i. The games are described
below.

Game 0. This is the adp-TS-UF-1 security game described in Definition 54.
As shown in Figure 7.10, an adversary A after receiving the set of public
parameters, pp, returns (n, t, CS), where n, t and CS represents the
total number of signers, the threshold, and the set of corrupted signers,
respectively. The adversary can query the partial signing oracleOPSign(·) to
receive partial signatures. Let Q represent the number of distinct messages
where partial signing queries are made. In the end, the adversary outputs
a message [m∗]1 and a forged signature Σ∗.

Game 1. We modify the verification procedure to the one described
in Figure 7.11. Consider any forged message/signature pair ([m∗]1, Σ∗ =
(σ̂1, σ̂2, σ̂3, σ̂4)) where e(σ̂2, σ̂4) = e(σ̂3, [1]2), |CS| < t and S1([m∗]1) = ∅.
Note that if the pair ([m∗]1, Σ∗) meets the Verify∗(·) conditions, outlined
in Figure 7.11, it also satisfies Verify(·) procedure, described in Figure 7.10.
This is primarily due to the fact that:

e(σ̂1, [A]2) = e
(
[
(
1 m∗⊤)

]1, [KA]2
)
· e(σ̂2, [UA]2) · e(σ̂3, [VA]2)

⇐= e(σ̂1, [1]2) = e([
(
1 m∗⊤)

]1, [K]2) · e(σ̂2, [U]2) · e(σ̂3, [V]2)

⇐⇒e(σ̂1, [1]2) = e([
(
1 m∗⊤)

K]1, [1]2) · e(σ̂2, [U + τ∗V]2) ·

Assume there exists a message/signature pair ([m∗]1, Σ∗ = (σ̂1, σ̂2, σ̂3, σ̂4))
that satisfies Verify(.) and not Verify∗(.), then we can compute a non-zero
vector c in the kernel of A as follows:

c := σ̂1 − ([
(
1 m∗⊤)

K]1 + σ̂2U + σ̂3V) ∈ G1×(k+1)
1 ·
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GGG0(κ):
1: BG ← ABSGen(1κ),
2: A, B←$ Dk,
3: U, V ←$ Z(k+1)×(k+1)

p .
4: pp := ([A]2, [UA]2, [VA]2, [B]1, [B⊤U]1, [B⊤V]1).
5: (n, t, CS, st0)← A(pp).
6: Assert CS ⊂ [1, n].
7: Sample K ←$ Z(ℓ+1)×(k+1)

p .
8: (K1, . . . , Kn)← Share(K,Z(ℓ+1)×(k+1)

p , n, t).
9: vk := [KA]2.

10: ski := Ki, vki := [KiA]2 for i ∈ [1, n].
11: ([m∗]1, Σ∗, st1)← AOPSign(·),OCorrupt(·)(st0, vk, {ski}i∈CS, {vki}i∈[1,n]).

12: return
(

Verify(pp, vk, [m∗]1, Σ∗) ∧ |CS| < t ∧ S1([m∗]1) = ∅
)

OPSign(i, [m]1):
1: Assert

(
[m]1 ∈M ∧ i ∈ HS

)
.

2: ri ←$ Zk
p.

3: τ := H([m]1).
4: σ1 :=

[(
1 m⊤

)
Ki + r⊤

i B⊤(U + τV)
]

1
.

σ2 := [r⊤
i B⊤]1,

σ3 := [τr⊤
i B⊤]1,

σ4 := [τ ]2.
5: Σi := (σ1, σ2, σ3, σ4).
6: if Σi ̸= ⊥ :
7: S1([m]1) := S1([m]1) ∪ {i}.
8: return Σi

OCorrupt(j):
1: CS← CS ∪ {j}
2: HS← CS \ {j}
3: return skj

Verify(pp, vk, [m∗]1, Σ∗) :
1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4).

2: return
(

e(σ̂1, [A]2) = e
([(

1 m∗⊤
)]

1
, [KA]2

)
· e(σ̂2, [UA]2) ·

e(σ̂3, [VA]2) ∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Figure 7.10: Game0.
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According to Dk-KerMDH assumption over G2 described in Definition 51,
such a vector c is hard to compute. Thus,

|Adv0 −Adv1| ≤ AdvKerMDH
Dk,G2,B0

(κ) ·

Game 2. On receiving a partial signature query on a message [mi]1, a list is
updated with the message [mi]1 and the corresponding tag τi := H([mi]1).
The challenger aborts if an adversary can generate two tuples ([mi]1, τi),
([mj ]1, τj) with [mi]1 ̸= [mj ]1 and τi = τj . By the collision resistance
property of the underlying hash function we have:

|Adv1 −Adv2| ≤ AdvCRHF
H (κ) ·

Verify∗(pp, vk, [m∗]1, Σ∗):
1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4 = [τ∗]2).

2: return
(

e(σ̂1, [1]2) = e
(
[
(
1 m∗⊤)

K]1, [1]2
)
· e(σ̂2, [U + τ∗V]2) ∧

e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Figure 7.11: Modifications in Game1.

Game 2′. In Game′
2, the challenger randomly chooses an index j∗ ←$ [1, Q]

as its guess of the message on which the forgery will be done. This
game is the same as Game 2 except that the challenger aborts the game
immediately if forged message [m∗]1 ̸= [mj∗ ]1.
The challenger of Game′

2 rightly guesses the forged message [m∗]1 with
1/Q probability which introduces a degradation in the advantage of Game′

2:
Adv2′ = 1

Q Adv2.

Game 3′. This game is same as Game′
2 except we introduce randomness to the

partial signatures by adding µa⊥ to each partial signature query on all
messages [m]1 except [m]∗1 on which the forgery is done.
We show that, we can make a reduction algorithm B for the so-called
core-lemma (in Lemma 1) using A. At the start of the game, B randomly
chooses an index j∗ ←$ [1, Q] as its guess of the message on which forgery
will be done. If [m∗]1 ̸= [mj∗ ]1 = [m∗]1, B aborts. Otherwise, B outputs
A’s output as it is. In particular, B does the following:

1. B receives pp from the challenger.
2. B samples K ←$ Z(ℓ+1)×(k+1)

p .
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OPSign∗(i, [m]1):
1: assert

(
[m]1 ∈M ∧ i ∈ HS

)
2: ri ←$ Zk

p, τ := H([m]1), µ←$ Zp If [m]1 = [m∗]1, set µ := 0
3: σ1 :=

[(
1 m⊤)

Ki + µa⊥ + r⊤
i B⊤(U + τ ·V)

]
1,

σ2 := [r⊤
i B⊤]1,

σ3 := [τr⊤
i B⊤]1,

σ4 := [τ ]2
4: Σi := (σ1, σ2, σ3, σ4)
5: if Σi ̸= ⊥ :
6: S1([m]1) := S1([m]1) ∪ {i}
7: return Σi

Figure 7.12: Game′
3 in the proof of Theorem 7.

3. B then secret shares K into (K1, . . . , Kn) ←
Share(K,Z(ℓ+1)×(k+1)

p , n, t).
4. On a OCorrupt(.) oracle query on j ∈ [1, n], B returns Kj .
5. B simulates the partial signature query on (i, [m]1) as following:

• If [m]1 = [m∗]1, it makes a query (i, τ∗) on O∗∗(.) where τ∗ ←
H([m∗]1).

– Let B receives val as the response of the above queries.
– B samples ri ←$ Zk

p and returns Σi := (
[(

1 m⊤)
Ki

]
1 · r

⊤
i ·

val, r⊤
i · val, τ · r⊤

i · val, [τ ]2) to A as the partial signature.
• If [m]1 ̸= [m∗]1, it makes a query (i, τ) on Ob(·), where τ ←
H([m]1).

– Let B receives (val1, val2) as the response of the above
queries.

– It returns Σi :=
([(

1 m⊤)
Ki

]
1 · val1, val2, τ · val2, [τ ]2

)
to A as the partial signature.

6. On Verify∗(.) on (vk, [m∗]1 , Σ∗), B queries on O∗(·) on [τ∗]2 where
τ∗ ← H([m∗]1).

• Let Σ∗ is (σ1, σ2, σ3, σ4 = [τ∗]2).
• Let B receives val as the response of the above query.
• B verifies the signature: e(σ1, [1]2) = e

([(
1 m∗⊤)

K
]

1 , [1]2
)
·

e(σ2, val) ∧ e(σ2, σ4) = e(σ3, [1]2).

Game′
2 and Game′

3 are indistinguishable due to the so-called core-lemma
(in Lemma 1), then we have:
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|Adv2′ −Adv3′ | ≤ 2QAdvMDDH
Dk,G1,B1

(κ) +Q/p ·

Game 4. This game is same as Game′
3 except that {Ki}i∈[n] are sampled. In

particular, we sample Ki = K̃i + uia⊥ for i ∈ [1, n].
Shamir secret sharing (see Definition 47) ensures that (K1, . . . , Kn) in
Game3 and (K̃1, . . . , K̃n) in Game4 are identically distributed. W.l.o.g,
Ki in Game′

3 and K̃i in Game4 are identically distributed. In Game4,
on the other hand, K̃i and Ki = K̃i − uia⊥ are identically distributed.
Considering both together, Ki is Game′

3 and Ki in Game4 are identically
distributed for all i ∈ [1, n]. Thus further ensures that K in Game′

3 and
K + u0a⊥ in Game4 are identically distributed. Therefore, this change is
just a conceptual change and Adv3′ −Adv4 = 0.
Finally, we argue that Adv4 = 1/p. Notice that, the adversary gets to
update CS adaptively. To complete the argument, we have to ensure that
even after getting Ki = K̃i + uia⊥ for i ∈ [CS] chosen adaptively and
even after having several partial signatures (possibly on the corrupted
keys too), u0 is still hidden to the adversary.

• Firstly, vk and {vki}i∈[1,n] do not leak anything about u0 and
{ui}i∈[1,n] respectively. Note that, A gets ski = Ki = K̃i + uia⊥ for
i ∈ [CS] as a part of Input.

• The output of jth partial signature query on (i, [m]1) for [m]1 ̸= [m∗]1
completely hides {ui}i∈[1,n]\CS (and subsequently u0 as the adversary
has only |CS| many ui where |CS| < t), since(

1 m⊤)
Ki + µja⊥ =

(
1 m⊤)

K̃i +
(
1 m⊤)

uia⊥ + µja⊥ ·

distributed identically to
(
1 m⊤)

K̃i + µja⊥. This is because µja⊥

already hides
(
1 m⊤)

uia⊥ for uniformly random µj ←$ Zp.
• In case of the jth partial signature query on (i, [m∗]1), observe that

at most {ui}i∈S1([m∗]1) are leaked to the adversary. To summarise,
an adp-TS-UF-1 adversary gets at most {ui}i∈S1([m∗]1) even when it
is unbounded.

• Finally, we take a look at the corrupted set CS. We emphasize that
this set was updated through out the game adaptively.

From the above discussion, it is clear that the information theoretically
adversary can at most gets hold of {ui}i∈S1([m∗]1)⊔CS adaptively. Note
that, the only way to sucessfuly convince the verification to accept a
signature Σ∗ on m∗, the adversary must correctly compute

(
1 m∗⊤)

(K+



134 TSPS: STRONG AND ADAPTIVE SECURITY UNDER STANDARD ASSUMPTIONS

u0a⊥) and thus
(
1 m∗⊤)

u0. So the question now reduces to if the
adversary can compute u0 from {ui}i∈S1([m∗]1)⊔CS which it got adaptively.
Since Shamir secret sharing is information theoretically secure, the
advantage of an adversary in case of selective corruption of users is same
as the advantage of an adversary in case of adaptive corruption of users.
Thus, u0 is completely hidden to the adaptive adversary,

(
1 m∗⊤)

u0 is
uniformly random from Zp from its viewpoint. Therefore, Adv4 = 1/p.

7.3.5 Proof of Core Lemma

Proof of Lemma 1. We proceed through a series of games from Game0 to Gameq.
Note that, Init outputs the same in all the games. In Gamei, the first i queries
to the oracle Ob(.) are responded with ([µa⊥ + r⊤B⊤(U + τV)]1, [r⊤B⊤]1) and
the next q − i queries are responded with ([r⊤B⊤(U + τV)]1, [r⊤B⊤]1). The
intermediate games Gamei and Gamei+1 respond differently to the i+1-th query
to Ob(.). The Gamei responds with ([r⊤B⊤(U + τV)]1, [r⊤B⊤]1) whereas
Gamei+1 responds with ([µa⊥ + r⊤B⊤(U + τV)]1, [r⊤B⊤]1). We compute
the advantage of the adversary in differentiating the two games below. The
advantage of the adversary in Gamei is denoted by Advi for i = 0, . . . , q. On
querying Ob(·), Gamei responds to i + 1-th query with

([r⊤B⊤(U + τV)]1, [r⊤B⊤]1) ,

where r← Zk
p.

We define a sub-game Gamei.1 where [Br]1 is replaced with [w]1, [w]1 ← Gk+1
1 .

From the MDDH assumption, a MDDH adversary cannot distinguish between
the distributions ([B]1, [Br]1) and ([B]1, [w]1). Thus,

([r⊤B⊤(U + τV)]1, [r⊤B⊤]1) ≈c ([w⊤(U + τV)]1, [w]1) ·

All the other values can be perfectly simulated in the reduction by choosing
U and V from the appropriate distributions. In the next sub-game Gamei.2,
we introduce the randomness µa⊥ to [w⊤(U + τV)]1 and proceed to use an
information-theoretic argument to bound the advantage in this experiment. As
shown in [KW15], for every A, B← Dk, τ ̸= τ∗, the following distributions are
identically distributed

(vk, [w⊤(U + τV)]1, U + τ∗V) and (vk, [µa⊥ + w⊤(U + τV)]1, U + τ∗V) ·
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with probability 1− 1/p over w. The values [B⊤U]1 and [B⊤V]1 are part of
the public values vk := (A, UA, VA, [B]1, [B⊤U]1, [B⊤V]1) and anyone can
compute [B⊤(U + τ∗V)]1 corresponding to a τ∗. Thus, for τ ̸= τ∗, we have
the two following identical distributions:

(vk, [w⊤(U + τV)]1, [U + τ∗V]2, [B⊤(U + τ∗V)]1) and

(vk, [µa⊥ + w⊤(U + τV)]1, [U + τ∗V]2, [B⊤(U + τ∗V)]1) ·
(7.1)

From Equation (7.1), the subgames Gamei.1 and Gamei.2 are statistically close.
We use the MDDH assumption again in the next sub-game Gamei.3 and replace
[w]1 with [Br]1. The resulting distribution is

(vk, [µa⊥ + r⊤B⊤(U + τV)]1, [U + τ∗V]2, [B⊤(U + τ∗V)]1) ,

which is same as Gamei+1. Thus, from the two MDDH instances as well as the
information-theoretic argument,

|Advi −Advi+1| ≤ 2AdvMDDH
Dk,G1,B(κ) + 1/p ·

7.4 Conclusion

In this paper, we give the first construction of a non-interactive threshold
structure-preserving signature (TSPS) scheme from standard assumptions. We
prove our construction secure in the adp-TS-UF-1 security model where the
adversary is allowed to obtain partial signatures on the forged message and
additionally allow the adversary to adaptively corrupt parties. Although the
signatures are constant-size (and in fact quite small), we consider improving the
efficiency of TSPS under standard assumptions as an interesting future work.
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Abstract. Subversion-resistant zk-SNARKs allow the provers to verify the
Structured Reference String (SRS), via an SRS Verification (SV) algorithm and
bypass the need for a Trusted Third Party (TTP). Pairing-based zk-SNARKs
with updatable and universal SRS are an extension of subversion-resistant ones
which additionally allow the verifiers to update the SRS, via an SRS Updating
(SU) algorithm, and similarly bypass the need for a TTP. In this paper, we
examine the setup of these zk-SNARKs by benchmarking the efficiency of the
SV and SU algorithms within the Arkworks library. The benchmarking covers a
range of updatable zk-SNARKs, including Sonic, Plonk, Marlin, Lunar, and
Basilisk. Our analysis reveals that relying solely on the standard Algebraic
Group Model (AGM) may not be sufficient in practice, and we may need a
model with weaker assumptions. Specifically, we find that while Marlin is secure
in the AGM, additional elements need to be added to its SRS to formally
prove certain security properties in the updatable CRS model. We demonstrate
that the SV algorithms become inefficient for mid-sized circuits with over
20,000 multiplication gates and 100 updates. To address this, we introduce
Batched SV algorithms (BSV) that leverage standard batching techniques and
offer significantly improved performance. As a tool, we propose an efficient
verification approach that allows the parties to identify a malicious SRS updater
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with logarithmic verification in the number of updates. In the case of Basilisk,
for a circuit with 220 multiplication gates, a 1000-time updated SRS can be
verified in less than 30 sec, a malicious updater can be identified in less than 4
min (improvable by pre-computation), and each update takes less than 6 min.

8.1 Introduction

Let R be an NP relation which defines the language L of all statements, x,
for which there exists a witness, w, s.t. (x, w) ∈ R. A Non-Interactive Zero-
Knowledge (NIZK) argument [GMR89; BFM88] for R allows an untrusted
prover P, knowing w, to non-interactively convince a sceptical verifier V about
the truth of a statement x, without leaking extra information about the witness
w. Due to a wide range of applications, there has been a growing interest in
recent years to develop NIZK proof systems, particularly those allowing for
succinct proofs and efficient verifications, so-called zk-SNARKs (zero-knowledge
Succinct Non-interactive Arguments of Knowledge) [Par+13; Gro16].

A zk-SNARK is expected to satisfy Zero-Knowledge (ZK) and Knowledge
Soundness (KS). ZK ensures that V learns nothing beyond the truth of statement,
x, from the proof. KS ensures that no malicious P can convince honest V of
a false statement, unless he knows the witness. To achieve ZK and KS at the
same time, zk-SNARKs rely on a Structured Reference String (SRS), which
is supposed to be sampled by a Trusted Third Party (TTP), using the SRS
generation algorithm SG [BFM88]. Therefore, in the SRS model a zk-SNARK
consists of three algorithms (SG, P, V). In practice, finding a mutually TTP for
executing the SG algorithm to generate the SRS can be challenging.

Mitigating the Trust on the Setup of zk-SNARKs. To relax the imposed
trust on the setup of zk-SNARK, a line of research distributes the SG algorithm
and constructed Multi-Party Computation (MPC) protocols to sample the
SRS [Ben+15; BGM17; Koh+21]. In such protocols, both P and V need to
trust only 1 out of i > 1 participants.

In a different research direction, in 2016, Bellare et al. [BFS16] built the first
NIZK argument that can achieve ZK, even if its SRS was subverted, so-called
Subversion ZK (Sub-ZK). In a Sub-ZK NIZK argument, the prover does not
need to trust the SRS generator, instead, it needs to run an algorithm, so-called
SRS Verification (SV), and verify the validity of SRS before using it. The SV
algorithm uses some pairing equations to verify the well-formedness of SRS
elements. Two subsequent works of [Abd+17; Fuc18] presented subversion-
resistant zk-SNARKs that similarly come with an SV algorithm and can achieve
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Sub-ZK. In a Sub-ZK SNARK, consisting of four algorithms (SG, SV, P, V), the
provers can verify the validity of SRS, by one-time executing the SV algorithm,
and then bypass the need for a TTP. On the other side, the verifiers either need
a TTP to generate the SRS, or they need to run an MPC protocol (e.g. [Ben+15;
BGM17]) to sample the SRS elements, which will relax the level of trust to 1
out of i (participants).

As an extension to the MPC approach and subversion-resistant zk-SNARKs, in
2018, Groth et al. [Gro+18] proposed a new model, so-called updatable SRS
model, which allows the verifiers to also bypass the trust on a TTP. To this end,
a V needs to update the SRS one time, using an SRS Updating (SU) algorithm,
and also verify the validity of previous updates and the final SRS, using the
SV algorithm. Roughly speaking, in a zk-SNARK with updatable SRS, which
consists of five algorithms (SG, SU, SV, P, V), to bypass the trust on a third
party, a P needs to run the SV algorithm, and a V needs to run both SU and
SV. In this model, the SRS is universal and can be used for various circuits
within a bounded size. Then, Groth et al. [Gro+18] built the first zk-SNARK
with universal and updatable SRS, but comes with O(n2) SRS size, where n is
the number of multiplication gates in the circuit. In practice, this results in a
huge SRS size, and impractical SU and SV algorithms.

Recently, there has been an impressive progress on designing Random
Oracle-based zk-SNARKs with linear-size updatable SRS, shorter proofs,
and more efficient provers and verifiers. Some of the known schemes that
consecutively improve the initial scheme of [Gro+18] and the subsequent works
are called, Sonic [Mal+19], Plonk [GWC19], Marlin [Chi+19], Lunar [Cam+21],
Basilisk [RZ21], and Counting Vampires [LSZ22]. Currently, Counting
Vampires [LSZ22] has the shortest proofs, i.e., two group elements less than
Basilisk, but its SRS is 17× larger than the SRS of Basilisk, and this can
result in a considerably slower setup phase. The SU and SV algorithms are two
essential algorithms for achieving Sub-ZK and Updatable Knowledge Soundness
(Upd-KS, KS in the updatable SRS model) and the employment of updatable zk-
SNARKs. In order to achieve Sub-ZK and Upd-KS in the updatable SRS model,
the underlying SRS must be publicly verifiable and trapdoor extractable [BFS16;
Abd+17; Fuc18; Gro+18]. Meaning that, the consistency of SRS elements should
be publicly verifiable, and one should be able to extract the SRS trapdoors
from the setup phase (e.g., by relying on a knowledge assumption). The
initial scheme [Gro+18], and some follow-up generic constructions [ARS20;
BS21; BB22] come with SU and SV algorithms, under Bilinear Diffie-Hellman
Knowledge of Exponent (BDH-KE) assumption. But their SV algorithm is
identical for both P and V, which in case of verifying an i-time updated SRS, it
brings O(i) pairing operations as an overload for the P. In [LSZ22], authors have
proposed an SV algorithm to achieve Sub-ZK in their construction. However,
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their SV algorithm can only be used by P (to achieve Sub-ZK), and it does not
consider the verification of an i-time updated SRS, needed by V.

Our Contributions. The main objective of the current paper is to examine
the efficiency of the setup phase in updatable zk-SNARKs, and evaluate their
empirical performance, particularly in large-scale applications.

To this end, we first present a pair of (SU, SV) algorithms for each of
the updatable zk-SNARKs including: Sonic [Mal+19], Plonk [GWC19],
Marlin [Chi+19], LunarLite [Cam+21] and Basilisk [RZ21]. Similar to the
earlier works [BFS16; Abd+17; Fuc18; Gro+18], the proposed algorithms use
pairing products and are tailored to each specific updatable zk-SNARK. As all
the aformentioned zk-SNARKs can be instantiated in various ways, we focus on
the pairing-based version of them with the shortest proof, which is commonly
used for comparison in the literature. During the construction of the SU and
SV algorithms, we noticed that relying only on the standard Algebraic Group
Model (AGM) may not be enough in practice. In some cases, we may require
a model with weaker assumptions, such as the AGM with hashing [Lip22]. In
fact, there might be a case that a zk-SNARK with monomial SRS is proven to
achieve ZK and KS in the AGM model, but their SRS needs to be modified to
achieve Sub-ZK and U-KS. The reason is that, to achieve Sub-ZK and Upd-KS
the SRS needs to be publicly verifiable and trapdoor extractable [Abd+17;
Gro+18]. In the rest, we show that the SRS of Marlin [Chi+19] is not trapdoor
extractable as it is, but it can be made trapdoor extractable under the BDH-KE
assumption, by adding a single group element to its SRS.

In the rest, we show that using the presented SU and SV algorithms, Sonic,
Plonk, LunarLite and Basilisk also can achieve trapdoor extractability, under
a subverted/maliciously updated SRS. Since all of them already are proven
that satisfy ZK and KS, this implies that they also satisfy Sub-ZK and Upd-
KS. Similar to the earlier works [BFS16; Abd+17; Fuc18; Chi+19], our SV
algorithms use pairing product equations to verify the SRS. But, differently
our SV algorithms get an additional input, denoted by party, which allows us
to determine whether a P or V runs the algorithm. Due to achieving Sub-ZK
and Upd-KS in the updatable zk-SNARKs, P only needs to verify the final
(c⃗rsi, Πi), while V additionally needs to verify the intermediate proofs {Πj}i−1

j=0.
Fig. 8.1 depicts a graphical representation of the setup phase in the pairing-
based updatable zk-SNARKs, and highlights the parts that need to be verified
by P or V. By running an SV algorithm, P needs to compute O(n) pairings,
where n is the number of multiplication gates in the circuit, and V requires to
compute at least O(n + i) pairings, where i is the number of updates done on
the SRS. In practice, even for mid-size circuits (e.g. n ≥ 104) with 100 updates,
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Figure 8.1: Setup in the updatable zk-SNARKs: SG, SU, and SV by P or V.

the SV algorithms can be very slow, consequently impractical.

Next, we use the standard batching techniques from [BGR98] and propose a
batched version of the SV algorithms, so-called BSV, for each of the studied
updatable zk-SNARKs. Using the BSV algorithms, to verify an i-time updated
SRS, P needs O(n) exponentiations (with short exponents) and constant number
of pairings, which is independent of the number of updates. A V needs to
compute O(n + i) exponentiations (with short exponents) and O(i) pairings.
Table 8.1, compares the efficiency of our proposed SU, SV and BSV algorithms
for both P and V.

The schemes built in the updatable SRS model [Gro+18] can achieve security
only with abort, if the parties do not verify the updated SRS after each
update. Namely, by verifying the final SRS c⃗rsi and the intermediate proofs
{Πj}i

j=0 [Gro+18] the parties will abort the final SRS c⃗rsi and would not be
able to identify a malicious SRS generator/updater. To identify a malicious
SRS generator/updater, if the parties (or a third party) verify each updated

Table 8.1: An efficiency comparison of our proposed SU, SV and BSV algorithms.
SVP: SV run by P, BSVV: BSV run by V, El: Exponentiations in Gl, •: Pairing,
m: #total (multiplication and addition) gates, n: #multiplication gates, k:
#matrix elements with non-zero values describing the circuit, i: # SRS updates

SG/SU SVP SVV BSVP BSVV
Scheme E1 E2 • • E1 E2 • E1 E2 •
Sonic 4n 4n 12n 12n + 10i 8n 4n 7 8n + 8i 6n + 2i 4i + 14

Marlin k log k 2k + 12 2k + 9i + 12 2k log k 4 2k + 5i 2i + log k 2i + 9
Plonk 3m 2 6m 6m + 4i 6m — 2 6m + 3i i i + 3

LunarLite n n 3n 3n + 4i + 2 2n n 3 2n + 3i n + i i + 3
Basilisk n 2 2n 2n + 4i 2n — 2 2n + 3i i i + 3
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SRS {c⃗rsj}i
j=0 (instead of only c⃗rsi), then the verification of whole setup phase

will be impractical. To deal with that, we introduce an efficient verification
approach for identifying the malicious updater. For an i-time updated SRS, it
allows the parties to identify the (first) malicious SRS updater with log i times
running the BSV (or SV) algorithm. We discuss different optimizations that
can speed up the proposed recursive SRS verification considerably, at the cost
of some pre-computations and storage.

Finally, we present a comprehensive benchmark on the efficiency of our proposed
SU, SV and BSV algorithms in the Arkworks library, which is written in Rust
and currently is one of the most popular libraries programming zk-SNARKs.
Full details of the benchmarking are reported in Sec. 8.5. In summary, for a
particular circuit, by comparing the performance of BSV and SV algorithms, we
observed that BSV can achieve up to 110− 150× better efficiency. In the case
of Basilisk which has the most efficient setup phase, for a circuit with n = 220

multiplication gates, a 1000-time updated SRS can be verified in less than 30
sec. In the case that the verification of final SRS fails, using our proposed
recursive verification approach, a malicious SRS updater can be identified in
less than 4 min (or in less than 1 min by some pre-computations), and each
party equipped with a multi-core CPU can update the SRS in less than 6 min.
Our BSVP algorithms are considerably faster than BSVV ones, in case of a short
SRS (e.g. n ≤ 30K) and a large number of updates (e.g. i ≥ 200).

Related Works. To mitigate the trust in the setup phase of zk-SNARKs, there
are two key research directions. Either, by using an MPC protocol to sample
the SRS [Ben+15; BGM17; Koh+21] or by directly constructing subversion-
resistant [BFS16; Abd+17; Fuc18; Bag19b] and updatable zk-SNARKs [Gro+18;
Mal+19; ARS20; BS21; BB22]. Our work is focused on the latter approach.

A bottleneck with the initial MPC protocols [Ben+15], is that the number of
parties has to be known in advance. Bowe et al. [BGM17] presented an MPC
protocol for Groth16 [Gro16] setup, which has two phases. The first phase is
known as “Powers of Tau”, which can be used to sample a universal SRS for
all circuits up to a given size. In the second phase, given the universal SRS
generated in the previous phase, parties generate a circuit-dependent SRS. In the
Powers of Tau protocol, a coordinator is used to manage messages between the
participants, however the output of the protocol is verifiable. Compared with the
case one uses the Powers of Tau protocol [BGM17], 1) our proposed algorithms
do not need a random beacon, 2) our SV and BSV algorithms are constructed
in the updatable SRS model which allows one to verify an i-time updated SRS
considerably more efficient than i-time running their SRS verification algorithm.
For verifying even one-time updated SRS, our proposed BSV algorithms can be
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more than 100× faster than their verification algorithm, 3) our SV and BSV
algorithms for the provers and verifiers are different, which allows the provers to
verify a large-time updated SRS more efficient than verifiers. 4) our protocols
can achieve identifiable security more efficiently (using a new recursive SRS
verification approach).

In [Koh+21], Kohlweiss et al. presented a more efficient version of the Powers
of Tau [BGM17]. Their ceremony protocol [Koh+21] uses an RO-based proof
system, and comes with a BSV algorithm. Similar to previous SG, SU, SV and
BSV algorithms, our algorithms do not use a random beacon or a random
oracle. Similar to the earlier works on subversion-resistant or updatable NIZK
arguments [Abd+17; Fuc18; Gro+18; Bag19b; ARS20; BS21; BB22],we rely on
particular knowledge assumptions. In comparison with the case that one uses
the protocol proposed in [Koh+21], 1) our proposed algorithms (i.e., SG, SU, SV,
and BSV) do not rely on RO, 2) we have different SV (and BSV) algorithms
for the provers and verifiers, which allow the provers to verify an updated SRS
more efficient than the verifiers, 3) our constructions can achieve identifiable
security.

In another related research direction, some studies have defined subversion-
resistant and updatable commitments [Bag20; DRZ20; Gan+22], and have
proposed SV and SU algorithms for their studied (knowledge, vector, and
polynomial) commitment schemes. Our proposed SV algorithm for Sonic can
be considered as an extension of the one proposed in [Bag20], which checks
some extra terms and also allows the verifiers to verify an i-time updated SRS.
Our SV algorithm for the verifiers in Basilisk is similar to the one proposed
in [Gan+22], but our SV algorithm for the provers is more efficient. We also
propose a batched version of SV algorithms that make them considerably more
efficient in practice.

8.2 Preliminaries

Throughout, we suppose the security parameter of the scheme and its unary
representation to be denoted by κ and 1κ, respectively. For all positive functions
ε(λ), a mapping function negl : N → R+ is called negligible function if there
exists λ0 ∈ N such that for all λ > λ0 we have, ν(κ) < 1/ε(λ). We use x←$ X
to denote x sampled uniformly according to the distribution X.

Let PPT and NUPPT denote probabilistic polynomial-time and non-uniform
probabilistic polynomial-time, respectively. For an algorithm A, let im(A)
be the image of A, i.e., the set of valid outputs of A. Moreover, assume
RND(A) denotes the random tape of A, and r ←$ RND(A) denotes sampling
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of a randomizer r of sufficient length for A’s needs. By y ← A(x; r) we mean
given an input x and a randomizer r, A outputs y. For algorithms A and
ExtA, we write (y ∥ y′) ← (A∥ExtA)(x; r) as a shorthand for “y ← A(x; r),
y′ ← ExtA(x; r)”.

We use additive and the bracket notation, i.e., in group Gζ , [a]ζ = a [1]ζ ,
where [1]ζ is the generator of Gζ for ζ ∈ {1, 2, T}. A bilinear group generator
BGgen(1κ) returns (p,G1,G2,GT , E, [1]1 , [1]2), where p (a large prime) is the
order of cyclic abelian groups G1, G2, and GT . Finally, ê : G1 ×G2 → GT is
an efficient non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) = [ab]T . Denote
[a]1 • [b]2 = E([a]1 , [b]2).

8.2.1 Updatable, Universal and Subversion-Resistant zk-
SNARKs

We adopt the definition of subversion-resistant and updatable zk-SNARKs
from [Abd+17; Gro+18]. Let R be a relation generator, such that R(1κ)
returns a polynomial-time decidable binary relation R = {(x, w)}, where x is
the statement and w is the witness. We assume one can deduce κ from the
description of R. Let L = {x : ∃ w | (x, w) ∈ R} be an NP-language including
all the statements which there exist corresponding witnesses in relation R.
A NIZK argument ΨNIZK in the updatable SRS model for R consists of the
following PPT algorithms:

• (c⃗rs0, Π0) ← SG(R): Given R, the SRS generator SG first deduces the
upper bound N on the relation size. Next, sample the trapdoor t⃗s and
then use it to generate c⃗rs0 along with Π0 as a proof of its well-formedness.
Finally, return (c⃗rs0, Π0) as the output.

• (c⃗rsi, Πi) ← SU(c⃗rsi−1, {Πj}i−1
j=0): Given (c⃗rsi−1, {Πj}i−1

j=0), an SRS
updater SU returns the pair of (c⃗rsi, Πi), where c⃗rsi is the updated SRS
and Πi is a proof for correct updating.

• (⊥/1) ← SV(c⃗rsi, {Πj}i
j=0, party): Given a potentially updated c⃗rsi,

{Πj}i
j=0, SV, and party ∈ {P, V}, return either ⊥ (if c⃗rsi is incorrectly

formed or updated) or 1 (if c⃗rsi is correctly formed or updated).

• (π/⊥) ← P(R, c⃗rsi, x, w): Given the tuple of (R, c⃗rsi, x, w), such that
(x, w) ∈ R, P output an argument π. Otherwise, it returns ⊥.

• (0/1) ← V(R, c⃗rsi, x, π): Given (R, c⃗rsi, x, π), V verify the proof π and
return either 0 (reject) or 1 (accept).
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In the standard SRS model, a zk-SNARK for R has a tuple of algorithms
(SG, P, V) (and SG does not return the Π0), while subversion-resistant
constructions [BFS16; Abd+17] additionally have an SV algorithm which is used
to verify the well-formedness of the SRS elements to achieve Sub-ZK [BFS16].
But as listed above, in the updatable SRS model, a NIZK argument additionally
has an SU algorithm that allows the parties (more precisely, the verifiers) to
update the SRS and add their own private shares to the SRS generation. Note
that in the latest case, the algorithm SG does not necessarily need R, and it only
deduces security parameter 1κ and the upper bound N from it. We highlight
that, in comparison with previous definitions [Gro+18], our SV algorithm gets
an additional input party ∈ {P, V}. We later show that this allows us to build
a more efficient SV algorithm for the prover. It is worth mentioning that in
the updatable SRS model, there also exists a publicly computable deterministic
algorithm Derive which given (R, c⃗rsi) outputs a specialized SRS for relation
R. The output elements of Derive all are in the span of the universal SRS, but
they allow to build more efficient proof generation and verification algorithms.

In the subversion-resistant and updatable SRS model, a zk-SNARK is expected
to satisfy updatable completeness, Subversion Zero-Knowledge (Sub-ZK) and
Updatable Knowledge Soundness (Upd-KS), of which the definitions are
summarized below. In the definition of Sub-ZK, one requires the existence of
a PPT simulator Sim consisting of algorithms (SimSG, SimP) that share state
with each other. The idea is that it can be used to simulate the SRS and proofs
without knowing the corresponding trapdoors.

The algorithm of proof simulation. π ← SimP(R, c⃗rsi, t⃗si, x): For
SV(c⃗rsi, Πi) = 1, given the tuple (R, c⃗rsi, t⃗si, x), where t⃗si is the simulation
trapdoor associated with the latest SRS, namely c⃗rsi, outputs a simulated
argument π.

Definition 55 (Perfect Updatable Completeness). A non-interactive argument
ΨNIZK is perfectly updatable complete for R, if for all (R) ∈ im(R(1κ)), and
(x, w) ∈ R, the following probability is 1 on security parameter κ,

Pr

(R)← R(1κ), (c⃗rs0, Π0)← SG(R), ({c⃗rsj , Πj}i
j=1)← A(R, c⃗rs0),

{SV(c⃗rsj , Πj , party) = 1}i
j=0 : (x, π)← P(R, c⃗rsi, x, w) ∧ V(R, c⃗rsi, x, π) = 1

 ,

where Πi is a proof for the correctness of the initial SRS generation or SRS
updating. Note that in the above definition and all the following one, i is the
index of final update, and without loss of generality, A can also first generate
{c⃗rsj}i−1

j=0 and then an honest updater updates c⃗rsi−1 to c⃗rsi.
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Definition 56 (Sub-ZK). A NI argument Ψ is computationally Sub-ZK for R,
if for any PPT subvertor Sub there exists a PPT extractor ExtSub, s.t. for all κ,
all R ∈ im(R(1κ)), and for any PPT A, one has ε0 ≈κ ε1, where

εb = Pr

r ←$ RND(Sub), ((c⃗rs, Πc⃗rs, ξSub) ∥ t⃗s)← (Sub ∥ExtSub)(R; r) :

SV(c⃗rs, Πc⃗rs, party) = 1 ∧ AOb(·,·)(R, c⃗rs, t⃗s, ξSub) = 1

 .

Here, ξSub is auxiliary information generated by subvertor Sub, the party is
set to be the prover, and the oracle O0(x, w) returns ⊥ (reject) if (x, w) ̸∈ R,
and otherwise it returns P(R, c⃗rs, x, w). Similarly, O1(x, w) returns ⊥ (reject) if
(x, w) ̸∈ R, and otherwise it returns Sim(R, c⃗rs, t⃗s, x). Ψ is perfectly Sub-ZK for
R if one requires that ε0 = ε1.
Definition 57 (Updatable nBB Knowledge Soundness). A non-interactive
argument ΨNIZK is updatable non-black-box knowledge sound for R, if for every
PPT adversary A and any subvertor Sub, there exists a PPT extractor ExtA,
and the following probability is ν(κ),

Pr



R← R(1κ), (c⃗rs0, Π0)← SG(R), rs ←$ RND(Sub),

({c⃗rsj , Πj}i
j=1 , ξSub)← Sub(c⃗rs0, Π0, rs), {SV(c⃗rsj , Πj , party) = 1}i

j=0 ,

rA ←$ RND(A), ((x, π) ∥w)← (A∥ExtA)(R, c⃗rsi, ξSub; rA) :

(x, w) ̸∈ R ∧ V(R, c⃗rsi, x, π) = 1


,

Here RND(A) = RND(Sub), Πc⃗rs is a proof for correctness of SRS generation or
updating process, and the party is set to be the verifier.

8.2.2 Assumptions

Definition 58 (Bilinear Diffie-Hellman Knowledge of Exponent (BDH-KE)
Assumption [Abd+17]). We say BGgen is BDH-KE secure for relation set R if
for any κ, R ∈ im(R(1κ)), and PPT adversary A, there exists a PPT extractor
ExtA, such that, the following probability is ν(κ),

Pr

(p,G1,G2,GT , E, [1]1 , [1]2)← BGgen(1κ), r ←$ RND(A),

([α1]1 , [α2]2 ∥ a)← (A∥ExtA)(R, r) : [α1]1 • [1]2 = [1]1 • [α2]2 ∧ a ̸= α1

 .

The BDH-KE assumption [Abd+17] is an asymmetric-pairing version of the
original knowledge assumption [Dam92]. We refer to full version [BS20] for
some preliminaries on polynomial commitments that are used in the rest of
paper.
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8.3 SU and SV Algorithms for Updatable zk-
SNARKs

In this section, we present a pair of SRS updating and SRS verification algorithms
for each of the studied updatable zk-SNARKs, Sonic [Mal+19], Plonk [GWC19],
Marlin [Chi+19], LunarLite [Cam+21] and Basilisk [RZ21].

The General Strategy. Our proposed SV and SU algorithms use pairing
checks for SRS verification and the SRS elements are updated in a round-robin
multiplicative manner. In comparison with the earlier works, we have a subtle
change in the construction of SV algorithms, which allows the provers to verify
an updated SRS more efficiently, especially in case of small circuits with a large
number of updates. Recall that, a pairing-based zk-SNARK satisfies Sub-ZK if it
can achieve ZK, even if its SRS is subverted (i.e., is generated by the adversary).
In Sub-ZK zk-SNARKs [BFS16; Abd+17; Fuc18; Bag19b], this is formalized
and achieved by building an SV algorithm that verifies the well-formedness
and trapdoor extractability of the SRS. The former guarantees that the whole
SRS elements are consistent with each other, and the latter ensures that the
(simulation) trapdoors of SRS can be extracted from an SRS subverter. Given
the simulation trapdoors of SRS, the proofs are simulated as in the standard
ZK. On the other side, a universal zk-SNARK is updatable [Gro+18] if its
SRS can be sequentially updated by the parties, such that Upd-KS holds if at
least one of the updates with SU or the initial SRS generation with SG is done
honestly. To ensure that SRS generation/updating is done correctly, parties
should return a knowledge assumption-based proof Π when running SG or SU
algorithms. This proof is also known as the well-formedness proof of the SRS.
In the presented SV algorithms, we use the fact that to achieve Sub-ZK, a P
only needs to verify the final SRS. Without loss of generality, one can assume
that the initial SRS generation and all the follow-up updates are done with a
single adversary who can control all the updaters who run SU and the initial
party who runs SG. However, to achieve Upd-KS without a TTP, a V needs to
one-time run the SU and update the SRS, and also verify the final SRS and
the correctness of all intermediate proofs, generated by all the updaters (See
Fig. 8.1).

Next, in each subsection, we present an overview of a particular updatable
zk-SNARK, and then describe its SRS Generation (SG) algorithm. Different
from the original papers, in the description of SG algorithms, we also determine
what constitutes a well-formedness proof that can be used to extract individual
shares from the SRS generator/updaters, and more importantly, can be used
to verify the final SRS. The well-formedness proof is shown with Π which
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consists of two sets of elements (ΠAgg, ΠInd), where ΠAgg can be interpreted
as the aggregated elements necessary for verifying the well-formedness of final
SRS, and ΠInd can be interpreted as an individual proof for the correctness of
updating using the secret shares, e.g. x̄. The latter, also enables extracting
the individual shares from a malicious SRS generator/updater in the proof of
Upd-KS. Finally, we present SU and SV algorithms.

8.3.1 SU and SV Algorithms for Sonic

Sonic and its SG algorithm. The first proposed updatable zk-SNARK,
presented by Groth et al. [Gro+18], came with explicit SU and SV algorithms,
but its SRS size scales quadratically in the number of multiplication gates in
the circuit that encodes the relation, which made the algorithms very slow. In
a follow-up work, Maller et al. [Mal+19] proposed Sonic as the first updatable
zk-SNARK with linear size SRS. The authors mostly focused on achieving
a linear size SRS and more efficient P and V algorithms, and omitted the
descriptions of SU and SV algorithms (and even SG which should determine
the well-formedness proof) and mentioned that they can built as in [Gro+18].
For further details, we refer to the main paper [Mal+19]. We describe the SG
algorithm of Sonic in Figure 8.2.

SU and SV Algorithms and Their Efficiency. Fig. 8.3 describes the SU and
SV algorithms for Sonic. As briefly mentioned before, the SRS update is done

SRS Generation, (c⃗rs0, Π0)← SG(R): Given R, first deduce the security
parameter 1κ and k, then obtain (p,G1,G2,GT , E, [1]1 , [1]2) ← BGgen(1κ);
after that act as follows:

• Sample x̄0, ā0 ← Z⋆
p, and set x0 := x̄0 and a0 := ā0 which are the

simulation trapdoor associated with c⃗rs0;
• For k = −n, · · · , n: compute

[
xk

0
]

1
,
[
xk

0
]

2
,
[
a0xk

0
]

2
;

• For k = −n, · · · ,−1, 1, · · · , n: compute
[
a0xk

0
]

1
; Compute [a0]T ;

• Set c⃗rs0 := ((
[
xk

0
]

1
,
[
xk

0
]

2
,
[
a0xk

0
]

2
)n

k=−n,
([

a0xk
0
]

1

)n

k=−n,k ̸=0
, [a0]T ),

and the well-formedness proof Π0 := (ΠAgg
0 , ΠInd

0 ) :=
(([x0]1 , [a0x0]1 , [a0]2), ([x0]1 , [x0]2 , [a0x0]1 , [a0x0]2 , [a0]2));

• Return (c⃗rs0, Π0);

Figure 8.2: SG algorithm for SONIC.
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in a multiplicative manner, such that the updater multiplies a proper power of
its secret shares x̄i and āi to the SRS elements. Similar to the SG algorithm, we
also determine the elements of the well-formedness proof separately. Note that
[a]T is omitted from updating, as due to the fact that [a]T := [1]1 • [a]2, it can
finally be computed from the other SRS elements. The pairing checks inside SV
chase two main goals. First, they check if all the individual proofs generated
by the SRS generator and by all the follow-up SRS updaters are correct. If so,
then it uses the elements of Πi and verifies the final SRS, c⃗rsi.
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SRS Update, (c⃗rsi, Πi)← SU(c⃗rsi−1, {Πj−1}i−1
j=0): Given (c⃗rsi−1, {Πj−1}i−1

j=0),

• Parse c⃗rsi−1 := ((
[
xk

i−1
]

1
,
[
xk

i−1
]

2
,
[
ai−1xk

i−1
]

2
)n

k=−n,

(
[
ai−1xk

i−1
]

1
)n

k=−n,k ̸=0);
• Sample x̄i, āi ←$ Z⋆

p, as the secret shares to be used for updating c⃗rsi−1.

• For k = −n, · · · , n: set
[
xk

i

]
1

:= x̄k
i ·

[
xk

i−1
]

1
; set

[
xk

i

]
2

:= x̄k
i ·

[
xk

i−1
]

2
;

set
[
aix

k
i

]
2

:= āix̄
k
i ·

[
ai−1xk

i−1
]

2
;

• For k = −n, · · · ,−1, 1, · · · , n: set
[
aix

k
i

]
1

:= āix̄
k
i ·

[
ai−1xk

i−1
]

1
;

• Set c⃗rsi := ((
[
xk

i

]
1

,
[
xk

i

]
2

,
[
aix

k
i

]
2
)n

k=−n, (
[
aix

k
i

]
1
)n

k=−n,k ̸=0, [ai]T ),
and the well-formedness proof Πi := (ΠAgg

i , ΠInd
i ) :=((

[xi]1 , [aixi]1 , [ai]2
)

,
(
[x̄i]1 , [x̄i]2 , [āix̄i]1 , [āix̄i]2 , [āi]2

))
;

• Return (c⃗rsi, Πi);

SRS Verify, (⊥/1)← SV(c⃗rsi, (Πj)i
j=0, party): To verify (an i-time updated)

c⃗rsi := ((
[
xk

i

]
1

,
[
xk

i

]
2

,
[
aix

k
i

]
2
)n

k=−n, (
[
aix

k
i

]
1
)n

k=−n,k ̸=0, [ai]T ), and Πj :=(
ΠAgg

j , ΠInd
j

)
:=

((
[xj ]1 , [ajxj ]1 , [aj ]2

)
,
(
[x̄j ]1 , [x̄j ]2 , [āj x̄j ]1 , [āj x̄j ]2 , [āj ]2

))
for j = 0, 1, · · · , i:
If party = P:

1. For k = −n, · · · , n: check if
[
xk

i

]
1
• [1]2 = [1]1 •

[
xk

i

]
2
;

2. For k = −n + 1, · · · , n: check if
[
xk

i

]
1
• [1]2 =

[
xk−1

i

]
1
• [xi]2;

3. For k = −n, · · · ,−1, 1, · · ·n: check if
[
aix

k
i

]
1
• [1]2 = [1]1 •

[
aix

k
i

]
2

=[
xk

i

]
1
• [ai]2;

If party = V:
- If i = 0: c⃗rs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1:

1. Check that [x0]1 = [x̄0]1, [a0x0]1 = [ā0x̄0]1, and [a0]2 = [ā0]2;
2. For j = 0, 1, · · · , i: check if [x̄j ]1 • [1]2 = [1]1 • [x̄j ]2
3. For j = 0, 1, · · · , i: check if [āj x̄j ]1 • [1]2 = [1]1 • [āj x̄j ]2 = [x̄j ]1 •

[āj ]2;
4. For j = 1, 2, · · · , i: check if [xj ]1 • [1]2 = [xj−1]1 • [x̄j ]2;
5. For j = 1, 2, · · · , i: check if [ajxj ]1 • [1]2 = [xj ]1 • [aj ]2 =

[aj−1xj−1]1 • [āj x̄j ]2;
6. For k = −n, · · · , n: check if

[
xk

i

]
1
• [1]2 = [1]1 •

[
xk

i

]
2
;

7. For k = −n + 1, · · · , n: check if
[
xk

i

]
1
• [1]2 =

[
xk−1

i

]
1
• [xi]2;

8. For k = −n, · · · ,−1, 1, · · ·n: check if
[
aix

k
i

]
1
• [1]2 = [1]1 •[

aix
k
i

]
2

=
[
xk

i

]
1
• [ai]2;

Return 1 if all the checks passed, otherwise return ⊥.

Figure 8.3: SU and SV algorithms for SONIC.



150 BENCHMARKING THE SETUP OF UPDATABLE ZK-SNARKS

Efficiency. As it can be seen in Figure 8.2 and 8.3, given the SU algorithm,
similar to the SG algorithm, to update the SRS of size n in Sonic, one needs to
compute 4n + 2 exponentiations in G1 and 4n + 2 exponentiations in G2. Using
the SV algorithm described in Figure 8.3, to verify an i-time updated SRS, i ≥ 1,
a prover needs to compute 12n−1 pairing operations (importantly, independent
of the number of updates), while a verifier needs to compute 12n + 10i + 4
pairings.

Security Proofs. In [Mal+19, Theorem 6.1, 6.2], authors proved that assuming
the ability to extract a trapdoor for the subverted/updated SRS (without proving
it), Sonic satisfies Sub-ZK and KS. The following lemmas prove that using
the SG, SU and SV algorithms (given in Fig.8.2 and 8.3), under the BDH-KE
assumption, one can extract the simulation trapdoors from a subverted/updated
SRS.

Lemma 3 (Trapdoor Extraction from a Subverted SRS). Given the algorithm
in Figure 8.2 and 8.3, suppose that there exists a PPT adversary A that outputs
a (c⃗rsi, Πi) such that SV(c⃗rsi, Πi, P) = 1 with non-negligible probability. Then,
by the BDH-KE assumption (given in Definition 58) there exists a PPT extractor
ExtA given the random tape of A as input, outputs (xi, ai) such that running
SG with (xi, ai) results in (c⃗rsi, Πi).

Proof. An SRS, c⃗rsi, and proof, Πi, that passes verification is struc-
tured as if it were computed by SG(R); i.e., there exist values
(xi, ai) ∈ F2

p such that Πi includes ([xi]1 , [aixi]1 , [ai]2) and c⃗rsi includes(([
xk

i

]
1 ,

[
xk

i

]
2 ,

[
aix

k
i

]
2

)n

k=−n
,
([

aix
k
i

]
1

)n

k=−n,k ̸=0

)
. Note that, for k = 1, one

can deduce ([xi]1 , [aixi]1 , [xi]2 , [ai]2 , [aixi]2) from c⃗rsi.

LetA be an adversary that outputs (c⃗rsi, Πi). We then define algorithmsAxi
and

Aai
, that each run (c⃗rsi, Πi)← A(R), parse Π as above, and returns ([xi]1 , [xi]2)

and ([aixi]1 , [ai]2), respectively. According to the BDH-KE assumption (given
in Definition 58) there exist PPT extractors ExtAxi

and ExtAai
that, given

the randomness of Axi
and Aai

, output some xi, ai ∈ Fp that can be used to
generate ([xi]1 , [aixi]1 , [xi]2 , [ai]2 , [aixi]2). By combining ExtAxi

and ExtAai
,

we obtain a full extractor for A. From the rest of checks within the SV algorithm
one concludes that all the SRS elements are consistent and the SRS is well-
formed.

The following lemma shows that SRS trapdoors can be extracted from an
updated SRS. To this end, we first recall a corollary from [Gar+18].
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Corollary 1. In the updatable SRS model, single adversarial updates imply
full updatable security [Gar+18, Lemma 6].

Lemma 4 (Trapdoor Extraction from an Updated SRS). Given the algorithm
in Figure 8.2 and 8.3, suppose that there exists a PPT A such that
given (c⃗rs0, π0) ← SG(R), A returns an updated SRS (c⃗rs1, π1), where
SV(c⃗rs1, Π1, V) = 1 with a non-negligible probability. Then, the BDH-KE
assumption implies that there exists a PPT extractor ExtA that, given the
randomness of A as input, outputs (x̄1, ā1) that are used to update c⃗rs0 and
generate (c⃗rs1, Π1).

Proof. According to the Corollary 1, we consider the case that A updates the
SRS only once, but similar to [Gar+18, Lemma 6], it can be generalized. Parse
Π0 as a tuple (([x0]1 , [a0x0]1 , [a0]2), ([x0]1 , [x0]2 , [a0x0]1 , [a0x0]2 , [a0]2)) and
c⃗rs0 as (

[
xk

0
]

1 ,
[
xk

0
]

2 ,
[
a0xk

0
]

2)n
k=−n and

[
a0xk

0
]

1 for k = −n, · · · ,−1, 1, · · · , n.

We consider an adversary A, that given (c⃗rs0, Π0), returns an updated
SRS, c⃗rs1, which contains (

[
xk

1
]

1 ,
[
xk

1
]

2 ,
[
a1xk

1
]

2)n
k=−n and

[
a1xk

1
]

1 for k =
−n, · · · ,−1, 1, · · · , n, and a proof π1 for correct updating as containing (([x1]1 ,
[a1x1]1 , [a1]2), ([x̄1]1 , [x̄1]2 , [ā0x̄0]1 , [ā0x̄0]2 , [ā0]2)). If the SRS verification
accepts the updated SRS, namely if SV(c⃗rs1, Π1, V) = 1, then the following
equations hold, 1) [x̄1]1 • [1]2 = [1]1 • [x̄1]2 , 2) [ā1x̄1]1 • [1]2 = [1]1 • [ā1x̄1]2 =
[x̄1]1 • [ā1]2 , 3) [x1]1 • [1]2 = [x0]1 • [x̄1]2 , 4) [a1x1]1 • [1]2 = [x1]1 • [a1]2 =
[a0x0]1 • [ā1x̄1]2. So from the equations 1) and 2) , under the BDH-KE
assumption, there exist extractors Extx̄1 and Extā1 that output ā1 and x̄1.
If ā1 and x̄1 are non-zero, then from the rest of verification equations within SV
algorithm (e.g., [x1]1 • [1]2 = [x0]1 • [x̄1]2), one can conclude that x1 = x̄1x0,
a1 = ā1a0, and the SRS is well-formed.

8.3.2 SU and SV Algorithms for Marlin

Marlin. As a follow-up work to Sonic and a concurrent work to Plonk, Chiesa et
al. proposed Marlin [Chi+19], which is comparable to Plonk in performance and
outperforms Sonic. Compared to Sonic, Marlin reduces P’s computational cost
by a factor of 10× and improves V’s time by a factor of 4× without compromising
the constant-size property of proofs. To this end, the authors first propose an
information-theoretic model called Algebraic Holographic Proof (AHP), which is
an interactive protocol between algebraic P and V. The verifier performs a small
number of queries on an encoding of the circuit instead of receiving the entire
circuit description. At the end, the verifier makes a number of queries to the
proofs provided by the prover and then performs low-degree tests to be convinced
about the validity of proof and the encoding of the circuit. Then, they proposed
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a transformation that uses PCs with Fiat-Shamir transformation [FS87] and
compiles any public coin AHP for sparse Rank 1 Constraint System (R1CS)
instances into a preprocessing zk-SNARK with universal and updatable SRS.
To build Marlin, authors first proposed two PC schemes, which one is proven to
be secure under a concrete knowledge assumption, and the other one is built in
the Algebraic Group Model (AGM) [Chi+19, Appendix B]. The scheme built in
the AGM model achieves a better efficiency and requires a single group element
to commit to a polynomial (instead of two in the initial construction). Marlin
is a zk-SNARK which is obtained by instantiating their transformation by the
AGM-based PC scheme. Both their PC schemes are proven to be secure under
a trusted setup [Chi+19, Lemmas B.5-B.15], and later, the AGM-based one is
used to obtain updatable zk-SNARK Marlin.

Achieving Sub-ZK and Upd-KS in Marlin. Marlin uses a universal SRS and
assuming that the simulation trapdoors are provided to the ZK simulator, it is
proven to achieve ZK and KS in the AGM. In [Chi+19, Remark 7.1], authors
argue that their constructions have updatable SRS because of using monomial
terms in the SRS, and thus fall within the framework of [Gro+18]. The SRS
of Marlin, which is equivalent to the SRS of their AGM-based PC scheme,
consists of c⃗rs := (

([
xk

]
1 ,

[
γxk

]
1

)n

k=0 , [1]2 , [x]2) group elements. This SRS is
shown to be sufficient for their PC scheme. Note that a standard PC scheme,
is constructed under a trusted setup, and there is no guarantee that it will
remain secure under a subverted SRS or a maliciously updated SRS. Therefore,
once we use the SRS of a PC scheme (with a trusted setup) to build a Sub-ZK
zk-SNARK with updatable SRS, we need to ensure that the SRS of resulting
zk-SNARK is well-formed and trapdoor-extractable [Gar+18]. Since Marlin is
proven to satisfy KS under the above SRS c⃗rs, therefore, to prove that it also
achieves Upd-KS, we need to show that the SRS trapdoors can be extracted
from a subverted or a (maliciously) updated SRS. However, one may notice that
in practice an adversary, capable of hashing to an elliptic curve, can produce the
SRS ([x]1 , [γx]1 , [1]2 , [x]2) without knowing γ. For instance, it can sample a
group element from G1, without knowing its exponent, and then use a known x
to compute ([x]1 , [γx]1 , [1]2 , [x]2) for an unknown γ. A malicious SRS updater
can perform a similar attack.

One may argue that Marlin (and some follow-up schemes) is proven in the
original AGM [FKL18], which adversaries are purely algebraic and do not have
the capability to create random group elements without knowing their discrete
logarithms. This argument is valid, but the problem still exists in practice and
such constructions may not achieve Sub-ZK be default, as an adversary can use
elliptic curve hashing [Ica09] to sample random group elements without knowing
the exponents. To deal with such concerns, earlier Sub-ZK SNARKs [Abd+17;
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Lip22] used and are proven in more realistic models, namely the Generic Group
Model (GGM) with hashing [Abd+17] and the AGM with hashing [Lip22]. The
“with hashing” parts mean that the adversary is allowed to sample random
group elements without knowing the exponents, say using the elliptic curve
hashing [Ica09]. Considering the discussed issue, one can see that to achieve
Sub-ZK/Upd-KS in updatable zk-SANRKs, including Marlin, a more realistic
option is to prove them in the more realistic variant of AGM, namely AGM with
hashing [Lip22], and also explicitly construct the extraction algorithms requited
in the games of Sub-ZK/Upd-KS. It is worth to mention that, by chance, the
SRS of Kate et al.’s polynomial commitment scheme [KZG10] is well-formed
and without further modification, its SRS can achieve trapdoor extractability
under BDH-KE assumption. This is the reason that the updatable zk-SNARKs
that directly use Kate et al.’s PC scheme [KZG10], e.g., Lunar or Basilisk,
do not face with the mentioned issue. In the rest, we focus on constructing
a concrete extraction algorithm which is necessary to prove the Sub-ZK and
Upd-KS of Marlin. As we argued above, γ cannot be extracted from the original
SRS of Marlin, and we need to slightly modify its SRS to achieve trapdoor
extractability and prove Sub-ZK and Upd-KS.

SRS Generation, (c⃗rs0, Π0)← SG(R): Given R, first deduce the security
parameter 1κ and obtain (p,G1,G2,GT , E, [1]1 , [1]2) ← BGgen(1κ); then
act as follows:

• Sample x̄0, γ̄0 ← Z⋆
p, and set x0 := x̄0, and γ0 := γ̄0 which are the

trapdoors of c⃗rs0;
• For k = 0, · · · , n: compute

[
xk

0
]

1
,
[
γ0xk

0
]

1
;

• Compute [x0]2, and [x0γ0]2 ;

• Set c⃗rs0 := ((
[
xk

0
]

1
,
[
γ0xk

0
]

1
)n

k=0, [x0]2 , [x0γ0]2 ), and the well-
formedness proof Π0 := (ΠAgg

0 , ΠInd
0 ) := (([γ0]1 , [x0γ0]1 , [x0]2),

([x̄0]1 , [γ̄0]1 , [x̄0]2 , [x̄0γ̄0]2 ));
• Return (c⃗rs0, Π0);

Figure 8.4: Slightly modified SG algorithm of Marlin. The term [x0γ0]2 is
added to SRS and proof to make the SRS well-formed and achieve trapdoor
extractability.

Marlin with a Trapdoor Extractable SRS. To deal with the discussed issue,
the solution is to force the adversary to add a proof of knowledge of γ to the SRS,
such that the simulator would be able to extract γ from a maliciously generated
SRS. In earlier works [BFS16; Abd+17; Gar+18], this is simply achieved by
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forcing the SRS generator to return γ in two different groups. Then, relying
on the BDH-KE assumption one can extract γ from a maliciously generated
SRS. Consequently, we slightly modify the SRS of Marlin and add a single
group element [γx]2 to it. Then, we show that in the modified version, the SRS
trapdoors can be extracted from a subverted/updated SRS, which would allow
to prove Sub-ZK/Upd-KS. We describe the modified SG algorithm of Marlin
in Figure 8.4, and the new added element is shown with gray background.

SU and SV Algorithms and Their Efficiency. in Figure 8.5, we describe our
constructed SU and SV algorithms for Marlin with the modified SRS. As the
other cases, the SRS update is multiplicative, and at the end, the updater also
gives a well-formedness proof which includes the new element [x̄iγ̄i]2 . The new
element allows one to verify the well-formedness of the final SRS as well as the
validity of intermediate proofs. The SV algorithm verifies if {Πj}i

j=0 are valid
and the final SRS, c⃗rsi, is well-formed.

Using the SU algorithm in Figure 8.5, similar to the SG algorithm (in Figure 8.4),
to update the SRS of size n in Marlin, one needs to compute 2 exponentiations
in G2 and 2n + 1 exponentiations in G1. Using the SV algorithm described
in Figure 8.5, to verify an i-time updated SRS, i ≥ 1, a prover needs to compute
4n + 2 pairing operations, while a verifier needs to compute 4n + 2 + 9i + 4
pairings.

Security Proofs. Relying on the fact that the underlying PC scheme is secure,
Marlin, is proven to achieve ZK and KS in the AGM model [Chi+19, Theorem
8.1, 8.3 and 8.4]. Our evaluations show that our minimal modification to their
PC scheme does not compromise the security of the original scheme. Moreover,
in the rest, we show that using the presented SG, SU and SV algorithms (given
in Figure 8.4 and 8.5), under the BDH-KE assumption (as in [Lip22]), it is also
possible to extract the simulation trapdoors from a subverted/updated SRS
and achieve Sub-ZK and Upd-KS in the AGM.

Lemma 5 (Trapdoor Extraction from a Subverted SRS). Given the algorithms
in Figure 8.4 and 8.5, suppose that there exists a PPT adversary A that outputs
(c⃗rsi, Πi) such that SV(c⃗rsi, Πi, P) = 1 with a non-negligible probability. Then,
by the BDH-KE assumption (given in Definition 58) there exists a PPT extractor
ExtA that, given the random tape of A as input, outputs (xi, γi) such that
running SG with (xi, γi) results in (c⃗rsi, Πi).

Proof. The proof is analogue to the proof of Lemma 3.
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SRS Update, (c⃗rsi, Πi)← SU(c⃗rsi−1, {Πj−1}i−1
j=0): Given (c⃗rsi−1, {Πj−1}i−1

j=0),

• Parse c⃗rsi−1 := ((
[
xk

i−1
]

1
,
[
γi−1xk

i−1
]

1
)n

k=0, [xi−1]2 , [xi−1γi−1]2 );

• Sample x̄i, γ̄i ← Z⋆
p as the secret shares to use for updating c⃗rsi−1.

• For k = 0, · · · , n: set
[
xk

i

]
1

:= x̄k
i ·

[
xk

i−1
]

1
,

[
γix

k
i

]
1

:= γ̄ix̄
k
i ·[

γi−1xk
i−1

]
1
;

• set [xi]2 := x̄i · [xi−1]2 and [xiγi]2 := x̄iγ̄i · [xiγi]2;

• Set c⃗rsi := ((
[
xk

i

]
1

,
[
γix

k
i

]
1
)n

k=0, [xi]2 , [xiγi]2 ), and the well-formedness
proof Πi := (ΠAgg

i , ΠInd
i ) := (([γi]1 , [xiγi]1 , [xi]2), ([x̄i]1 , [γ̄i]1 , [x̄i]2 ,

[x̄iγ̄i]2 ));
• Return (c⃗rsi, Πi);

SRS Verify, (⊥/1)← SV(c⃗rsi, (Πj)i
j=0, party): To verify (an i-time updated)

c⃗rsi := ((
[
xk

i

]
1

,
[
γix

k
i

]
1
)n

k=0, [xi]2 , [xiγi]2), and Πj := (ΠAgg
j , ΠInd

j ) := (([γj ]1 ,

[xjγj ]1 , [xj ]2), ([x̄j ]1 , [γ̄j ]1 , [x̄j ]2 , [x̄j γ̄j ]2)); for j = 0, 1, · · · , i:
If party = P:

1. For k = 1, · · · , n: check if
[
xk

i

]
1
• [1]2 =

[
xk−1

i

]
1
• [xi]2;

2. For k = 1, · · · , n: check if
[
γix

k
i

]
1
• [1]2 =

[
γix

k−1
i

]
1
• [xi]2;

3. Check if [xiγi]1 • [1]2 = [1]1 • [γixi]2;
If party = V:

- If i = 0: c⃗rs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1:

1. Check if [γ0]1 = [γ̄0]1 and [x0]2 = [x̄0]2;
2. For j = 0, 1, · · · , i: check if [x̄j ]1 • [1]2 = [1]1 • [x̄j ]2 and [1]1 •

[x̄j γ̄j ]2 = [γ̄j ]1 • [x̄j ]2.
3. For j = 1, 2, · · · , i: check if [1]1 • [xj ]2 = [x̄j ]1 • [xj−1]2, [xjγj ]1 •

[1]2 = [xj−1γj−1]1 • [x̄j γ̄j ]2 = [γj ]1 • [xj ]2;
4. For k = 1, · · · , n: check if

[
xk

i

]
1
• [1]2 =

[
xk−1

i

]
1
• [xi]2;

5. For k = 1, · · · , n: check if
[
γix

k
i

]
1
• [1]2 =

[
γix

k−1
i

]
1
• [xi]2;

6. Check if [xiγi]1 • [1]2 = [1]1 • [γixi]2;
Return 1 if all the checks passed, otherwise return ⊥.

Figure 8.5: SV and SU algorithms for Marlin with the slightly modified SRS.

Lemma 6 (Trapdoor Extraction from an Updated SRS). Given the algorithms
in Figure 8.4 and 8.5, suppose that there exists a PPT A such that given
(c⃗rs0, Π0)← SG(R), A returns an updated SRS (c⃗rs1, Π1) s.t. SV(c⃗rs1, Π1, V) =
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SRS Generation, (c⃗rs0, Π0)← SG(R): Given R, first deduce the security
parameter 1κ and obtain (p,G1,G2,GT , E, [1]1 , [1]2) ← BGgen(1κ); then
act as follows:

• Sample x0 := x̄0 ← Z⋆
p, which is the trapdoor associated with c⃗rs0;

• For k = 1, · · · , n: compute
[
xk

0
]

1
,
[
xk

0
]

2
;

• Set c⃗rs0 :=
([

xk
0
]

1
,
[
xk

0
]

2

)n

k=0
, and the well-formedness proof Π0 :=

(ΠAgg
0 , ΠInd

0 ) :=
(
[x0]1 ,

(
[x̄0]1 , [x̄0]2

))
;

• Return (c⃗rs0, Π0);

Figure 8.6: SG algorithm for LunarLite.

1, with a non-negligible probability. Then, the BDH-KE assumption implies
that there exists a PPT extractor ExtA that, given the randomness of A as
input, outputs (x̄1, γ̄1) that are used to update c⃗rs0 and generate (c⃗rs1, Π1).

Proof. The proof is analogue to the proof of Lemma 4.

8.3.3 SU and SV Algorithms for LunarLite

LunarLite and its SG algorithm. In 2021, Campanelli et al. proposed
Lunar [Cam+21] and compared to Marlin the authors describe several
improvements. As we mentioned above, Marlin is built over sparse R1CS
instances while Campanelli et al. define a new and simpler version of R1CS,
known as R1CS-lite, with only two characterizing matrices instead of three
s.t. one of the matrices can be the identity matrix. R1CS-lite with almost
the same complexity as R1CS can be utilized to express the language of
circuit satisfiability. Meanwhile, the property of two-matrix instances enables
the authors to achieve more efficient and simpler zk-SNARKs. In addition,
Campanelli et al. demonstrate an efficient method to prove PC soundness with
partial opening rather than opening all the commitments. Note that in Marlin
and Lunar like Plonk, the prover to commit to vectors utilizes the Lagrange
interpolation basis. For further details, we refer to the main paper [Cam+21].
in Figure 8.6, we describe the SG algorithm of LunarLite, which is the most
efficient instantiate of Lunar in term of proof size. Lunar has another variant,
so called LunarLite2x, which has slightly shorter SRS, but results in slightly
longer proofs.
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SRS Update, (c⃗rsi, Πi)← SU
(
c⃗rsi−1, {Πj−1}i−1

j=0
)
: Given

(
c⃗rsi−1, {Πj−1}i−1

j=0

)
,

• Parse c⃗rsi−1 :=
([

xk
i−1

]
1

,
[
xk

i−1
]

2

)n

k=0
;

• Sample x̄i ← Z⋆
p, as the secret share used for updating c⃗rsi−1.

• For k = 1, · · · , n: set
[
xk

i

]
1

:= x̄k
i ·

[
xk

i−1
]

1
; and

[
xk

i

]
2

:= x̄k
i ·

[
xk

i−1
]

2
;

• Set c⃗rsi :=
([

xk
i

]
1

,
[
xk

i

]
2

)n

k=0
, and Πi :=

(
ΠAgg

i , ΠInd
i

)
:=(

[xi]1 ,
(
[x̄i]1 , [x̄i]2

))
.

• Return (c⃗rsi, Πi);
SRS Verify, (⊥/1)← SV

(
c⃗rsi, (Πj)i

j=0, party
)
: To verify (an i-time updated)

c⃗rsi :=
([

xk
i

]
1

,
[
xk

i

]
2

)n

k=0
, and Πj :=

(
ΠAgg

j , ΠInd
j

)
:=

(
[xj ]1 ,

(
[x̄j ]1 , [x̄j ]2

))
for j = 0, 1, · · · , i:
If party = P:

1. For k = 1, 2, · · · , n: check if
[
xk

i

]
1
• [1]2 = [1]1 •

[
xk

i

]
2

=
[
xk−1

i

]
1
• [xi]2;

If party = V:
- If i = 0: c⃗rs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1:

1. Check that [x0]1 = [x̄0]1;
2. For j = 0, 1, · · · , i: check if [x̄j ]1 • [1]2 = [1]1 • [x̄j ]2;
3. For j = 1, 2, · · · , i: check if [xj ]1 • [1]2 = [xj−1]1 • [x̄j ]2;
4. For k = 1, · · · , n: check if

[
xk

i

]
1
•[1]2 = [1]1•

[
xk

i

]
2

=
[
xk−1

i

]
1
•[xi]2;

Return 1 if all the checks passed, otherwise return ⊥.

Figure 8.7: SU and SV algorithms for LunarLite.

SU and SV Algorithms and Their Efficiency. Fig. 8.7 illustrates our
constructed SU and SV algorithms for updatable zk-SNARK LunarLite. In
order to update the SRS of size n in LunarLite, one needs to execute the SU
algorithm described in Figure 8.7 that similar to the SRS generation algorithm,
it requires n + 1 exponentiations in G1 and n + 1 exponentiations in G2. Using
the SV algorithm (given in Fig 8.7), to verify an i-time updated SRS, i ≥ 1, a
prover needs to compute 3n pairing operations (importantly, independent of
the value of i), while a verifier needs to compute 3n + 4i + 2 pairings.

Security Proofs. In [Cam+21], authors proved that different versions of
Lunar, including LunarLite can achieve ZK and KS. However, similar to other
constructions, they did not explicitly prove Sub-ZK and Upd-KS. For example,
to prove ZK, they assumed that the simulation trapdoor x is provided to
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the simulator. The same as other constructions, next, we prove that using
the SG, SU and SV algorithms (given in Fig.8.6 and 8.7), under the BDH-KE
assumption, we can extract the simulation trapdoors for LunarLite from a
subverted or updated SRS, which implies that LunarLite meets Sub-ZK and
Upd-KS.

Lemma 7 (Trapdoor Extraction from a Subverted SRS). Given the algorithms
in Figure 8.6 and 8.7, suppose that there exists a PPT adversary A that outputs
a (c⃗rsi, Πi) such that SV(c⃗rsi, Πi, P) = 1 with non-negligible probability. Then,
by the BDH-KE assumption (given in Definition 58) there exists a PPT extractor
ExtA that, given the random tape of A as input, outputs xi such that running
SG with xi results in (c⃗rsi, Πi).

Proof. An c⃗rsi and Πi that passes verification, namely SV(c⃗rs1, Π1, P) = 1, is
structured as if it were computed by SG(R); i.e., there exist values xi ∈ Fp s.t.
Πi includes [xi]1 and c⃗rsi includes (

[
xk

i

]
1 ,

[
xk

i

]
2)n

k=0. Therefore, for k = 1, one
can obtain ([xi]1 , [xi]2).

Let A be an adversary (or subverter) that outputs (c⃗rsi, Πi). We then define
algorithm Axi

, that runs (c⃗rsi, Πi) ← A(R), parse Πi as above, and returns
([xi]1 , [xi]2). Under the BDH-KE assumption (given in Definition 58) there
exists a PPT extractor ExtAxi

that, given the randomness of Axi , outputs a
xi ∈ Fp that can be used to generate ([xi]1 , [xi]2). This gives an extractor for
A. From the rest of pairing checks within the SV algorithm, one concludes that
all SRS elements are consistent and the SRS is well-formed.

Lemma 8 (Trapdoor Extraction from an Updated SRS). Given the algorithms
in Figure 8.6 and 8.7, suppose that there exists a PPT adversary A such
that given (c⃗rs0, π0) ← SG(R), A returns an updated SRS, (c⃗rs1, π1), where
SV(c⃗rs1, Π1, V) = 1 with a non-negligible probability. Then, the BDH-KE
assumption implies that there exists a PPT extractor ExtA, given the randomness
of A as input, outputs x̄1 that are used to update c⃗rs0 and generate (c⃗rs1, Π1).

Proof. In Corollary 1, we consider the case where A updates the SRS only once.
However, as in [Gar+18, Lemma 6], this case is generalizable. Parse Π0 as
containing ([x0]1 , ([x0]1 , [x0]2)) and c⃗rs0 includes (

[
xk

0
]

1 ,
[
xk

0
]

2)n
k=0.

We consider an adversary A, that given (c⃗rs0, Π0), returns an updated SRS,
c⃗rs1, which contains (

[
xk

1
]

1 ,
[
xk

1
]

2)n
k=0, and a proof π1 = ([x1]1 , ([x̄1]1 , [x̄1]2))

for correct updating. If the SV algorithm accepts the updated SRS, say
SV(c⃗rs1, Π1, V) = 1, then the following equations hold, 1) [x̄1]1 • [1]2 =
[1]1 • [x̄1]2 , 2) [x1]1 • [1]2 = [x0]1 • [x̄1]2 , 3) [a1]1 • [1]2 = [1]1 • [x1]2. If
the equation 1) holds, under the BDH-KE assumption, there exists an extractor
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Extx̄1 that outputs x̄1. If x̄1 is non-zero, then from the other one concludes that
x1 = x̄1x0, and the SRS is well-formed.

8.3.4 SU and SV Algorithms for Plonk and Basilisk

Plonk and Basilisk and their SG algorithms. As a subsequent work on
Sonic [Mal+19], in 2019, Gabizon et al. [GWC19] designed Plonk as an updatable
and universal zk-SNARK that can be run in two modes: either with a small
proof (large SRS) or with a long proof (short SRS). Although Plonk relies
neither on bivariate polynomials nor sparse matrices that leads to a more
general type of constraints, its SRS depends both on addition and multiplication
gates for any given circuit. While Sonic commits to vectors using standard
interpolation basis, Plonk uses Lagrange interpolation basis. As a subsequent
work on Sonic, Plonk, Marlin and LunarLite, in 2021, Rafols and Zapico [RZ21]
presented Basilisk updatable zk-SNARK. They, first defined a novel information
theoretical interactive technique called Checkable Subspace Sampling (CSS)
arguments in which P shows that a vector is sampled from a subspace based
on V’s coin. To be more precise, for a given matrix M , both P and V agree
on a polynomial F (x) which encodes a row v within M ’s rows space. This
method is efficient because, in spite of the fact that the coefficients of the
linear combination defining v are sampled according to V’s coin, there is no
need to perform a linear number of operations in order to check that F (x) is
well-formed. There are a number of trade-offs associated with universal and
updatable zk-SNARK resulting from the CSS proof systems constructed. The
most efficient instantiation is called Basilisk that is built for a limited constraint
system in which R1CS instances’ matrices have a small constant number of
elements per row (it is equivalent to arithmetic circuits of bounded fan-out). For
further details about Plonk and Basilisk, we refer to their main papers [GWC19;
RZ21]. Plonk and Basilisk have almost the same SG algorithms with a similar
SRS elements, except that in the case of Basilisk, there exists an extra element
ui in the SRS and the SRS is generated with a smaller upper bound on the size
of relation. The reason is that the constraint system used in Plonk, encodes
both the addition and multiplication gates that leads to a longer SRS. We
investigate and construct the SG, SU and SV algorithms for Basilisk, but with
minimal changes they can be adapted and be used for Plonk. We start by
describing the SG algorithm of Basilisk in Figure 8.8.

SU and SV Algorithms and Their Efficiency. Fig. 8.9 describes our constructed
SU and SV algorithms for updatable zk-SNARK Basilisk. By removing the parts
related to the element ui, the algorithms can also be used for Plonk. To one
time updating the SRS of Basilisk, one would need to execute the SU algorithm
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SRS Generation, (c⃗rs0, Π0)← SG(R): Given R, first deduce the security
parameter 1κ and obtain (p,G1,G2,GT , E, [1]1 , [1]2) ← BGgen(1κ); then
act as follows:

• Sample x0 ← Zp, which is the simulation trapdoor associated with c⃗rs0;
chooses an arbitrary u0 ∈ Z⋆

p ;

• Compute [x0]2 and
[
xk

0
]

1
for k = 1, 2, · · · , n;

• Set c⃗rs0 :=
(([

xk
0
]

1

)n

k=1
, [x0]2 , u0

)
, and Π0 := (ΠAgg

0 , ΠInd
0 ) :=(

[x0]1 ,
(
[x0]1 , [x0]2

))
;

• Return (c⃗rs0, Π0);

Figure 8.8: SG algorithm for Basilisk (and Plonk without the elements u0 ).

that requires to compute n + 1 exponentiations in G1 and 2 exponentiations in
G2. On the other side, to verify an i-time updated SRS, a prover would need to
compute 2n pairing operations (independent of the number of updates), while
a verifier would need to compute 4i + 2n + 2 pairings.

Using a minimally modified versions of the algorithms given in Figure 8.8 and 8.9,
to update the SRS of Plonk, one would need to compute 3m+1 exponentiations
in G1 and 2 exponentiations in G2, where m is the number of total (addition and
multiplication) gates in the circuit. To verify an i-time updated SRS, a prover
would need to compute 6m pairing operations (independent of the number of
updates), while a verifier would need to compute 4i + 6m + 2 pairings.

Security Proofs. Similar to Lunar [Cam+21], the authors of Plonk and Basilisk
have proved that their schemes achieve ZK and KS. Similarly, by assuming
that the simulation trapdoor x is provided to the simulator. Next, we prove
that using the SG, SU and SV algorithms (given in Fig.8.8 and 8.9), under
the BDH-KE assumption, one can extract the trapdoor x from a subverted or
updated SRS of Basilisk and Plonk, that shows that they both satisfy Sub-ZK
and Upd-KS.

Lemma 9 (Trapdoor Extraction from a Subverted SRS). Given the algorithms
in Figure 8.8 and 8.9, suppose that there exists a PPT adversary A that outputs
a (c⃗rsi, Πi) such that SV(c⃗rsi, Πi, P) = 1 with a non-negligible probability.
Then, by the BDH-KE assumption (given in Definition 58) there exists a PPT
extractor ExtA that, given the random tape of A as input, outputs xi such that
running SG with xi results in (c⃗rsi, Πi).
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SRS Update, (c⃗rsi, Πi)← SU
(
c⃗rsi−1, {Πj−1}i−1

j=0

)
: Given

(
c⃗rsi−1, {Πj−1}i−1

j=0

)
,

• Parse c⃗rsi−1 :=
(([

xk
i−1

]
1

)n

k=1
, [xi−1]2 , ui−1

)
;

• Sample x̄i ← Zp; Chooses an arbitrary ūi ∈ Z⋆
p ;

• Set ui := ūi · ui−1 ; [xi]2 = x̄i · [xi−1]2; and
[
xk

i

]
1

:= x̄k
i ·

[
xk

i−1
]

1
for

k = 1, 2, · · · , n;

• Set c⃗rsi :=
(([

xk
i

]
1

)n

k=1
, [xi]2 , ui

)
, and Πi := (ΠAgg

i , ΠInd
i ) :=

([xi]1 , ([x̄i]1 , [x̄i]2));
• Return (c⃗rsi, Πi);

SRS Verify, (⊥/1)← SV
(
c⃗rsi, (Πj)i

j=0, party
)
: To verify (an i-time updated)

c⃗rsi :=
(([

xk
i

]
1

)n

k=1
, [xi]2 , ui

)
, and Πj := (ΠAgg

j , ΠInd
j ) :=(

[xj ]1 ,
(
[x̄j ]1 , [x̄j ]2

))
for j = 0, 1, · · · , i:

If party = P:
1. For k = 1, 2, · · · , n: check if

[
xk

i

]
1
• [1]2 =

[
xk−1

i

]
1
•

[
x1

i

]
2
;

2. Check if ui ∈ Z⋆
p;

If party = V:
- If i = 0: c⃗rs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1:

1. Check that [x0]1 = [x̄0]1;
2. For j = 0, 1, · · · , i: check if [x̄j ]1 • [1]2 = [1]1 • [x̄j ]2;
3. For j = 1, 2, · · · , i: check if [xj ]1 • [1]2 = [xj−1]1 • [x̄j ]2;
4. For k = 1, 2, · · · , n: check if

[
xk

i

]
1
• [1]2 =

[
xk−1

i

]
1
•

[
x1

i

]
2
;

5. Check if ui ∈ Z⋆
p;

Return 1 if all the checks passed, otherwise return ⊥.

Figure 8.9: SU and SV algorithms for Basilisk (and Plonk without
the elements ui ).

Proof. The proof is analogue to the proof of Lemma 7.

Lemma 10 (Trapdoor Extraction from an Updated SRS). Given the algorithms
in Figure 8.8 and 8.9, suppose that there exists a PPT adversary A such
that given (c⃗rs0, π0) ← SG(R), A returns an updated SRS (c⃗rs1, π1), where
SV(c⃗rs1, Π1, V) = 1 with a non-negligible probability. Then, the BDH-KE
assumption implies that there exists a PPT extractor ExtA that, given the
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randomness of A as input, outputs x̄1 that are used to update c⃗rs0 and generate
(c⃗rs1, Π1).

Proof. The proof is analogue to the proof of Lemma 8.

8.4 Batched SRS Verification Algorithms

By now, we presented SU and SV algorithms for Sonic, Marlin, Plonk, LunarLite
and Basilisk, that allow the parties to update/verify the SRS and bypass the
need for a TTP. However, when running an SV algorithm, the prover needs
to compute at least O(n) pairing operations, where n denotes the number of
multiplication gates in the circuit. On the other hand, the verifier needs to
compute O(n + i) pairings, where i represents the number of updates done on
the SRS. Consequently, even for circuits of moderate size (e.g., n ≥ 104) with a
considerable number of updates (e.g., i = 100), the efficiency of these algorithms
can be severely impacted. In Section 8.5, we will provide concrete numerical
examples to further illustrate this inefficiency.

To make them practical, we use batching techniques from [BGR98] and construct
a Batched version of the SV algorithms, BSV in short, which allow the provers to
verify the SRS by O(n) exponentiations (mostly, short-exponent) and constant
pairings, and the verifiers by O(n + i) exponentiations (mostly, short-exponent)
and O(i) pairings. To build the BSV algorithms, we use a corollary of the
Schwartz-Zippel lemma stating that if

∑s−1
i=1 tiXi + Xs = 0 is a polynomial in

Zq[ti] with coefficients X1, . . . , Xs, ti ←r {1, . . . , 2κ} for i < s, then Xi = 0 for
each i, with probability 1−1/2κ. Namely, if

∑s−1
i=1 ti([ai]1 • [bi]2) =

∑s−1
i=1 ti [c]T

for uniformly random ti, then w.h.p., [ai]1 • [bi]2 = [c]T for each individual
i = 1, 2, · · · , s − 1. In Sec. 8.5, we show that the BSV algorithms can be
considerably faster than SV algorithms (at the soundness error rate 2−80, where
80 is a statistical security parameter) and even faster at the soundness error
rate 2−40.

It is worth to mention that, using the batching technique comes at the cost
of a small loss of soundness: even if the batched equation verifies, there is a
probability of at most 2−κ that one of the non-batched (original) equations was
false. In other words, the BSV algorithms will become probabilistic, and they
will accept incorrect SRSs with negligible probability. Therefore, once using the
BSV algorithms, one needs to modify some of our security results from Sec. 8.3
to achieve statistical SRS trapdoor extractability. Next, we describe a BSV
algorithm for each of the studied schemes, and then discuss their efficiency.
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Batched SRS Verification, (⊥/1)← BSV(c⃗rsi, (Πj)i
j=0, party):

To verify (an i-time updated) c⃗rsi :=(([
xk

i

]
1

,
[
xk

i

]
2

,
[
aix

k
i

]
2

)n

k=−n
,
([

aix
k
i

]
1

)n

k=−n,k ̸=0
, [ai]T

)
, and Πj :=(

ΠAgg
j , ΠInd

j

)
:=

((
[xj ]1 , [ajxj ]1 , [aj ]2

)
,
(
[x̄j ]1 , [x̄j ]2 , [āj x̄j ]1 , [āj x̄j ]2 , [āj ]2

))
for j = 0, 1, · · · , i:

If party = P:
1. Sample

{
tk , t̂k ← Z⋆

p

}n

k=−n
;

2. Check if
(∑n

k=−n
tk ·

[
xk

i

]
1

)
• [1]2 = [1]1 •

(∑n

k=−n
tk ·

[
xk

i

]
2

)
;

3. Check if
(∑n

k=−n+1 tk ·
[
xk

i

]
1

)
• [1]2 =

(∑n

k=−n+1 tk ·
[
xk−1

i

]
1

)
• [xi]2;

4. Check if
(∑n

k=−n,k ̸=0 t̂k ·
[
aix

k
i

]
1

)
• [1]2 = [1]1 •(∑n

k=−n,k ̸=0 t̂k ·
[
aix

k
i

]
2

)
=

(∑n

k=−n,k ̸=0 t̂k ·
[
xk

i

]
1

)
• [ai]2;

If party = V:

1. Sample
{

r1,j , r2,j , r3,j , r4,j ← Z⋆
p

}i

j=0
; and

{
tk , t̂k ← Z⋆

p

}n

k=−n
;

2. Check that [x0]1 = [x̄0]1, [a0x0]1 = [ā0x̄0]1, and [a0]2 = [ā0]2;

3. Check if
(∑i

j=0 r1,j · [x̄j ]1
)
• [1]2 = [1]1 •

(∑i

j=0 r1,j [x̄j ]2
)

;

4. Check if
(∑i

j=0 r2,j · [āj x̄j ]1
)
• [1]2 = [1]1 •

(∑i

j=0 r2,j [āj x̄j ]2
)

=∑i

j=0

(
r2,j · [x̄j ]1 • [āj ]2

)
;

5. Check if
(∑i

j=1 r3,j · [xj ]1
)
• [1]2 =

∑i

j=1

(
r3,j · [xj−1]1 • [x̄j ]2

)
;

6. Check if
(∑i

j=1 r4,j · [ajxj ]1
)
• [1]2 =

∑i

j=1

(
r4,j · [xj ]1 • [aj ]2

)
=∑i

j=1

(
r4,j · [aj−1xj−1]1 • [āj x̄j ]2

)
;

7. Check if
(∑n

k=−n
tk ·

[
xk

i

]
1

)
• [1]2 = [1]1 •

(∑n

k=−n
tk ·

[
xk

i

]
2

)
;

8. Check if
(∑n

k=−n+1 tk ·
[
xk

i

]
1

)
• [1]2 =

(∑n

k=−n+1 tk ·
[
xk−1

i

]
1

)
• [xi]2;

9. Check if
(∑n

k=−n,k ̸=0 t̂k ·
[
aix

k
i

]
1

)
• [1]2 = [1]1 •(∑n

k=−n,k ̸=0 t̂k ·
[
aix

k
i

]
2

)
=

(∑n

k=−n,k ̸=0 t̂k ·
[
xk

i

]
1

)
• [ai]2;

Return 1 if all the checks passed, otherwise return ⊥.

Figure 8.10: BSV: The Batched version of SV algorithm for Sonic.
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Batched SV Algorithm for Sonic

Fig. 8.10, describes the batched version of Sonic’s SV algorithm (given
in Figure 8.3). Using the proposed BSV algorithm, to verify an i-time updated
SRS of size n: 1) a prover will compute 7 pairings, 4n exponentiations in G2, and
8n− 1 exponentiations in G1, 2) and a verifier would need to calculate 4i + 14
pairings, 6n + 2i + 1 exponentiations in G2, and 8n + 8i + 2 exponentiations in
G1.

Batched SV Algorithm for Marlin.

Our proposed BSV algorithm for Marin is described in Fig. 8.11. Using the BSV
algorithm, to verify an i-time updated SRS of size n: 1) a prover will compute
3 pairings and 4n exponentiations (mostly, short exponent) in G1, 2) and a
verifier would need to calculate 4i + 9 pairings, 3i + 2 exponentiations in G2,
and 4n + 6i + 2 exponentiations in G1.

Batched SV Algorithm for LunarLite.

The batched SV algorithm for LunarLite is shown in Figure 8.12. Using the
proposed BSV algorithm, to verify an i-time updated SRS of size n, 1) a P will
compute 3 pairings, n− 1 exponentiations in G2, and 2n− 2 exponentiations in
G1, 2) and a V would need to compute i + 3 pairings, n + i exponentiations in
G2, and 2n + 3i exponentiations in G1.

Batched SV Algorithm for Basilisk and Plonk.

Similar to the previous cases, in Figure 8.13, we propose a probabilistic batched
variant of the Basilisk’s SV algorithm (given in Figure 8.9). A slightly modified
version of this algorithm can be used for Plonk, just by removing the checks
related to ui. However, one should pay attention that Plonk and Basilisk are
using two difference constraint systems, and the value of n will be different once
one uses the same BSV for both. In summary, by running the BSV algorithm
given in Figure 8.13, to verify an i-time updated SRS of size n: 1) a prover
will compute 2 pairings and 2n − 2 exponentiations in G1, 2) and a verifier
would need to compute i + 3 pairings, i exponentiations in G2, and 2n + 3i
exponentiations in G1.
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Batched SRS Verification, (⊥/1)← BSV(c⃗rsi, (Πj)i
j=0, party): To verify (an i-

time updated) c⃗rsi := (
([

xk
i

]
1

,
[
γix

k
i

]
1

)n

k=0
, [xi]2 , [xiγi]2), and Πj :=

(ΠAgg
j , ΠInd

j ) := (([γi]1 , [xiγi]1 , [xi]2), ([x̄i]1 , [γ̄i]1 , [x̄i]2 , [x̄iγ̄i]2)); for j =
0, 1, · · · , i:
If party = P:

1. Sample {t1,k , t2,k ← Z⋆
p}n

k=1;

2. Check if
(
[γixi]1 +

∑n

k=1(t1,k ·
[
xk

i

]
1

+ t2,k ·
[
γix

k
i

]
1
)
)
• [1]2 =

(
∑n

k=1(t1,k ·
[
xk−1

i

]
1

+ t2,k ·
[
γix

k−1
i

]
1
)) • [xi]2 + [1]1 • [γixi]2;

If party = V:
- If i = 0: c⃗rs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1, act as follows,

1. Sample
{

r1,j , r2,j , r3,j , r4,j ← Z⋆
p

}i

j=0
; and

{
tk , t̂k ← Z⋆

p

}n

k=1
;

2. Check if [γ0]1 = [γ̄0]1 and [x0]2 = [x̄0]2;
3. Check if (

∑i

j=0 r1,j · [x̄j ]1) • [1]2 = [1]1 • (
∑i

j=0 r1,j [x̄j ]2);

4. Check if [1]1 • (
∑i

j=0 r2,j · [γ̄j x̄j ]2) =
∑i

j=0(r2,j [γ̄j ]1 • [x̄j ]2);

5. Check if [1]1 • (
∑i

j=1 r3,j · [xj ]2) =
∑i

j=1(r3,j · [x̄j ]1 • [xj−1]2);

6. Check if (
∑i

j=1 r4,j · [γjxj ]1) • [1]2 =
∑i

j=1(r4,j · [γj−1xj−1]1 •
[γ̄j x̄j ]2) =

∑i

j=1(r4,j · [γj ]1 • [xj ]2);

7. Check if
(
[γixi]1 +

∑n

k=1(tk ·
[
xk

i

]
1

+ t̂k ·
[
γix

k
i

]
1
)
)
• [1]2 =(∑n

k=1

(
tk ·

[
xk−1

i

]
1

+ t̂k ·
[
γix

k−1
i

]
1

))
• [xi]2 + [1]1 • [γixi]2;

Return 1 if all the checks passed, otherwise return ⊥.

Figure 8.11: BSV: The Batched version of SV algorithm for Marlin.

8.5 Performance Analysis and Identifiable Security

8.5.1 Implementation Results

Next, we evaluate the efficiency of the presented algorithms using a prototype
implementation in Arkworks library 1, which is a Rust library for developing
and programming with zk-SNARKs. We have made the source code of our
benchmarks publicly available to the research community for reproducibility

1Available on https://github.com/arkworks-rs.

https://github.com/arkworks-rs
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Batched SRS Verification, (⊥/1)← BSV(c⃗rsi, (Πj)i
j=0, party): To verify (an i-

time updated) c⃗rsi := (
[
xk

i

]
1

,
[
xk

i

]
2
)n

k=1, and Πj := (ΠAgg
j , ΠInd

j ) :=
([xj ]1 , ([x̄j ]1 , [x̄j ]2)) for j = 0, 1, · · · , i:
If party = P:

1. Sample tk ← Z⋆
p for k = 2, · · · , n;

2. Check if ([xi]1+
∑n

k=2 tk ·
[
xk

i

]
1
)•[1]2 = [1]1•([xi]1+

∑n

k=2 tk ·
[
xk

i

]
2
) =

([1]1 +
∑n

k=2 tk

[
xk−1

i

]
1
) • [xi]2;

If party = V:
- If i = 0: c⃗rs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1, act as follows,

1. Sample tj , sj ← Z⋆
p for j = 1, · · · , i; and hk ← Z⋆

p for k =
1, · · · , n;

2. Check if [x0]1 = [x̄0]1;
3. Check if ([x̄0]1 +

∑i

j=1(tj [x̄j ]1 + sj [xj ]1) + 2
∑n

k=1 hk

[
xk

i

]
1
) •

[1]2 = [1]1 • ([x̄0]2 +
∑i

j=1 tj [x̄j ]2 +
∑n

k=1 hk

[
xk

i

]
2
) +∑i

j=1(sj [xj−1]1 • [x̄j ]2) + (
∑n

k=1 hk

[
xk−1

i

]
1
) • [xi]2

Return 1 if all the checks passed, otherwise return ⊥.

Figure 8.12: BSV: The Batched version of SV algorithm for LunarLite.

and further experimentation 2. For benchmarking Sonic, Plonk, LunarLite,
and Basilisk we use the algorithms constructed in Sec. 8.3 and Sec. 8.4. But in
case of Marlin, we use a variant of it, which is implemented in Arkworks 3. The
original paper does not explain this variant, which uses a different PC scheme
to reduce proof size, which is a variant of the scheme proposed in [Gab19]. We
built the associated (SG, SU, SV, BSV) algorithms for that version in the full
version [BMS23].

Our empirical analysis are done with the elliptic curves BLS12-381 that is
estimated to achieve between 117 and 120 bits security [NCC19]. All experiments
are done on a desktop machine with Ubuntu 20.4.2 LTS, an Intel Core i9-9900
processor at base frequency 3.1 GHz, and 128GB of memory. All algorithms
first are executed in the single-thread mode, while later we show that they all
can be parallelized and executed in the multi-thread mode. We also report the
benchmarks for Basilisk in the multi-thread mode, with 16 threads. For the

2Our open-source implementations can be accessed on the Git page at https://github.
com/Baghery/BMS23.

3Available on https://github.com/arkworks-rs/marlin.

https://github.com/Baghery/BMS23
https://github.com/Baghery/BMS23
https://github.com/arkworks-rs/marlin
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Batched SRS Verification, (⊥/1)← BSV(c⃗rsi, (Πj)i
j=0, party): To verify (an i-

time updated) c⃗rsi := ((
[
xk

i

]
1
)n

k=1, [xi]2 , ui), and Πj := (ΠAgg
j , ΠInd

j ) :=
([xj ]1 , ([x̄j ]1 , [x̄j ]2)) for j = 0, 1, · · · , i:
If party = P:

1. Sample tk ← Z⋆
p for k = 2, · · · , n;

2. Check if ([xi]1+
∑n

k=2 tk ·
[
xk

i

]
1
)•[1]2 = ([1]1+

∑n

k=2 tk

[
xk−1

i

]
1
)•[xi]2;

3. Check if ui ∈ Z⋆
p;

If party = V:
- If i = 0: c⃗rs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1, act as follows,

1. Sample tj , sj ← Z⋆
p for j = 1, · · · , i; and hk ← Z⋆

p for k =
1, · · · , n;

2. Check that [x0]1 = [x̄0]1;
3. Check if ([x̄0]1 +

∑i

j=1(tj [x̄j ]1 + sj [xj ]1) +
∑n

k=1 hk

[
xk

i

]
1
) •

[1]2 = [1]1 • ([x̄0]2 +
∑i

j=1 tj [x̄j ]2) +
∑i

j=1(sj [xj−1]1 • [x̄j ]2) +
(
∑n

k=1 hk

[
xk−1

i

]
1
) • [xi]2

4. Check if ui ∈ Z⋆
p;

Return 1 if all the checks passed, otherwise return ⊥.

Figure 8.13: The BSV algorithm for Basilisk (and Plonk without checking ui).

benchmarks, we report the running times of all the proposed algorithms, for an
arithmetic circuit with different circuit sizes, and by circuit size we mean sum of
the multiplication and the addition gates. For Plonk, whose constraint system
encodes both multiplication and addition gates, we set the number of addition
gates 2× the number of multiplication gates. This choice was based on the
evaluation done in the original paper [GWC19]. Motivated by the blockchains
and large-scale applications, we also report the SRS verification/updating times
for a big number of users and large circuits. All times are expressed in seconds
or minutes. In the execution of the BSV algorithms, we first sample some
vectors t⃗i of random numbers from the range [1 .. 280], the time of sampling
randomnesses are not included in the run times of BSV algorithm, as they can
be pre-computed. Based on earlier results, one can re-use the same randomness
for different verification equations, and zk-SNARKs.

The graphs in Figure 8.14 summarize our implementation results based on
different criteria for all our studied zk-SNARKs. In the rest, we go through
them sequentially and explain the key points. The plot A compares the run
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I) Identification (n = 50K)

Figure 8.14: A) SG or SU, B) SVV for a fixed i = 5, C) BSVV for a fixed i = 5,
D) BSVV for a fixed circuit size (n = 10K, m = 30K), E) Comparison of Basilisk’s
BSVP and BSVV for a fixed n = 10K, F) Basilisk’s SG/SU with multi-threading, G)
Basilisk’s BSVV with multi-threading, H) Basilisk’s BSVV with n = 106, and different
security parameters in batching, I) Identifying a malicious SRS updater with recursive
verification in Basilisk.

times of SG and SU in the single-thread mode, for all the studied zk-SNARKs.
Naturally, the shorter SRS, the faster SG and SU algorithms. The plot B
presents the run times of SV algorithm executed by V, for a 5-time updated
SRS and various circuit sizes. As it can be seen, standard SV algorithms can
be very slow for even small circuits, e.g. circuits of sizes < 50K (this is why
we are not giving its timings for n > 50K). In this case, since the size of SRS
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(n = 50K), is considerably larger than the number of updates (i = 5), then the
run times of SVP and SVV are almost the same, therefore SVP is omitted from
the plot.

The plot C illustrates the efficiency of BSV algorithm run by V, for i = 5 (5-time
updated SRS) and different circuit sizes. One can see that they are considerably
faster than standard SV algorithms, and in some cases they are very efficient
even for large circuits. e.g. circuits of sizes > 1M . Similar to the last plot, in
this setting again the run times of SVP and SVV are very close. In plot D, we
set the circuit size fixed (n = 10K multiplication gates, m = 30K total gates)
and plot the run times of BSVV algorithms for different number of updates.
Similar to the previous plots, we observe that the setup phase of Basilisk can be
considerably faster than other schemes. Therefore, in the rest of benchmarks,
we mainly used Basilisk’s algorithms. In plot E, we compare the run times of
Basilisk’s BSV algorithm executed by the prover (BSVP) and verifier (BSVV),
for a circuit with n = 1K or 10K multiplication gates, and different numbers of
updates. As it can be seen, for the cases that a small circuit is updated many
times, BSVP can be significantly faster, independent of the number of updates.
The plot shows that BSVP for n = 10K, is as efficient as BSVV for n = 1K and
i ≈ 300.

By now all evaluations are done in the single-thread mode. In the rest, in
both plots F and G, we execute the algorithms of Basilisk in the multi-thread
mode and re-evaluate the efficiency of SU (or SG) and BSVV, for various circuits
and different number of updates. We observed that, the SRS of Basilisk for a
particular circuit with 2M multiplication gates, can be generated/updated in
about 11 min, and verified in less than 1 minute. As mentioned before, within
the BSV algorithms, the randomness vector t⃗i are sampled from [1 .. 280] which
assures that the batching causes security gap not bigger than 2−80. This is
a conservative approach. In plot H, we compare the run times of BSVV for
Basilisk in the case that the coordinates of t⃗i were chosen from [1 .. 240]. This
makes the SRS verification even faster, but at the cost of a bigger error rate,
i.e., 2−40.

8.5.2 Identifiable Security in the Updatable SRS Model

In the updatable SRS model [Gro+18], the initial SRS generator and the follow-
up SRS updaters attach a proof to each updated SRS, and the parties do not
store every updated SRS but only update proofs. At the end, each party runs
the SV (or BSV) algorithm once to verify the validity of proofs in a chain and
then uses the final proof to check the well-formedness of the final SRS (see
Fig. 8.1). In lemmas 3-10, we also observed that after the final update on SRS,
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Figure 8.15: Recursive execution of BSV to identify a malicious SRS updater.

it is sufficient that all the participants in the SRS generation/updating phases
run the SV (or BSV) algorithm only once. In the rest, this case is referred to as
the optimistic case or optimistic verification. As we observed in Figure 8.14,
in this case the setup phase of updatable zk-SNARKs can be significantly fast,
and can easily be scaled for a large number of users (e.g. thousands of parties),
without the need for a third party. However, then the parties would only abort
a maliciously updated SRS at the end, without identifying a malicious party.
This can lead to repeat the SRS generation and updates all over again. Note
that, the SV (and BSV) algorithm verifies the proofs Π0 till Πi, and the final
SRS c⃗rsi. If a malicious SRS generator/updater generates a valid proof but an
invalid SRS, it cannot be detected by just verifying the proofs. To deal with
this concern, a naive solution is to verify the SRS after each update (by either
all the participants or a TTP) and identify the malicious party. In practice, the
above approach would be impractical for large scale applications.

Identifying a Malicious Updater with Logarithmic Verification. Next, we
describe an efficient approach to identify a malicious party in the updatable
SRS model. To this end, the parties need to store all the transcripts, as in
current ceremonies, and then recursively run the BSV (or SV) algorithm for one
SRS and a smaller set of proofs. More precisely, parties would run the BSV (or
SV) algorithm of the target zk-SANRK, with a single SRS and i

21 , i
22 , · · · , i

2log i

proofs, respectively. Note that with this approach, only ⌈log i⌉+ 1 of SRSs are
verified (e.g., boldface SRSs c⃗rs15, c⃗rs7, c⃗rs11, c⃗rs9, c⃗rs10 in Figure 8.15), instead
of i. As in practice, the circuit size is considerably higher than the number of
SRS updates, e.g. 222 vs. 100 in current ceremonies, therefore the run time
of SV (and BSV) is dominated by the size of SRS, rather than the number of
updates. Due to this fact, in practice, the proposed verification approach can
be considerably faster than the naive solution. Fig. 8.15, presents an example
of such recursive execution of BSV algorithms for i = 15. We also evaluate
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the performance of this approach with a sample implementation. The plot I
in Figure 8.14, illustrates the required time to identify a malicious updater in
Basilisk’s setup for different number of updates with the SRS of a circuit with
n = 50K multiplication gates. As it can be seen, for 2000-time updated SRS of
length 50K, the first malicious updater can be identified in less than 20 sec. In
similar settings, where n >> i, the identification time would be independent of
the precise position of the malicious updater, and it will take an approximate
run time of log i times that of a single BSV.

As an optimization, one may notice that once a verifier runs the BSV algorithm
on the final SRS, e.g. BSV(16)

0 in the mentioned example, we already compute
the batched form of the proof elements required in all the follow-up steps
of the recursive search, as e.g.

∑15
i=0 ti [xi]1 =

∑7
i=0 ti [xi]1 +

∑15
i=8 ti [xi]1 =∑3

i=0 ti [xi]1 +
∑7

i=4 ti [xi]1 +
∑11

i=8 ti [xi]1 +
∑15

i=12 ti [xi]1. By storing a proper
set of batched proofs, one can speed up the follow-up executions of BSV. This
optimization is more effective in cases that the circuit size is small but the
SRS is updated many times. As another optimization, one can precompute the
batched version of the checks on some intermediate SRSs, e.g. c⃗rs11, c⃗rs7, c⃗rs3,
and speed-up the run times of BSV algorithms in the follow-up steps. Note that
our BSV and SV algorithms, by default verifies all the proofs for j = 0 till the
final SRS c⃗rsi, i.e. j = i. In the recursive execution, we need to run the BSV (or
SV) algorithm for a particular set of SRSs and proofs. In those cases, one can
feed proper starting and finishing indexes to the BSV (or SV) algorithms. For
instance, to check the SRS c⃗rs11 and the set of proofs {Π8, Π9, Π10, Π11} one
needs to run the algorithms for j = 8 till j = 11, which will verify a batched
variant of (Π8, Π9, Π10, Π11) and the final SRS c⃗rs11.

In practice, if the values of i and n will be huge, it might happen that the setup
phase would take a long time, especially if a malicious update occurs during
the earlier updates. To minimize the run time, as well as to gain the benefits of
the optimistic verification, an effective solution would be to verify the updated
SRS after a particular number of updates, i.e. one would need to verify the
updated SRS every k updates, where 1 < k < i. Basically, the idea is rather
than verifying every update (the slowest case), or all i updates once (the fastest
case), the parties will verify the SRS after each k updates. If the verification of
c⃗rsk was successful, then the parties will continue with updating the SRS. If
not, they would use the recursive search approach (given in Figure 8.15) to find
the first malicious updater and then will continue the SRS update from there
(without the malicious updater).

Since the entire described procedure is accountable, in practice one can minimize
the risk of a malicious SRS update significantly by enforcing a high penalty for
a malicious SRS updater.
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8.6 Conclusion

In this study, we examined the setup phase of updatable zk-SNARKs. We
constructed the necessary algorithms, namely (SG, SU, SV), for the setup phase
of various updatable zk-SANRKs, including Sonic, Plonk, Marlin, Lunar, and
Basilisk. To make SV algorithms practical, we also presented a batched version
of them, called BSV. We constructed the algorithms for the most efficient version
of each zk-SNARK, in terms of proof size. However, the proposed algorithm can
be adapted to their different versions. Our results show that in a few cases, to
achieve better efficiency in the setup phase, one option would be to use a version
of the studied schemes, with a shorter SRS but slightly larger proofs and slower
provers. For instance, Lunar [Cam+21] has a version, so-called LunarLite2x,
which has the same SRS as Basilisk, therefore can be as efficient as Basilisk
in the setup phase, but in cost of slightly longer proofs and slower prover. In
another example, we observed that Counting Vampires [LSZ22] has only two
fewer group elements than Basilisk in the proof, but its SRS size is 17× larger
and such an SRS can result in a prolonged setup.

Meanwhile, we observed that to achieve Sub-ZK/Upd-KS in updatable zk-
SANRKs, a more realistic model for security proofs could be the AGM with
hashing [Lip22], rather than the original AGM [FKL18].

Moreover, we showed that pairing-based updatable zk-SNARKs, or other
primitives constructed in the updatable SRS model, by default achieve security
with abort, and the parties cannot identify a malicious SRS generator/updater.
A naive solution to deal with this concern is verifying the SRS after each update
(either by the parties or a third party), but it can be impractical in a large-scale
application. To make it practical, we proposed an efficient recursive verification
approach, that allows the parties to identify a malicious SRS updater by a
logarithmic number of SRS verification (instead of linear) in the number of
updates. We believe our proposed approach to achieve identifiable security,
can also be used in the MPC SRS generation protocols [Koh+21], as well as
in other cryptographic primitives (like commitments, signatures, encryptions)
constructed in the updatable SRS model [DRZ20; ARS20; BS21; Gan+22;
BB22].

Finally, our empirical analysis showed that the algorithms are practical for large-
scale applications, and among the current updatable zk-SNARKs, Basilisk (and
the Lunarlite2x variant of Lunar) can have the fastest setup phase. Counting
Vampires, Sonic and Plonk can have a very slow setup phase, which is mainly
because of having a very long SRS or using a specific constraint system (i.e.,
Plonk) that encodes both addition and multiplication gates.
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Abstract. Zk-SNARKs, as the most efficient NIZK arguments in terms of
proof size and verification, are ubiquitously deployed in practice. In applications
like Hawk [S&P’16], Gyges [CCS’16], Ouroboros Crypsinous [S&P’19], the
underlying zk-SNARK is lifted to achieve Black-Box Simulation Extractability
(BB-SE) under a trusted setup phase. To mitigate the trust in such systems,
we propose Tiramisu 1, as a construction to build NIZK arguments that can
achieve updatable BB-SE, which we define as a new variant of BB-SE. This new
variant allows updating the public parameters, therefore eliminating the need
for a trusted third party, while unavoidably relies on a non-black-box extraction
algorithm in the setup phase. In the cost of one-time individual CRS update by
the parties, this gets around a known impossibility result by Bellare et al. from
ASIACRYPT’16, which shows that BB extractability cannot be achieved with
subversion ZK (ZK without trusting a third party). Tiramisu uses an efficient
public-key encryption with updatable keys which may be of independent interest.
We instantiate Tiramisu, implement the overhead and present efficient BB-SE
zk-SNARKs with updatable parameters that can be used in various applications
while allowing the end-users to update the parameters and eliminate the needed
trust.

1In Italian, Tiramisu literally means “lift me up”.
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9.1 Introduction

Zero-Knowledge (ZK) [GMR85] proof systems, particularly Non-Interactive
Zero-Knowledge (NIZK) arguments [BFM88] are one of the elegant tools in
modern cryptography that due to their impressive advantages and practical
efficiency, they are ubiquitously deployed in practical applications [Ben+14;
Kos+16; JKS16; Ker+19]. A NIZK proof system allows a party P (called
prover) to non-interactively prove the truth of a statement to another party V
(called verifier) without leaking any information about his/her secret inputs.
For instance, they allow a prover P to convince a verifier V that for a (public)
statement x, he/she knows a (secret) witness w that satisfies a relation R,
(x, w) ∈ R, without leaking any information about w.

Typically, a NIZK argument is expected to satisfy, (i) Completeness, which
implies that an honest prover always convinces an honest verifier (ii) Soundness,
which ensures that an adversarial prover cannot convince an honest verifier
except with negligible probability. (iii) Zero-Knowledge (ZK), which guarantees
that an honestly generated proof does not reveal any information about
the (secret) witness w. In practice, it is shown that bare soundness is
not sufficient and it needs either to be amplified [Kos+16] or the protocol
needs to be supported by other cryptographic primitives [Ben+14]. To
deal with such concerns, different constructions are proposed that either
satisfy one of the following notions, one of which is an amplified variation of
soundness. (iv) Simulation Soundness (SS), which ensures that an adversarial
prover cannot convince an honest verifier, even if he has seen polynomially
many simulated proofs (generated by Sim), except with negligible probability.
(v) Knowledge Soundness (KS), which guarantees that an adversarial prover
cannot convince an honest verifier, unless he knows a witness w for statement
x such that (x, w) ∈ R. (vi) Simulation Extractability (SE) (a.k.a. Simulation
Knowledge Soundness), which guarantees that an adversarial prover cannot
convince an honest verifier, even if he has seen polynomially time simulated
proofs, unless he knows a witness w for statement x.

The term “knowledge” in KS (in item v) and SE (in item vi) means that a
successful prover should know a w. knowing is formalized by showing that there
exists an algorithm Ext, which can extract the witness w (from the prover or
proof) in either non-Black-Box (nBB) or Black-Box (BB) manner. Typically,
nBB extraction can result in more efficient constructions, as it allows ExtA to
get access to the source-code and random coins of the adversary A. Although
the constructions that obtain BB extractability are less efficient, they provide
stronger security guarantees, as it allows us to have a universal extractor Ext
for any A. The term “simulation” in notions SS (in item iv) and SE (in item vi)
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guarantees that the proofs are non-malleable and an adversary cannot change
an old (simulated) proof to a new one such that V accepts it. The notion
SE provides the strongest security and also implies non-malleability of proofs
as defined in [De +01]. Moreover, it is shown [Gro06] that SE is a sufficient
requirement for a NIZK argument to be deployed in a Universally Composable
(UC) protocol [Can01].

zk-SNARKs. In the Common Reference String (CRS) model [BFM88],
NIZK arguments require a trusted setup phase. Based on the underlying
assumptions, they are constructed either using falsifiable or non-falsifiable
assumptions [Nao03]. At the beginning of the last decade, a line of research
initiated that focused on constructing NIZK arguments with succinct proofs,
which finally led to an efficient family of NIZK arguments, called zero-knowledge
Succinct Non-interactive ARgument of Knowledge (zk-SNARK) [Gro10; Lip12;
Par+13; Ben+13; Gro16; GM17; BG18], [Lip19; BPR20]. zk-SNARKs are
constructed based on knowledge assumptions [Dam92] that allow succinct
proofs and nBB extractability. Gentry and Wichs’s impossibility result [GW11]
confirmed that succinct proofs cannot be built based on falsifiable assumptions.
Beside succinct proofs, all initial zk-SNARKs were designed to achieve
completeness, ZK and KS (in item v) [Gro10; Lip12; Par+13; Ben+13; Gro16].
KS proofs are malleable, thus in practice users needed to make extra efforts to
guarantee the non-malleability of proofs [Ben+14] . Following this concern, in
2017, Groth and Maller [GM17] presented a zk-SNARK that can achieve SE (in
item vi) with nBB extractability, consequently generates non-malleable proofs.
Recent works in this direction have led to more efficient schemes with the same
security guarantees [BG18; Lip19; Bag+21; BPR20].

Mitigating the trust in the setup phase of zk-SNARKs. In 2016,
Bellare et al. [BFS16] studied the security of NIZK arguments in the face of
subverted CRS. They defined (vii) Subversion-Soundness (Sub-SND), which
ensures that the protocol guarantees soundness even if A has generated the CRS,
and (viii) Subversion-ZK (Sub-ZK), which ensures that the scheme achieves
ZK even if A has generated the CRS. Then, they showed that Sub-SND is not
achievable with (standard) ZK, and also we cannot achieve Sub-ZK along with
BB extractability. Two follow-up works [Abd+17; Fuc18] showed that most of
zk-SNARKs can be lifted to achieve Sub-ZK (in item viii) and KS with nBB
extraction (nBB-KS). Baghery [Bag19b] showed that using the folklore OR
technique [BG90] any Sub-ZK SNARK can be lifted to achieve Sub-ZK and SE
(in item vi) with nBB extraction (nBB-SE). Meanwhile, as an extension to the
MPC approach [Ben+15] and subversion security, in 2018 Groth et al. [Gro+18]
introduced a new variation of the CRS model, called updatable CRS model
which allows both prover and verifier to update the CRS and bypass the needed
trust in a third party. Groth et al. first defined, (ix) Updatable KS (U-KS),
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which ensures that the protocol guarantees KS (in item v) as long as the
initial CRS generation or one of CRS updates is executed honestly, and
(x) Updatable ZK (U-ZK), which ensures that the protocol guarantees ZK as
long as the initial CRS generation or one of CRS updates is done by an honest
party 2. Then, they presented a zk-SNARK that can achieve Sub-ZK and U-KS
with nBB extraction (U-nBB-KS). Namely, the prover achieves ZK without
trusting the CRS generator and the verifier achieves nBB-KS without trusting
the CRS generator but by one-time CRS updating. Recent constructions in
this direction have better efficiency [Mal+19; GWC19]. Recently, Abdolmaleki,
Ramacher, and Slamanig [ARS20] presented a construction, called Lamassu,
and showed that using a similar folklore OR technique [BG90; DS16; Bag19b]
any zk-SNARK that satisfies Sub-ZK and U-nBB-KS can be lifted to achieve
Sub-ZK and U-nBB-SE. (xi) Updatable nBB-SE (U-nBB-SE), which ensures
that the protocol achieves SE with nBB extraction as long as the initial CRS
generation or one of CRS updates is done honestly. Recently, it is shown that two
efficient updatable universal zk-SNARKs Plonk [GWC19] and Sonic [Mal+19]
can also achieve U-nBB-SE [Gan+22]. Considering the impossibility of achieving
Sub-ZK along with BB extraction [BFS16], such schemes [ARS20; GWC19;
Mal+19] achieve the strongest notion with nBB extraction.

Using zk-SNARKs in UC-Protocols. A UC protocol [Can01] does not
interfere with other protocols and can be arbitrarily composed with other
protocols. In 2006, Groth [Gro06] showed that a NIZK argument that can
achieve BB-SE can realize the ideal NIZK-functionality FNIZK [GOS06]. In 2015
Kosba at al. [Kos+15] proposed a framework called C∅C∅ along with several
constructions that allows lifting a sound NIZK argument to a BB-SE NIZK
argument, such that the lifted version can be deployed in UC-protocols. In
summary, given a sound NIZK argument for language L, the C∅C∅ defines a
new extended language L̂ appended with some primitives and returns a NIZK
argument that can achieve BB-SE. We review the strongest construction of the
C∅C∅ in full version [BS20].

Unfortunately, the default security of zk-SNARKs is insufficient to be directly
deployed in UC protocols. The reason is that zk-SNARK achieves nBB
extraction and the extractor ExtA requires access to the source code and random
coins of A, while in UC-secure NIZK arguments, the simulator of ideal-world
should be able to simulate corrupted parties. To do so, the simulator should
be able to extract witnesses without getting access to the source code of the
environment’s algorithm. Due to this fact, all those UC-secure applications that
use zk-SNARKs [Kos+16; JKS16; Ker+19], use C∅C∅ to lift the underlying
zk-SNARK to achieve BB-SE, equivalently UC-security [Gro06]. Note that the

2Sub-ZK is a stronger notion than U-ZK, as in Sub-ZK A has generated the CRS, while
the later achieves ZK if at least one of CRS updates is done honestly.
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lifted zk-SNARKs that achieve BB-SE are not witness succinct any more, but
they still are circuit succinct.

9.1.1 Our Contributions

Tiramisu. The core of our results is presenting Tiramisu as an alternative to
the C∅C∅ framework but in the updatable CRS model. Technically speaking,
Tiramisu allows one to build simulation extractable NIZK arguments with
updatable parameters that satisfies a variant of black-box extractability which
we define in this work. In the NIZK arguments built with Tiramisu the
parties can update the CRS themselves instead of trusting a third party. The
construction is suitable for modular use in larger cryptographic protocols, which
aim to build SE NIZK arguments with BB extractability, while avoiding to
trust a third party.

To construct Tiramisu, we start with the C∅C∅’s strongest construction and
lift it to a construction that works in the updatable CRS model. Meanwhile, to
attain fast practical performance, we consider the state-of-the-art constructions
proposed in the updatable CRS model and show that we can simplify the
construction of C∅C∅ and still achieve the same goal, particularly in the
updatable CRS model. Technically speaking, the strongest construction of the
C∅C∅ framework, gets a sound NIZK argument for the language L and lifts it
to a new NIZK argument for the extended language L̂, that can achieve BB-SE.
The language L̂ is an extension of L appended with some necessary and sufficient
primitives, including an encryption scheme to encrypt the witness and a Pseudo-
Random Function (PRF) along with a commitment scheme that commits to
the secret key of the PRF (more details in full version [BS20] and Sec. 9.4). In
composing Tiramisu, we show that considering recent developments in building
NIZK arguments with updatable CRS, namely due to the existence of nBB-
SE NIZK arguments with updatable CRS (either with a two-phase updatable
CRS [Gro16; BGM17; BG18; Bag+21; BPR20] or with a universal updatable
string [Gro+18; ARS20; GWC19; Mal+19]) we can simplify the definition of L̂
by removing the commitment and PRF and construct more efficient SE NIZK
arguments with (a variant of) BB extractability that also have updatable CRS.
We show that, Tiramisu also can be added as a layer on top of the construction
proposed in [ARS20], called Lamassu, and together act as a generic compiler
to lift any sound NIZK argument to a SE NIZK argument with a variant of
black-box extractability in the updatable CRS model. However, we show that
the arguments built with this approach are inefficient in comparison with the
ones built with only Tiramisu. Fig. 9.1 illustrates how one can use C∅C∅
and Tiramisu to build BB-SE NIZK arguments in the standard and updatable
CRS models, respectively. Similar to C∅C∅ framework, Tiramisu results in
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Figure 9.1: Using C∅C∅ and Tiramisu to build BB-SE NIZK arguments in
the standard and updatable CRS models.

NIZK arguments whose proof size and verification time are (quasi-)linear in the
witness size, that is an unavoidable requirement for UC security [Can01], but
still are independent of the size of the circuit, which encodes L̂.

Bellare et al.’s Negative Result. In [BFS16], Bellare et al. observed that
achieving Sub-ZK and BB extractability is impossible at the same time. As BB
extractability requires the simulator create a CRS with a trapdoor it withholds,
then it can extract the witness from a valid proof. But Sub-ZK requires that
even if A generates the CRS, it should not be able to learn about the witnesses
from the proof. However, if a NIZK argument achieves BB extractability, an
adversary (CRS subvertor) can generate the CRS like the simulator. So it has
the trapdoor and can also extract the witness and break Sub-ZK. Considering
the above negative result, Tiramisu achieves the best possible combination
with downgrading Sub-ZK (in item viii) to U-ZK (in item x) while achieving
updatable BB extractability, either U-BB-SE or U-BB-KS. U-BB-SE and U-BB-
KS does not need a trusted third party, therefore from the trust point of view,
they are stronger definitions than standard BB-SE and BB-KS, respectively,
which require a trusted setup phase. But, in definitions of U-BB-SE and U-BB-
KS, to bypass the needed trust, we rely on the existence of a nBB extraction
algorithm in the setup phase that can extract the trapdoors from the (malicious)
parameter generator or updaters. This seems to be unavoidable fact to achieve
updatability and BB extractability at the same time.

Key-Updatable Public-key Cryptosystems. Tiramisu uses a semantically
secure cryptosystem with updatable keys that we define here. We show that such
cryptosystems can be built either in a generic manner from key-homomorphic
encryption schemes [AHI11], or via an ad-hoc approach. Using both generic and
ad-hoc approaches, we present two variations of El-Gamal cryptosystem [ElG84]
instantiated in the pairing-based groups which fulfil the requirements of a
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Table 9.1: A comparison of Tiramisu with related works. ZK: Zero-knowledge,
SE: Simulation Extractable, U: Updatable, S: Subversion, nBB: non-Black-Box,
BB: Black-Box. ✓: Achieves, ×: Does not achieve.

Zero-Knowledge Simulation Extractability
ZK U-ZK S-ZK nBB-SE BB-SE U-nBB-SE U-BB-SE

Tiramisu ✓ ✓ × ✓ ✓ ✓ ✓
C∅C∅ [Kos+15; Bag19a] ✓ × × ✓ ✓ × ×

[GM17; BG18; AB19] ✓ × × ✓ × × ×
[Bag19b; Lip19; BPR20] ✓ ✓ ✓ ✓ × × ×
[BGM17; BG18; ARS20] ✓ ✓ ✓∗ ✓ × ✓ ×

*Theorem 4 in [ARS20] states Lamassu, can achieve U-ZK and U-nBB-SE, but it can be shown that
it can achieve Sub-ZK along with U-nBB-SE which is a stronger combination.

cryptosystem with updatable keys. Efficiency of both constructions are evaluated
with a prototype implementation in the Charm-Crypto framework [Aki+13],
and seem to be practical. The new syntax and constructions can be interesting
in their own right, particularly for building other primitives in the updatable
CRS model [CFQ19; Daz+19]. There are some related definitions for encryption
schemes that support updating the keys [CHK03; Fau+19], however their
definitions do not fit our requirements for distributing trust across multiple
updaters in the updatable CRS model.

Tab. 9.1 compares NIZK arguments built with Tiramisu with existing schemes
that can achieve a flavour of SE and ZK. Schemes built with C∅C∅ achieve
BB extractability, thus they cannot achieve S-ZK, and the constructions that
achieve Sub-ZK [Bag19b; Lip19; ARS20] can achieve (U-)nBB-SE in the best
case.

Road-map. The rest of the paper is organized as follows; Sec. 9.2 presents
necessary preliminaries. Sec. 9.3 defines the syntax of a key-updatable
cryptosystems and presents efficient variations of the El-Gamal cryptosystem
as an instantiation. Our construction, Tiramisu, and its security proofs are
described in Sec. 9.4. In Sec. 9.5, we present U-BB-SE NIZK arguments built
with Tiramisu.

9.2 Notations

Throughout, we suppose the security parameter of the scheme be κ and ν(κ)
denotes a negligible function. We use x←$ X to denote x sampled uniformly
according to the distribution X. Also, we use [1 .. n] to denote the set of integers
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in range of 1 to n. Let PPT and NUPPT denote probabilistic polynomial-time
and non-uniform probabilistic polynomial-time, respectively. For an algorithm
A, let im(A) be the image of A, i.e., the set of valid outputs of A. Moreover,
assume RND(A) denotes the random tape of A, and r ←$ RND(A) denotes
sampling of a randomizer r of sufficient length for A’s needs. By y ← A(x; r)
we mean given an input x and a randomizer r, A outputs y. For algorithms A
and ExtA, we write (y ∥ y′)← (A∥ExtA)(x; r) as a shorthand for “y ← A(x; r),
y′ ← ExtA(x; r)”. Two computationally IND distributions A and B are shown
with A ≈c B.

We use additive and the bracket notation, i.e., in group Gµ, [a]µ = a [1]µ,
where [1]µ is a generator of Gµ. A bilinear group generator BGgen(1κ) returns
(p,G1,G2,GT , E, [1]1 , [1]2), where p (a large prime) is the order of cyclic abelian
groups G1, G2, and GT . Finally, ê : G1×G2 → GT is an efficient non-degenerate
bilinear pairing, s.t. ê([a]1 , [b]2) = [ab]T . Denote [a]1 • [b]2 = E([a]1 , [b]2).

9.3 Public-Key Cryptosystems with Updatable Keys

As briefly discussed in Sec. 9.1, one of the key building blocks used in
Tiramisu is the cryptosystem schemes with updatable keys that we define
next. Similar definitions are recently proposed for zk-SNARKs [Gro+18], and
signatures [ARS20], but considering previous definitions in [CHK03; Fau+19],
to the best of our knowledge this is the first time that this notion is defined
for the public-key cryptosystems. In contrast to subversion-resilient encryption
schemes [ABK18] that the key-generation phase might be subverted, here we
consider the case that the output of the key-generation phase is updatable
and parties can update the keys. We aim to achieve the standard security
requirements of a cryptosystem as long as either the original key generation or
at least one of the updates was done honestly. Similar to the case on paring-
based subversion resistant NIZK arguments [BFS16], we assume that the group
generator is a deterministic polynomial time algorithm, which given the security
parameter, it can be run by every entity without the need for a trusted third
party.

9.3.1 Definition and Security Requirements

Definition 59 (Cryptosystems with Updatable Keys). A public-key
cryptosystem ΨEnc with updatable keys over the message spaceM and ciphertext
space C, consists of five PPT algorithms (KG, KU, KV, Enc, Dec), defined as
follows,
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• (pk0, Πpk0 , sk0)← KG(1κ): Given the security parameter 1κ returns the
corresponding key pair (pk0, sk0) and Πpk0 as a proof of correctness.

• (pki, Πpki
) ← KU(pki−1): Given a valid (possibly updated) public key

pki−1 outputs (pki, Πpki
), where pki denotes the updated public-key and

Πpki
is a proof for the correctness of the updating process.

• (1,⊥)← KV(pki, Πpki
): Given a potentially updated pki and Πpki

, checks
the validity of the updated key. It returns either ⊥ if pki is incorrectly
formed (and updated), otherwise it outputs 1.

• (c) ← Enc(pki, m): Given a (potentially updated) public key pki and a
message m ∈M, it outputs a ciphertext c ∈ C.

• (⊥, m′)← Dec(ski, c): Given c ∈ C and the secret key ski, returns either
⊥ (reject) or m′ ∈M (successful). Note that in the standard public-key
cryptosystems (and in this definition before any updating) ski = sk0.

Primary requirements for a public-key cryptosystem with updatable keys,
ΨEnc := (KG, KU, KV, Enc, Dec), can be summarized as follows,

Definition 60 (Perfect Updatable Correctness). A cryptosystem ΨEnc with
updatable keys is perfect updatable correct, if we have,

Pr


(pk0, Πpk0 , sk0 := sk′

0)← KG(1κ), rs ←$ RND(Sub),

(({pkj , Πpkj
}i

j=1, ξSub) ∥ {sk′
j}i

j=1)← (Sub ∥ExtSub)(pk0, Πpk0 , rs),

{KV(pkj , Πpkj
) = 1}i

j=0 : Dec(ski := {sk′
j}i

j=0, Enc(pki, m)) = m

 = 1 .

where sk′
j is the individual secret-key of each party and pki is the final public-key.

Definition 61 (Updatable Key Hiding). In a cryptosystem ΨEnc with updatable
keys, for (pk0, Πpk0 , sk0 := sk′

0)← KG(1κ) and (pki, Πpki
)← KU(pki−1), we say

that ΠEnc is updatable key hiding, if one of the following cases holds,

• the original pk0 was honestly generated and KV algorithm returns 1,
namely (pk0, Πpk0 , sk0)← KG(1κ) and KV(pk0, Πpk0) = 1,

• the original pk0 verifies successfully with KV and the key-update was
generated honestly once, namely KV(pk0, Πpk0) = 1 and
({pkj , Πpkj

}i
j=1)← KU(pk0) such that {KV(pkj , Πpkj

) = 1}i
j=1.
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Definition 62 (Updatable IND-CPA). A public-key cryptosystem ΨEnc with
updatable keys satisfies updatable IND-CPA, if for all PPT subvertor Sub, for
all κ, and for all PPT adversaries A,

Pr


(pk0, Πpk0 , sk0 := sk′

0)← KG(1κ), rs ←$ RND(Sub),

({pkj , Πpkj
}i

j=1, ξSub)← Sub(pk0, Πpk0 , rs), b←$ {0, 1}, (m0, m1)←

A(pki, ξSub), b′ ← A(Enc(pki, mb)) : {KV(pkj , Πpkj
) = 1}i

j=0 ∧ b′ = b

 ≈κ
1
2 .

where ξSub is the auxiliary information which is returned by the subvertor Sub.
Note that Sub can also generate the initial pk0 and then an honest key updater
KU updates it and outputs pki and the proof Πpki

.

9.3.2 Building Key-Updatable Cryptosystems

We first prove a theorem that gives a generic approach for building a
cryptosystem with updatable keys using the key-homomorphic cryptosystems.
Then, we use the generic approach and present the first key-updatable
cryptosystem.

Theorem 8 (Cryptosystems with Updatable Keys). Every correct, IND-CPA
secure, and key-homomorphic cryptosystem ΨEnc with an efficient extractor
ExtSub, satisfies updatable correctness, updatable key hiding and updatable
IND-CPA security. The proof is provided in full version [BS20].

A Key-Updatable Cryptosystem from Key-Homomorphic Cryptosystems.

Next, we show that the El-Gamal cryptosystem [ElG84] instantiated in a
bilinear group (p,G1,G2,GT , E, [1]1 , [1]2) can be represented as a key-updatable
encryption scheme constructed from key-homomorphic encryption schemes.
In bilinear group based instantiation, in contrast to the standard El-Gamal
encryption (reviewed in full version [BS20]), the public key consists of a pair
([x]1 , [x]2). Consequently, the algorithms of new variation can be expressed as
follows,

• (pk0, Πpk0 , sk0 := sk′
0)← KG(1κ): Given 1κ, obtain (p,G1,G2,GT , E, [1]1 ,

[1]2)← BGgen(1κ); sample sk′
0 ←$ Z∗

p and return the key pair (pk0, sk0) :=((
pk1

0, pk2
0
)

, sk0
)

:=
(([

sk′
0
]

1 ,
[
sk′

0
]

2

)
, sk′

0
)

and Πpk0 :=
(

Π1
pk0

, Π2
pk0

)
:=

([
sk′

0
]

1 ,
[
sk′

0
]

2

)
as a proof of correctness (a.k.a. well-formedness).
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• (pki, Πpki
) ← KU(pki−1): Obtain (p,G1,G2,GT , E, [1]1 , [1]2) ←

BGgen(1κ); then for a given pki−1 :=
(
pk1

i−1, pk2
i−1

)
:= ([ski−1]1 , [ski−1]2),

for i ≥ 1, sample sk′
i ←$ Z∗

p and output: (pki, Πpki
) :=(([

ski−1 + sk′
i

]
1

,
[
ski−1 + sk′

i

]
2

)
,
([

sk′
i

]
1

,
[

sk′
i

]
2

))
, where pki :=(

pk1
i , pk2

i

)
denotes the updated public-key associated with the secret

key ski := ski−1 + sk′
i and Πpki

:=
(

Π1
pki

, Π2
pki

)
:=

([
sk′

i

]
1

,
[

sk′
i

]
2

)
is

the proof for correctness of the update.

• (1,⊥) ← KV
(
{pkj}i

j=0, Πpki

)
: Obtain (p,G1,G2,GT , E, [1]1 , [1]2) ←

BGgen(1κ), and then,

- for i = j = 0, given pk0 :=
(
pk1

0, pk2
0
)

:= ([sk0]1 , [sk0]2), and the
proof Πpk0 :=

(
Π1

pk0
, Π2

pk0

)
:=

([
sk′

0

]
1

,
[

sk′
0

]
2

)
, checks Π1

pk0
•[1]2

?=

[1]1 • pk2
0, [1]1 • Π2

pk0

?= pk1
0 • [1]2 , [1]1 • Π2

pk0

?= Π1
pk0
• [1]2 .

- for i ≥ 1, given pki−1 :=
(
pk1

i−1, pk2
i−1

)
:=

([ski−1]1 , [ski−1]2), a potentially updated pki :=
(
pk1

i , pk2
i

)
:=([

ski−1 + sk′
i

]
1

,
[
ski−1 + sk′

i

]
2

)
, and Πpki

:=
(

Π1
pki

, Π2
pki

)
:=([

sk′
i

]
1

,
[

sk′
i

]
2

)
, checks

(
pk1

i−1 + Π1
pki

)
• [1]2

?= [1]1 • pk2
i , [1]1 •(

pk2
i−1 + Π2

pki

)
?= pk1

i • [1]2 and [1]1 • Π2
pki

?= Π1
pki
• [1]2.

in each case, if all the checks pass, it returns 1, otherwise ⊥.

• (c)← Enc (pki, m): Obtain (p,G1,G2,GT , E, [1]1 , [1]2)← BGgen(1κ) and
then given a (potentially updated) public key pki := ([ski]1 , [ski]2), such
that ski := ski−1 + sk′

i , and a message m ∈ M, samples a randomness
r ←$ Z∗

p and outputs c := (c1, c2) := (m · [rski]T , [r]T ) .

• (⊥, m) ← Dec(ski, c): Obtain (p,G1,G2,GT , E, [1]1 , [1]2) ← BGgen(1κ)
and then given a ciphertext c ∈ C and a potentially updated secret key
ski = ski−1 + sk′

i it returns, c1
csk

2
= m·[rski]T

[rski]T
= m.

In the proposed construction, for the case that {KV({pkj}i
j=0, Πpki

) = 1}i
j=0,

under the BDH-KE knowledge assumption (See full version [BS20]) with checking
[1]1 • Π2

pkj

?= Π1
pkj
• [1]2 for 0 ≤ j ≤ i, there exists an efficient nBB extractor

ExtSub that can extract all sk′
j from the subvertor Subj . Note that here we

considered the standard version of the El-Gamal cryptosystem, but we could
also take its lifted version, which encrypts gm instead of m.
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A More Efficient Key-Updatable Cryptosystem.

The technique proposed in The. 8, acts as a generic approach but might lead to
inefficient constructions. We present a more efficient key-updatable variant of
El-Gamal cryptosystem.

Hash-based El-Gamal Cryptosystem in Bilinear Groups. The hash-based
variation of El-Gamal cryptosystem [ElG84], is proven to achieve IND-CPA
in the random oracle model. In the rest, we present a new variation of it,
instantiated with bilinear groups, and show that the proposed variation can be
represented as a secure key-updatable encryption scheme. The PPT algorithms
(KG, KU, KV) in the new variation are identical to those in the first variation,
while the encryption and decryption algorithms (Enc, Dec) behave as follows:

• (c) ← Enc(H, pki, m): Given the one-way hash function H, a public key
pki := (pk1

i , pk2
i ) and a message m ∈ {0, 1}n as inputs. It samples r ←$ Z∗

p

and returns c := (c1, c2) := (m⊕ H((pk1
i )r), [r]1).

• (⊥, m) ← Dec(H, ski, c): Given the hash function H, the secret key
ski, corresponding to pki, and a ciphertext c := (c1, c2), decrypts c by
calculating m := c1 ⊕ H(cski

2 ).

Theorem 9 (Hashed El-Gamal Cryptosystem with Updatable Keys). The
proposed variation of Hashed El-Gamal encryption satisfies updatable
correctness, updatable key hiding and updatable IND-CPA if BDH-KE and
Extended asymmetric Computational Diffie–Hellman assumptions hold in
(G1,G2), and the hash function H is a random oracle. The proof is provided in
full version [BS20].

9.3.3 Performance of the Proposed Key-Updatable Cryptosys-
tems

We evaluate practical efficiency of both the proposed key-updatable
cryptosystems using the Charm-Crypto framework [Aki+13], a Python library
for pairing-based cryptography3. We apply Barreto-Naehrig (BN254) curve,
y2 = x3 + b with embedding curve degree 12 [BN05] as an SNARK-friendly
curve. Benchmarks are done on a laptop with Ubuntu 20.04.2 LTS equipped
with an Intel Core i7-9850H CPU @2.60 GHz and 16 GB of memory. As we
observed in Sec. 9.3.2, both the pairing-based and hash-based constructions

3The source code is publicly available on https://github.com/Baghery/Tiramisu.

https://github.com/Baghery/Tiramisu
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have the same (KG, KU, KV) algorithms. In Fig. 9.2, we plot the running time
of key-updating, KU, key-verification, KV, and the transcript size versus the
number of key updates, where transcript refers to all the keys as well as the
proofs generated with all updaters.
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Figure 9.2: Key Updating, Key Verification (standard & Batched Versions) and
Transcript Size for both the Proposed Key-Updatable Cryptosystems.

As it is illustrated in Fig. 9.2, in both constructions, the key updating, key
verification times and the transcript size are practical and grow linearly with
the number of updates. One time key updating along with generating the
underlying proof requires ≈ 1 millisecond (ms), while to update a key 50 times
and provide proof of correctness only takes ≈ 36 ms. To verify the validity of a
key that is updated 50 times, a verifier requires ≈ 6 seconds in the standard form
of KV algorithm, however, using the standard batching techniques [Abd+17]
this can be done 12× faster, in ≈ 0.5 second. In terms of the transcript size,
for a key that is updated 10 times, the verifier requires to store ≈ 3 Kbytes.

Our experiments confirm that the time required for running the encryption
algorithm is constant and takes about ≈ 32 ms and ≈ 1.2 ms in the pairing-
based and hash-based constructions independent of the number of updates,
respectively. While the running time for the decryption algorithm are equal
to ≈ 4.5 ms and ≈ 1 ms, respectively. One may notice that the ciphertext
size remains constant in our setting they are equal to 1028 and 46 bytes in the
paring-based and Hash-based encryption schemes, respectively.

9.4 Tiramisu: BB-SE NIZK in Updatable CRS
Model

We present Tiramisu, as a protocol that allows one to generically build NIZK
arguments in the updatable CRS model, which achieve U-ZK (defined in full
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version [BS20]) along with either Updatable Black-Box Simulation Extractability
(U-BB-SE) or Updatable Black-Box Knowledge Soundness (U-BB-KS) which
we define next. We first define Updatable Simulation Soundness (U-SS) that is
used in Tiramisu.

Definition 63 (Updatable Simulation Soundness). A non-interactive argument
ΨNIZK is updatable simulation soundness for R, if for any subvertor Sub, and
every PPT A, the following probability is ν(κ),

Pr



(R, ξR)← R(1κ), ((c⃗rs0, Πc⃗rs0) ∥ t⃗s0 := t⃗s′
0)← Gencrs(R, ξR), rs ←$ RND(Sub),

(({c⃗rsj , Πc⃗rsj
}i

j=1, ξSub) ∥ {t⃗s′
j}i

j=1)← (Sub ∥ExtSub)(c⃗rs0, Πc⃗rs0 , rs),

{CV(c⃗rsj , Πc⃗rsj
) = 1}i

j=0, (x, π)← AO(t⃗si,...)(R, ξR, c⃗rsi, ξSub) :

(x, π) ̸∈ Q ∧ x ̸∈ L ∧ V(R, ξR, c⃗rsi, x, π) = 1


,

where Πc⃗rs is a proof for correctness of CRS generation/updating, t⃗si is the
simulation trapdoor associated with the final CRS that can be computed using
{t⃗s′

j}i
j=0, and Q is the set of simulated statement-proof pairs returned by oracle

O(.).

Definition 64 (Updatable Black-Box Simulation Extractability). An argument
ΨNIZK is updatable black-box (strong) simulation-extractable for R, if for every
PPT A and subvertor Sub, the following probability is ν(κ),

Pr



(R, ξR)← R(1κ), ((c⃗rs0, Πc⃗rs0) ∥ t⃗s0 := t⃗s′
0 ∥ t⃗e0 := t⃗e′

0)← Gencrs(R, ξR),

rs ←$ RND(Sub), (({c⃗rsj , Πc⃗rsj
}i

j=1, ξSub) ∥ {t⃗s′
j}i

j=1 ∥ {t⃗e
′
j}i

j=1)← ...

...(Sub ∥ExtSub)(c⃗rs0, Πc⃗rs0 , rs), {CV(c⃗rsj , Πc⃗rsj
) = 1}i

j=0, rA ←$ RND(A),

(x, π)← AO(t⃗si,...)(R, ξR, c⃗rsi, ξSub; rA), w← Ext(R, ξR, c⃗rsi; t⃗ei) :

(x, π) ̸∈ Q ∧ (x, w) ̸∈ R ∧ V(R, ξR, c⃗rsi, x, π) = 1


.

where ExtSub in a nBB PPT extractor (e.g. based of rewinding or knowledge
assumption), Ext is a black-box PPT extractor (e.g. using a decryption
algorithm), Πc⃗rs is a proof for correctness of CRS generation/updating, and
t⃗si, t⃗ei are the simulation and extraction trapdoors associated with the final
CRS that can be computed using {t⃗s′

j}i
j=0 and {t⃗e′

j}i
j=0, respectively. Here,

RND(A) = RND(Sub) and Q is the set of the statement and simulated proofs
returned by oracle O(.).
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Intuitively, the definition implies that under the existence of a nBB extractor in
the he setup phase, the protocol achieves SE with BB extraction, as long as the
initial CRS generation or one of CRS updates is done by an honest party. Our
definition of U-BB-SE is inspired from the standard definition (realized under
a trusted setup) presented by Groth [Gro06], which considers two extractors,
one for the setup phase and the other for the rest of argument. However,
our definition uses a non-black-box extractor in the setup phase, which seems
a unavoidable requirement for building U-BB-SE NIZK argument without a
trusted third party [BFS16]. Indeed, using some arguments or assumptions with
non-black box extraction techniques, e.g. by rewinding [Dam+12] or knowledge
assumptions [BFS16; Abd+17; Gro+18], is a common and practical way to
mitigate or eliminate the trust on the parameters of various cryptographic
protocols. We also consider building NIZK arguments that can achieve U-BB-
KS which is a weaker version of U-BB-SE, where in the former, A would not
have access to oracle O(·). Note that in Def. 63 and Def. 64, it is equivalent
for the adversary to batch all its updates and then think of one honest update.
This requires that the trapdoor contributions of setup and update commute.
This is true of known constructions in the updatable CRS model [Mal+19].
Therefore, in the underlying NIZK and key-updatable cryptosystem, we expect
that they both satisfy the property that trapdoors combine and commute.

Our main goal is to construct an alternative to the C∅C∅ framework [Kos+15]
but in the updatable CRS model, such that in new constructions the end-users
can bypass the blind trust in the setup phase by one-time updating the shared
parameters. Our starting point is the strongest construction of the C∅C∅
framework (reviewed in full version [BS20]) that gets a sound NIZK argument
and lifts it to a BB-SE NIZK argument. To do so, given a language L with the
corresponding NP relation RL, the C∅C∅ framework defines a new language L̂
such that ((x, c, µ, pks, pke, ρ), (r, r0, w, s0)) ∈ RL̂ iff,

c = Enc(pke, w; r) ∧ ((x, w) ∈ RL ∨ (µ = fs0(pks) ∧ ρ = Com(s0; r0))) ,

where {fs : {0, 1}∗ → {0, 1}κ}s∈{0,1}κ is a pseudo-random function family,
(KGe, Enc, Dec) is a set of algorithms for a semantically secure encryption
scheme, (KGs, Ss, Vfys) is a one-time signature scheme and (Com, Vfy) is a
perfectly binding commitment scheme.

As a result, given a sound NIZK argument ΨNIZK for R constructed from PPT
algorithms (Gencrs, P, V, Sim, Ext), the C∅C∅ framework returns a BB-SE NIZK
argument Ψ̂NIZK with PPT algorithms (Ĝenc⃗rs, P̂, V̂, ˆSim, Êxt), where Ĝenc⃗rs is
the CRS generator for new construction and acts as follows,

• ( ˆ⃗crs ∥ ˆ⃗ts ∥ ˆ⃗te) ← Ĝenc⃗rs(RL, ξRL): Given (RL, ξRL), sample (c⃗rs ∥ t⃗s) ←
Gencrs (RL̂, ξRL̂

); (pke, ske)← KGe (1κ); s0, r0 ←$ {0, 1}κ; ρ := Com
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(s0; r0); and output ( ˆ⃗crs ∥ ˆ⃗ts ∥ ˆ⃗te) := ((c⃗rs, pke, ρ) ∥ (s0, r0) ∥ ske), where ˆ⃗crs
is the CRS of Ψ̂NIZK and ˆ⃗ts and ˆ⃗te, respectively, are the simulation trapdoor
and extraction trapdoor associated with ˆ⃗crs.

Considering the description of algorithm Ĝenc⃗rs, to construct an alternative
to the C∅C∅ framework but in the updatable CRS model, a naive solution
is to construct the three primitives above (with gray background) in the
updatable CRS model, and then define a similar language but using the primitives
constructed in the updatable CRS model. But, considering the state-of-the-
art ad-hoc constructions and generic compilers to build NIZK arguments with
updatable CRS model, a more efficient solution is to simplify the language L̂ and
construct more efficient BB-SE NIZK arguments with updatable parameters.

Continuing the second solution, since currently there exist some ad-hoc
constructions that allow two-phase updating (e.g. [BGM17; BG18; Bag+21;
BPR20]) or even a lifting construction to build nBB-SE zk-SNARKs with
universal CRS in the updatable CRS model (e.g. [ARS20]), therefore we simplify
the original language L̂ defined in C∅C∅ and show that given a simulation
sound NIZK argument with updatable CRS we can construct U-BB-SE NIZK
arguments in a more efficient manner than the mentioned naive way. To this
end, we use the key-updatable cryptosystems, defined and built in Sec. 9.3.

Let ΨEnc := (KG, KU, KV, Enc, Dec) be a set of algorithms for a semantically
secure cryptosystem with updatable keys (pki, ski). Similar to C∅C∅ framework,
we define a new language L̂ based on the main language L corresponding to the
input updatable nBB-SE NIZK ΨNIZK := (Gencrs, CU, CV, P, V, Sim, Ext). The
language L̂ is embedded with the encryption of witness with the potentially
updated public key pki given in the CRS. Namely, given a language L with
the corresponding NP relation RL, we define L̂ for a given random element
r ←$ Fp, such that ((x, c, pki), (w, r)) ∈ RL̂ iff, c = Enc(pki, w; r) ∧ (x, w) ∈ RL.

The intuition behind L̂ is to enforce the P to encrypt its witness with a potentially
updated public key pki, given in the CRS, and send the ciphertext c along with
a simulation sound proof. Consequently, in proving BB-SE, the updated ski

of the defined cryptosystem ΨEnc is given to the Ext, which makes it possible
to extract the witness in a black-box manner. By sending the encryption of
witnesses, the proof will not be witness succinct anymore, but still, it is succinct
in the size of the circuit that encodes L̂.

In security proofs, we show that due to updatable simulation soundness (in
Def. 63) of the underlying NIZK argument ΨNIZK, the updatable IND-CPA
security (in Def. 62) and perfect updatable completeness (in Def. 60) of ΨEnc
is sufficient to achieve BB-SE in the updatable NIZK argument Ψ̂NIZK for
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the language L̂. By considering new language L̂, the modified construction
Ψ̂NIZK := (Ĝenc⃗rs, ĈU, ĈV, P̂, V̂, ˆSim, Êxt) for L̂ can be written as in Fig. 9.3.

Efficiency. Considering new language L̂, in new argument Ψ̂NIZK the CRS
generation (CRS updating and CRS verification) of the input argument ΨNIZK
will be done for a larger instance, and one also needs to generate (update
and verify) the key pairs of the updatable public-key cryptosystem. The
corresponding circuit of the newly defined language L̂, expands by the number
of constraints needed for the encryption function. Recall that the language L̂ is
an appended form of language L by encryption of witnesses. However, due to
our simplifications in defining language L̂, the overhead in Tiramisu will be
less than the case one uses the C∅C∅ framework. Meanwhile, as we later show
in Sec. 9.5 the efficiency of final constructions severely depends on the input
NIZK argument.

The prover of the new construction Ψ̂NIZK needs to generate a proof for new
language L̂ that would require extra computations. The proofs will be the
proof of input nBB-SE updatable NIZK argument ΨNIZK appended with the
ciphertext c which leads to having proofs linear in witness size but still succinct
in the circuit size. It is a known result that having proofs linear in witness size
is an undeniable fact to achieve BB extraction and UC-security [Can01; GW11].

As the verifier is unchanged, so the verification of new constructions will be the
same as NIZK ΨNIZK but for a larger statement.

The proof of Theorems 10-12, are provided in the full version of paper [BS20].

Theorem 10 (Perfect Updatable Completeness). If the input NIZK argument
ΨNIZK guarantees perfect updatable completeness for the language L, and the
public-key cryptosystem ΨEnc be perfectly updatable correct, then the NIZK
argument constructed in Fig. 9.3 for language L̂, is perfectly updatable complete.

Theorem 11 (Computationally Updatable Zero-Knowledge). If the input
NIZK argument ΨNIZK guarantees ZK, and the public-key cryptosystem ΨEnc
is updatable IND-CPA and satisfies updatable key hiding, then the NIZK
argument constructed in Fig. 9.3 for L̂ satisfies computational updatable ZK.

Theorem 12 (Updatable Black-Box Simulation Extractability). If the input
NIZK argument ΨNIZK guarantees updatable correctness, updatable simulation
soundness and updatable zero-knowledge, and the public-key cryptosystem ΨEnc
satisfies updatable perfect correctness, updatable key hiding, and updatable
IND-CPA, then the NIZK argument constructed in Fig. 9.3 for language L̂
satisfies updatable BB simulation extractability.
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Note that to bypass the impossibility of achieving Sub-ZK and BB extractability
in NIZKs [BFS16], one-time honest key generation/updating on pki is a
crucial requirement which does not allow an adversary to obtain the trapdoors
associated with final updated CRS, particularly the extraction keys.

Building Updatable Black-Box Knowledge Sound NIZK Arguments with
Tiramisu . The primary goal of Tiramisu is constructing BB-SE NIZK
arguments in the updatable CRS model. However, due to some efficiency
reasons, in practice one might need to build an Updatable Black-Box Knowledge
Sound (U-BB-KS) NIZK argument. In such cases, starting from either an
updatable sound NIZK or an U-nBB-KS NIZK (e.g. Groth et al.’s updatable
zk-SNARK [Gro+18]), the same language L̂ defined in Tiramisu along with
our constructed updatable public-key cryptosystem allows one to build an
U-BB-KS NIZK argument. Namely, given an updatable cryptosystem ΨEnc :=
(KG, KU, KV, Enc, Dec) with updatable keys (pki, ski), and an updatable sound
NIZK ΨNIZK := (Gencrs, CU, CV, P, V, Sim) for language L with the corresponding
NP relation RL, we define the language L̂ for a given random element r ←$ Fp,
such that ((x, c, pki), (w, r)) ∈ RL̂ iff, (c = Enc(pki, w; r)) ∧ ((x, w) ∈ RL).

Corollary 2. If the input ΨNIZK for RL guarantees updatable correctness,
updatable soundness and updatable zero-knowledge, and the public-key
cryptosystem ΨEnc satisfies updatable perfect correctness, updatable key hiding,
and updatable IND-CPA, then the NIZK argument for language L̂ satisfies
updatable correctness, updatable knowledge soundness and updatable zero-
knowledge.

The proof can be done similar to the proof of Theorem 12, without providing
the simulation oracle to the adversaries A and B.

9.5 Building U-BB-SE NIZK Arguments with
Tiramisu

To build an U-BB-SE NIZK argument with Tiramisu , one needs (1) a
key-updatable cryptosystem ΨEnc that satisfies perfect updatable correctness,
updatable key hiding, and updatable IND-CPA, and (2) a NIZK argument
ΨNIZK that guarantees updatable simulation soundness or U-nBB-SE. Next, we
instantiate ΨEnc and ΨNIZK, and obtain two U-BB-SE NIZK arguments. For
ΨEnc, one can use either of the proposed variations of El-Gamal cryptosystem
in Sec. 9.3. Whereas for ΨNIZK, one can either use an ad-hoc construction
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Table 9.2: A comparison of BB-SE NIZK arguments built with the C∅C∅ and
Tiramisu. n′: Number of constraints used to encode language L̂, |pk|: Size of
the public key of ΨEnc, κ: Security parameter, Ei: Exponentiation in Gi, P :
Paring, l′: the size of statement in new language L̂, w : the witness for RL̂.

C∅C∅
(with [Gro16])

Tiramisu
(with [Gro+18; ARS20])

Tiramisu
(with [BGM17; BG18])

Trusted Setup Yes No No
CRS Upd. No One-phase (Universal) Two-phase
CRS Size ≈ 3n′G1 +n′G2 ≈ 30n′2G1 +9n′2G2 ≈ 3n′G1 +n′G2

CRS Verifier — ≈ 78n′2P 14n′P (batchable)

CRS Updater — ≈ 30n′2E1 +9n′2E2 ≈ 6n′E1 +n′E2

Prover ≈ 4n′E1 +n′E2 ≈ 4n′E1 +n′E2 ≈ 4n′E1 +n′E2

Proof Size o(w) + 3G1 +2G2 + κ o(w) + 4G1 +3G2 o(w) + 3G1 +2G2

Verifier 4P + l′E1 6P + l′E1 5P + l′E1

(e.g. [GWC19; Mal+19] with universal CRS, or [BG18; Bag+21; BPR20] when
their CRS is generated with [BGM17], which will have a two-phase updating),
or a construction lifted with Lamassu [ARS20] (e.g. using [Gro+18]).

In BB-SE NIZK arguments built with Tiramisu, the parties have to update
the shared parameters individually once and check the validity of the previous
updates. This is basically the computational cost that the end-users need
to pay to bypass the trust in the standard CRS model. As an important
practical optimization, it can be shown that the prover can only update the CRS
ˆ⃗crsi := (c⃗rsi, pki) partially, namely only pki. Tab. 9.2 summarizes the efficiency

of two BB-SE NIZK arguments built with Tiramisu and compares them with
a construction lifted by the C∅C∅ framework in the standard CRS model. We
instantiate C∅C∅ with the state-of-the-art zk-SNARK [Gro16] and instantiate
Tiramisu with 1) the lifted version of [Gro+18] with Lamassu [ARS20], and 2)
one of the constructions proposed in [BPR20]when their CRS is sampled using
the two-phase protocol proposed in [BGM17]. As we observed in Section 9.3.3, in
the resulting U-BB-SE zk-SNARKs, the overhead added by the key updateable
encryption schemes add very little overhead to the CU and CV algorithms.

Both C∅C∅ and Tiramisu constructions result a linear proof in the witness size,
but they keep the asymptotic efficiency of other algorithms in the input NIZK.
Consequently, instantiating Tiramisu with a more efficient nBB-SE NIZK
argument will result in a more efficient BB-SE NIZK argument. Therefore, as
also is shown in Tab. 9.2, suitable ad-hoc constructions result in more efficient
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U-BB-SE NIZK arguments. We found constructing more efficient updatable
nBB-SE zk-SNARKs as an interesting future research direction. Following,
the impossibility result of Gentry and Wichs [GW11], it is undeniable that
achieving BB extraction will result in non-succinct proof. Consequently, in all
the schemes in Tab. 9.2, the proof size is dominated with the size of c which is
a ciphertext of IND-CPA cryptosystem and is o(w).
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CRS and trapdoor generation, ( ˆ⃗crs0, Π̂ ˆ⃗crs0
)← Ĝenc⃗rs(RL, ξRL): Given

(RL, ξRL) acts as follows: execute key generation of ΨEnc as
(pk0, Πpk0 , sk0 := sk′

0) ← KG(1κ); run CRS generator of NIZK
argument ΨNIZK and sample (c⃗rs0, Πc⃗rs0 , t⃗s0 := t⃗s′

0)← Gencrs(RL̂, ξRL̂
),

where t⃗s0 is the simulation trapdoor associated with c⃗rs0; set
( ˆ⃗crs0 ∥ Π̂ ˆ⃗crs0

∥ ˆ⃗ts0 ∥ ˆ⃗te0) := ((c⃗rs0, pk0) ∥ (Πc⃗rs0 , Πpk0) ∥ t⃗s0 ∥ sk0); where
Π̂ ˆ⃗crs0

is the proof of well-formedness of ˆ⃗crs0, ˆ⃗ts0 is the simulation
trapdoor associated with ˆ⃗crs0, and ˆ⃗te0 is the extraction trapdoor
associated with ˆ⃗crs0; Return ( ˆ⃗crs0, Π̂ ˆ⃗crs0

).
CRS Updating, ( ˆ⃗crsi, Π̂ ˆ⃗crsi

)← ĈU(RL, ξRL , ˆ⃗crsi−1): Given (RL, ξRL) ∈
im(R(1κ)), and ˆ⃗crsi−1 as an input CRS, act as follows: Parse ˆ⃗crsi−1 :=
(c⃗rsi−1, pki−1); execute (c⃗rsi, Πc⃗rsi

) ← CU(RL, ξRL , c⃗rsi−1); run
(pki, Πpki

) ← KU(pki−1); set ( ˆ⃗crsi ∥ Π̂ ˆ⃗crsi
) := ((c⃗rsi, pki) ∥ (Πc⃗rsi

, Πpki
)),

where Π̂ ˆ⃗crsi
is the proof of well-formedness of ˆ⃗crsi; Return ( ˆ⃗crsi, Π̂ ˆ⃗crsi

).
Note that after each update, the simulation and extraction trapdoors
are updated, for instance ˆ⃗tsi := t⃗si = t⃗si−1 + t⃗s′

i, and ˆ⃗tei := t⃗ei =
t⃗ei−1 + t⃗e′

i := ski−1 + sk′
i, where t⃗s′

i and t⃗e′
i are individual (simulation

and extraction) trapdoors of the updater i, and t⃗si and t⃗ei are the
trapdoors of the CRS after updating by i-th updater.

CRS Verify, (⊥, 1)← ĈV( ˆ⃗crsi, Π̂ ˆ⃗crsi
): Given ˆ⃗crsi := (c⃗rsi, pki), and Π̂ ˆ⃗crsi

:=
(Πc⃗rsi

, Πpki
) act as follows: if CV(c⃗rsi, Πc⃗rsi

) = 1 and KV(pki, Πpki
) = 1

return 1 (i.e., the updated ˆ⃗crsi is correctly formed), otherwise ⊥.
Prover, (π̂,⊥)← P̂(RL, ξRL , ˆ⃗crsi, x, w): Parse ˆ⃗crsi := (c⃗rsi, pki); Return ⊥

if (x, w) /∈ RL; sample r ←$ {0, 1}κ; compute encryption of witnesses
c = Enc(pki, w; r). Then execute prover P of the input NIZK argument
ΨNIZK and generate π ← P(RL̂, ξRL̂

, c⃗rsi, (x, c, pki), (w, r)); and output
π̂ := (c, π).

Verifier, (0, 1)← V̂(RL, ξRL , ˆ⃗crsi, x, π̂): Parse ˆ⃗crsi := (c⃗rsi, pki) and
π̂ := (c, π); call verifier of the input NIZK argument ΨNIZK as
V(RL̂, ξRL̂

, c⃗rsi, (x, c, pki), π) and returns 1 if ((x, c, pki), (w, r)) ∈ RL̂,
otherwise it responses by 0.

Simulator, (π̂)← ˆSim(RL, ξRL , ˆ⃗crsi, x, ˆ⃗tsi): Parse ˆ⃗crsi := (c⃗rsi, pki) and
ˆ⃗tsi := t⃗si; sample z, r ←$ {0, 1}κ; compute c = Enc(pki, z; r);
execute simulator of the input NIZK argument ΨNIZK and generate
π ← Sim(RL̂, ξRL̂

, c⃗rsi, (x, c, pki), t⃗si); and output π̂ := (c, π).
Extractor, (w)← Êxt(RL, ξRL , ˆ⃗crsi,

ˆ⃗tei, x, π̂): Parse π̂ := (c, π) and ˆ⃗tei :=
ski; extract w← Dec(ski, c); output w.

Figure 9.3: Tiramisu, a construction for building BB-SE NIZK argument Ψ̂NIZK
with updatable CRS.
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