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Abstract

Peter Shor developed two quantum algorithms that break two important and currently

used cryptosystems, namely the RSA cryptosystem and the ElGamal cryptosystem. It

breaks these cryptosystems by solving the two underlying mathematical problems effi-

ciently. The first quantum algorithm solves the integer factorization problem while the

second quantum algorithm solves the discrete logarithm problem, both do this in polyno-

mial time.

To be able to understand the theoretical analysis of these algorithms one should be

familiar with quantum computing. The first part of the thesis will explain the basics

of quantum computing and quantum algorithms for this reason. The remaining part of

this thesis we will focus on the factoring algorithm. To get a deeper understanding, we

provided some simulations alongside the theoretical analysis to get a deeper understanding

of the algorithm. At the end of the thesis the discrete logarithm algorithm is briefly

explained.

ii



List of abbreviations and list of

symbols

φ(n) Euler Totient function of n

Zn set of integers modulo n

Z∗n multiplicative group of integers modulo n

〈g〉 group generated by the integer g

|ψ〉 ket-notation of a quantum state

〈ψ| dual vector of |ψ〉

αi complex amplitude of the classical state |i〉

CN N dimensional complex Hilbert space

⊗ tensor product operator

U † conjugate transpose or hermitian transpose of a transformation U

H Hadamard gate

Rψ phase shift gate

CNOT CNOT gate

⊕ addition modulo 2

H⊗n Hadamard gate tensored n times with itself

Uf oracle for an arbitrary function f

FN discrete Fourier transform and quantum Fourier transform

bxc integer part of a real number x
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Chapter 1

Introduction

Quantum Computation is the field that investigates the computational power and possi-

bilities of computers based on quantum mechanics, while classical computers are based

on classical mechanics. The interest in quantum computers is due to the fact that it is

possible to find quantum algorithms that are significantly faster than all known classical

algorithms solving the same problem.

In this text we will begin by explaining the basic principles of quantum computing.

After this we will describe some quantum algorithms. We start with the Deutsch-Jozsa

algorithm [7] from 1992. This was one of the first quantum algorithms that illustrated

the capabilities of quantum computers. Next we will describe Simon’s algorithm [17] from

1997, which was the first quantum algorithm with an exponential improvement over the

corresponding classical algorithm. After Simon’s algorithm we will discuss Shor’s algo-

rithms [16]. Peter Shor described two quantum algorithms for two distinct mathematical

problems. The first algorithm is a quantum algorithm for integer factorization while his

second algorithm is for solving discrete logarithms. Since in cryptography it is assumed

that these problems are computationally hard and are used as the basis of cryptographic

systems like the RSA system or the ElGamal system, one could use a quantum computer

to break those systems.

Our main focus will be on Shor’s factoring algorithm because this algorithm has a

larger impact than the discrete logarithm algorithm in the sense that it breaks the RSA

system which is more widely used as the ElGamal system and because both algorithms are

very similar. They use the same quantum techniques and operators to solve the two differ-
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CHAPTER 1. INTRODUCTION 2

ent problems. To get a better understanding and a deeper insight in the algorithm we will

accompany the theoretical analysis by the results of numerous simulations. To perform

these simulations we edited and wrote some programs using the C library ‘Libquantum’,

which is a library for the simulation of quantum mechanics and quantum computing. This

library has been written by Björn Butscher and Hendrik Weimer [2].



Chapter 2

RSA and ElGamal

2.1 Public-key cryptosystems

Before the paper [8] by Diffie and Hellman only symmetric key cryptosystems were used.

One shortcoming of such cryptosystems is that the common key used has to be known to

both sides of the communication channel and has to be secret. This means that we have

to make sure there is secure key exchange.

Diffie and Hellman introduced the idea of public-key cryptography in their paper. In

public-key cryptography each party has its own key pair, this pair consists of a public

key and a private key. Anyone who wishes to send a message to somebody else takes this

second person’s public key, encrypts his message with it and sends it. The second person

will be able to decrypt the message using his private key.

Public-key systems work because the public and private key are linked mathematically

in such a way that knowing the public key does not give enough information about the

corresponding private key to recover it in an efficient way. This requires a mathematical

operation which is easy to compute in one way, used for the encryption, but hard to com-

pute the other way such that the decryption without the private key is nearly impossible

in the sense that performing this operation would take an exponential running time on a

classical computer. Such mathematical functions are called trapdoor one-way functions

for this reason. Two important public-key cryptosystems, that are used at present, will

be discussed next. These are the RSA algorithm [14] and the ElGamal cryptosystem [9].

3



CHAPTER 2. RSA AND ELGAMAL 4

2.2 RSA

2.2.1 Key generation

The RSA algorithm is based on the difficulty of factoring large integers. To generate the

public and secret key we start by choosing two random large primes p and q and calculate

n = pq. Next, we take a random integer e which is coprime to φ(n) = (p− 1)(q − 1) and

with e between 3 and φ(n). Often the numbers 3, 17 or 65537 are chosen because these

numbers result in a faster encryption. The notation φ(n) is the Euler totient function,

whose value is the number of positive integers less than n which are coprime to n and is

thus also the number of elements in Z∗n. In other words, we take an integer e such that

gcd(e, (p− 1)(q − 1)) = 1,

with gcd(a, b) the greatest common divisor of a and b.

Now we compute d, with d the multiplicative inverse of e in the group Z∗φ(n). This

means that d must satisfy

ed = 1(mod φ(n)).

Now we have obtained the integers e, d and n the public key used for encryption is

(e, n) and the secret key used for decryption is (d, n).

2.2.2 Encryption and decryption

Let a message M be an integer between 0 and n − 1. We encrypt this message M by

taking the eth power modulo n of M .

C ≡M e(mod n).

The resulting integer is called the ciphertext and will be denoted C. We decrypt C by

taking the dth power modulo n of C:

M ≡ Cd(mod n).

Because of the construction of e and d and using that Mφ(n) ≡ 1(mod n) we have that

Cd ≡ (M e)d(mod n) ≡M ed(mod n) ≡M(mod n) = M ,

which is necessary to recover the original message.
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2.3 ElGamal

The second public-key cryptosystem we discuss is the ElGamal cryptosystem which is

based on the Discrete Logarithm problem. The Discrete Logarithm problem is the fol-

lowing:

Problem. Let G be an multiplicative abelian group with generator g. Given g and h ∈ G,

find an x, such that gx = h.

2.3.1 Key generation

We start by randomly choosing a large prime p and an element g of the multiplicative

group Z∗p of prime order q. These parameters create a finite abelian group G = 〈g〉 of

order q with generator g. Now we select a random integer b between 1 and q − 1 . With

this integer we calculate h = gb(mod p).

The public key that is used for encryption is (p, g, h) and the secret key used for

decryption is b.

2.3.2 Encryption and decryption

Let a message M be an integer between 0 and p− 1. To encrypt our message we start by

selecting a random integer k. With this integer we compute

C1 = gk(mod p),

C2 = Mhk(mod p).

The resulting ciphertext is then C = (C1, C2). The decryption of the obtained ciphertext

goes as follows

C2

(C1)b
(mod p) = Mhk

gbk
(mod p) = Mgbk

gbk
(mod p) = M .



Chapter 3

Basics of Quantum Computing

In this chapter we will discuss the basic principles of quantum mechanics and quantum

computing, which can be found, for example, in the textbooks [20, 13, 18].

3.1 Postulates of quantum mechanics

3.1.1 The superposition principle

Consider a physical system with N distinguishable classical or basic states. By a clas-

sical or basic state we mean a state in which the system can be found if we observe it.

The superposition principle says that a quantum system can also be placed in a linear

combination of these classical states with complex coefficients.

Let us denote the classical states of our quantum system by |0〉, |1〉, ..., |N − 1〉. The

quantum state can be written as

|ψ〉 = α0|0〉+ α1|1〉+ ...+ αN−1|N − 1〉,

where αi is a complex number such that
∑

i |αi|2 = 1. The different αi’s are called the

amplitudes of the classical state |i〉. The quantum state of an N -state system can thus

be described by N complex numbers. This means we can write the state of a quantum

system as an N -dimensional vector

6
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α0

α1

.

.

αN−1


.

We have already used another notation (called Dirac’s ket notation) where the state

is represented as a linear superposition of the classical states but actually this is just

another way of writing a vector. Namely let

|0〉 =



1

0

.

.

0


, |1〉 =



0

1

.

.

0


,..., |N − 1〉 =



0

0

.

.

1


.

Mathematically, the classical states |0〉, |1〉, ..., |N − 1〉 are represented by mutually

orthogonal unit vectors in an N dimensional complex vector space with inner product

(called a Hilbert space). In other words, they form an orthonormal basis for this space.

A quantum state |ψ〉 is a unit vector in this space.

Dirac’s ket notation is in fact just one part of Dirac’s bra-ket notation. The column

vector |v〉 of the Hilbert space CN is referred to as a ket-v. The dual vector of |v〉 has the

following notation:

〈v| = |v〉† = |v〉T = (v0 v1 ... vN−1).

This dual vector is called a bra-v. The inner product of two vectors

|v〉 = v0|0〉+ ...+ vN−1|N − 1〉 and |w〉 = w0|0〉+ ...+wN−1|N − 1〉 of CN is then defined

as

〈v|w〉 =
(
v0 v1 ... vN−1

)


w0

w1

.

.

wN−1


= v0w0 + v1w1 + ...+ vN−1wN−1.
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3.1.2 The measurement principle

Performing a measurement on a quantum state does not mean we can measure the complex

amplitudes αi. Instead, if we measure a state |ψ〉 we will get one and only one classical

state |j〉 with probability |αj|2. Thus observing a quantum state induces a probability

distribution on the classical states, given by the squared norms of their amplitudes. This

is the reason behind the restriction
∑

i |αi|2 = 1.

A very important aspect about measuring a quantum state is that if one measures a

quantum state and observes the classical state |j〉, the system will be in state |j〉 after

the measurement. So every measurement after the first one will give you |j〉 as outcome.

This implies that you cannot retrieve any more information about the amplitudes αi.

3.1.3 A qubit

In classical computation, the most basic building block and the unit of information is a

bit, a two state system that can either be 0 or 1. In quantum computation this unit is a

quantum bit or qubit, a 2-state quantum system. The state space of such a system is then

the complex Hilbert space C2. The state of a qubit is a unit vector in this space and can

thus be written as

α
β

 ∈ C2. We can also write this in Dirac notation as

|ψ〉 = α|0〉+ β|1〉,

with α, β ∈ C, |α|2 + |β|2 = 1 and |0〉, |1〉 the orthonormal basis

1

0

 ,

0

1

.

A physical example of a qubit is a hydrogen atom, which can be seen in Figure 3.1.

Note that the electron of a hydrogen atom actually has an infinite number of energy levels,

but that as long as we can isolate two of them, we can use these two as a qubit. Then the

electron of a hydrogen atom can either be in its ground state or in an exited state. Before

we measure, we don’t know in which state it is. So if we represent the ground state as 0

and the exited state as 1, we can consider it a qubit |ψ〉 = α|0〉+ β|1〉. Measuring in the

basis above yields 0 with probability |α|2 and 1 with probability |β|2.
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Figure 3.1: Qubit representation of a hydrogen atom

3.1.4 Phase

The amplitudes of a quantum state are complex numbers. In general, a complex number

z = x+ iy can be represented as a point in the two dimensional plane, as can be seen in

Figure 3.2. A complex number can also be written in the form z = reiθ, where r is the

distance from the origin to the complex number in the plane and θ is the angle with the

x -axis. This θ is called the phase of the complex number z.

Figure 3.2: Complex plane

In quantum computing the terms phase and phase factor are used frequently. The

term phase factor has two different meanings, depending on the context of the text. For

example, consider the quantum state eiθ|ψ〉 where |ψ〉 is also a quantum state and θ is a

real number. We say that the two states eiθ|ψ〉 and |ψ〉 are equal up to the global phase

factor eiθ. For two quantum states that differ only in global phase, the probabilities for

the outcome of the measurements are exactly the same. When a transformation is applied
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to two quantum states that differ only in a global phase factor the two outcomes of the

transformation differ by the same phase factor. For these two reasons these two states

are identical from an observational point of view. Therefore global phase factors are often

ignored.

The second meaning is the one of the relative phase factor. Consider for example the

two states

1√
2
|0〉+ 1√

2
|1〉 and 1√

2
|0〉 − 1√

2
|1〉.

The probability of measuring |1〉 is equal in both states, namely 1/2. However the ampli-

tude of |1〉 is 1/
√

2 for the first state while this amplitude is −1/
√

2 for the second state.

We say that these two states are the same up to a relative phase factor because the |0〉

amplitudes are identical and the |1〉 amplitudes differ by a relative phase factor of −1. In

general, we say that two amplitudes a and b differ by a relative phase factor if a = eiθb

with θ a real number. We say that two states which contain the same basic states differ

by a relative phase factor if at least one of the amplitudes of those states differ by such

a phase factor. Relative phase factors cannot be ignored because they have an effect on

the outcome of quantum transformations.

3.1.5 Multi-qubit systems

In classical computation we work with multiple bit systems. The same holds for quantum

computation, where we work with multi-qubit systems. The state space of such a multi-

qubit system is the tensor product of the state spaces of the component qubit systems.

Moreover, if we have systems numbered 1 through n, and system number i is prepared in

the state |ψi〉, then the joint state of the system is |ψ1〉⊗ |ψ2〉⊗ ...⊗ |ψn〉. For instance, a

2-qubit system has 4 basic states: |0〉⊗ |0〉, |0〉⊗ |1〉, |1〉⊗ |0〉, |1〉⊗ |1〉. Here for instance,

|0〉 ⊗ |1〉 means that the first qubit is in state |0〉 and the second qubit is in state |1〉.

The notation |0〉 ⊗ |1〉 is often abbreviated to |01〉. By the superposition principle, the

quantum state of the 2-qubit system can be any linear combination of these four classical

states:

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 ,
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where αij ∈ C,
∑

ij |αij|2 = 1. This is again the Dirac notation, we can also write this as

the unit vector in C4:

|ψ〉 =


α00

α01

α10

α11

.

In general, a n-qubit system has 2n basic states, each in the form |b1b2...bn〉 with

bi ∈ {0, 1}. The mathematics of tensor products can be found in Appendix A.

Measuring a 2-qubit system |ψ〉 now reveals two bits of information. The probability

of obtaining the state |ij〉 is |αij|2 with i, j ∈ {0, 1}. After the measurement, the state of

the two qubits is |ij〉 or in other words the state of the first qubit is |i〉 and the state of

the second is |j〉.

Instead of measuring the whole system, we can also measure parts of it. For example,

when measuring the first qubit, the probability of obtaining 0 is |α00|2 + |α01|2 and the

probability of obtaining 1 is |α10|2 + |α11|2. If the outcome of the measurement was 0, the

system will then be in the new state:

|ψ〉new = α00|00〉+α01|01〉√
|α00|2+|α01|2

.

The new superposition is obtained by removing all the terms that are inconsistent with

the outcome of the measurement. This new sum must then be renormalized to obtain a

unit vector.

3.1.6 Evolution of quantum systems

A physical system changes in time, so the state vector of a quantum system also evolves.

Quantum theory postulates that the evolution of the state vector of a closed quantum

system is necessarily linear. In other words, the transformations can be represented by

matrices.

Second, the state of a quantum system is represented by a unit vector of a Hilbert

space. This means that every transformation has to preserve the norm of 1, where the

norm of a qubit |v〉 is
√
〈v|v〉. The evolution of a quantum system thus has to be unitary.

A linear transformation U is unitary iff UU † = U †U = I, where U † is called the

hermitian transpose (or conjugate transpose) of U . For a 2× 2 matrix we have
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U † =

a c

b d

 if U =

a b

c d

.

In quantum computing, we refer to a unitary operator U acting on a single-qubit as a

1-qubit gate. This operator U is an operator on the 2-dimensional Hilbert space and can

be represented by a 2 × 2 matrix. An operator can act on more than just one qubit; in

general, we refer to an operator acting on n qubits as an n-qubit gate. This operator can

be represented by a 2n × 2n unitary matrix.

Some important single-qubit and multi-qubit gates are the following; their importance

will become clear later in the text:

• Hadamard Gate: The Hadamard gate is a single-qubit gate and most (if not all)

quantum algorithms make use of this gate. The Hadamard transform applied to

one of the basic states |0〉 or |1〉 results in a superposition with equal probability of

obtaining |0〉 and |1〉 when measuring the outcome, namely

H|0〉 = 1√
2
|0〉+ 1√

2
|1〉,

H|1〉 = 1√
2
|0〉 − 1√

2
|1〉,

so that

H =
1
√

2

1 1

1 −1

.

• Phase shift gate: The phase shift gate is a single-qubit gate that leaves |0〉 unchanged

and transforms |1〉 into eiψ|1〉, thus

Rψ =

1 0

0 eiψ

.

• Controlled NOT (CNOT) gate: The CNOT gate is a 2-qubit gate. The first bit of a

CNOT gate is called the “control bit”, the second bit is called the “target bit”. The

target bit flips if and only if the control bit is equal to 1. The control bit always

stays the same. The CNOT gate applied on a basic state |a, b〉 can be displayed as

CNOT|a, b〉 = |a, a⊕ b〉. The matrix notation for the CNOT gate is
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CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

.

When using the CNOT gate, this gate is represented by the following symbol:

Figure 3.3: Representation CNOT gate

• Toffoli gate: The Toffoli gate is a doubly controlled NOT, it negates the third bit if

and only if the first two bits are 1.

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



.

When we have an n-qubit system, it is also possible to perform an operation on a part

of the qubits or even to perform multiple operations on different qubits at the same time.

The resulting transformation at a given time step is denoted with the tensor product.

For example, the CNOT-gate acting on the first two qubits corresponds to the unitary

transformation CNOT⊗In−2. Another example is when the Hadamard transformation is

applied to each qubit, the resulting transformation is H tensored with itself n times. This

is denoted H2n = H⊗n. We will exploit this transformation a lot. The mathematics of

the tensor product of operators can also be found in Appendix A.
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3.2 Entanglement

In a quantum system of two or more qubits, multiple qubits can be entangled with each

other. Entanglement is an important property which is unique for quantum systems. To

explain entanglement we will start with two qubits |ψ1〉 and |ψ2〉, both in the zero state

|0〉, and observe the creation of an EPR pair (named after Einstein, Podolsky and Rosen).

We begin with the first qubit |ψ1〉 and apply the Hadamard gate to it, we get

|ψ′1〉 = H|ψ1〉 = 1√
2
(|0〉+ |1〉).

The joint state-space of the two qubits is then

|ψ′1ψ2〉 = 1√
2
(|00〉+ |10〉).

Next apply the CNOT gate to our two qubits

|φ〉 = CNOT|ψ′1ψ2〉 = 1√
2
(|00〉+ |11〉).

This pair of qubits is now called entangled because it is impossible to decompose this

state into the component states. Mathematically, this means that the two-qubit state |φ〉

cannot be written as a tensor product |ψ′′1〉⊗ |ψ′′2〉 with |ψ′′1〉 and |ψ′′2〉 the state of the first

qubit and the second qubit, respectively.

The remarkable thing about entanglement is that by measuring one qubit we can know

the state of the second qubit without measuring it. Take for example the state above,

the probability of observing 0 or 1 is both 1/2 and this for both the first and the second

qubit. If we would measure for example the first qubit and obtain 0 as result, the state of

the second qubit collapses into 0 without measuring the second state. So for the second

qubit, the probability of 1/2 of observing 1 becomes 0 and the probability of observing 0

becomes 1 after we measured the first qubit. So in this case we know for sure that the

state of the second qubit is 1 without measuring the qubit.



Chapter 4

Early Quantum Algorithms

In this chapter we will first discuss the concepts needed for quantum algorithms. After

this we will explain two early quantum algorithms.

In quantum algorithms we often use the term register. A register is just the place

where a certain sequence of qubits is held. To explain how a quantum computer can

apply computational steps to its register of qubits we need a mathematical model for a

quantum computer. Two equivalent models exist for this: the quantum Turing machine

model [5] and the quantum circuit model [6]. These models are equivalent in the sense

that they can simulate each other in polynomial time [21]. We will use the quantum

circuit model, this model is mostly used by researchers because of it’s simplicity.

A quantum circuit is a sequence of quantum gates. A quantum gate acts on a subset

of the qubits, and leaves the rest unchanged. When different transformations are applied

on different sets of qubits, this can be represented by the tensor product as seen in Section

3.1.6. In general, to perform a computation using a quantum circuit, we prepare an input

state, apply the quantum circuit to this input state and perform a measurement on the

result.

In classical computing, the most commonly known gates for classical circuits are the

AND-gate, the OR-gate and the NOT-gate. These gates form a universal set, which means

that for any boolean function f : {0, 1}n → {0, 1} there is a circuit build out of these

gates. There are, however, more compact universal sets for classical circuits, for example

the NAND-gate on its own is universal. For quantum circuits there also exist such sets of

elementary gates that are universal. This means that every unitary transformation can

15
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be built from these gates. One such set consists of three gates, namely the CNOT gate,

the Hadamard gate and the phase shift gate Rπ/4.

In most problems we want to solve there are some functions f : {0, 1}n → {0, 1}n we

need to evaluate. Because all quantum gates are unitary it follows that all operations

are reversible. This means that we cannot construct a quantum circuit that given x as

input outputs f(x), unless f is a bijection. Thus we need to convert a classical circuit

for computing f into a reversible circuit. This can be done with Toffoli gates, the Toffoli

gate on its own is a universal set for reversible computation. For example, the classical

AND gate with input x and y gives x ∧ y, this can be replaced with a Toffoli gate where

the three input bits are |x〉, |y〉 and |0〉, the output will then be |x〉, |y〉 and |x ∧ y〉.

In quantum algorithms, we often encounter an arbitrary function f that we need to

calculate. As seen above, every function that can be implemented as a classical circuit

can also be implemented as a quantum circuit. We do not need to build specific quantum

circuits for evaluating those functions. For this reason the quantum circuit for computing

a function f is given as an quantum oracle Uf . This is a “black box” that we are allowed

to use in the algorithms without access to the circuit.

4.1 Deutsch-Jozsa algorithm

The first algorithm we discuss is the Deutsch-Jozsa algorithm [7], because this is one of

the first algorithms that illustrated the capabilities of quantum computers.

Problem. We have a function f : {0, 1}n → {0, 1} which is either constant (f(x) = 0

or f(x) = 1 for all inputs x ∈ {0, 1}n), or else balanced, which means f(x) equals 1 for

exactly half the possible values of x, and f(x) equals 0 for the other half. The goal is to

find out whether f(x) is constant or balanced.

In the classical case, we will need to query 2n/2 + 1 times in the worst case, since we

can for example receive 2n/2 0’s before getting our first 1. With the quantum algorithm

below we will need to query only once.

We have an oracle Uf that on input |x〉|y〉 outputs |x〉|y ⊕ f(x)〉, where x contains n

qubits and y contains one qubit. In this algorithm and in the next algorithms we will use
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the H⊗n transform. One way to define this transform on a random basic state x ∈ {0, 1}n

is:

H⊗n|x〉 = 1√
2n

2n−1∑
z=0

(−1)x·z|z〉,

where x · z =
∑n

k=1 xk · zk and |z〉 is represented as its binary expansion. This will hold

in the rest of the paper, a basic state will always be presented as its binary expansion.

We will use two registers, the first one with n qubits and the second one with one qubit.

The input of the algorithm is |0〉⊗n|1〉. The notation |0〉⊗n means |0〉 tensored n times

with itself or in other words n consecutive |0〉 qubits. In the first step we apply H⊗(n+1)

to the entire state, the resulting state becomes:

|ψ1〉 = H⊗n|0〉⊗nH|1〉

=
2n−1∑
x=0

1√
2n
|x〉
(
|0〉 − |1〉√

2

)
.

We now apply our transform Uf that implements f(x) to obtain the new state:

|ψ2〉 =
2n−1∑
x=0

1√
2n
|x〉
(
|f(x)〉−|1⊕f(x)〉√

2

)
.

We can rewrite this state as

|ψ2〉 =
2n−1∑
x=0

(−1)f(x)√
2n
|x〉
(
|0〉−|1〉√

2

)
,

because if f(x) = 0⇒ |f(x)〉−|1⊕f(x)〉 = |0〉−|1〉 and if f(x) = 1⇒ |f(x)〉−|1⊕f(x)〉 =

|1〉 − |0〉. As last step we apply H⊗n transform to the first register to obtain:

|ψ3〉 =
2n−1∑
z=0

2n−1∑
x=0

(−1)f(x)+x·z
2n

|z〉
(
|0〉−|1〉√

2

)
.

There were two possibilities, either f(x) was constant or f(x) was balanced. We will

now look what the possible outcomes of the measurement of the first register are in both

cases. We look at the probability of obtaining the state |0〉⊗n. The dot product x · z = 0

for z = 0 so the summation over x becomes

2n−1∑
x=0

(−1)f(x)
2n
|0〉⊗n

(
|0〉−|1〉√

2

)
.

When f(x) is constant the amplitude of the basis state |0〉⊗n is equal to
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2n−1∑
x=0

(−1)f(x)
2n

= ±1.

This means that when the first n qubits are measured we have a probability of 1 to obtain

the state |0〉⊗n.

If on the other hand f(x) is balanced, the x summation over |0〉⊗n is negative on half

the x and positive on the other half and so cancels out. The probability of measuring

|0〉⊗n is equal to 0 in this case.

To summarize, when you measure the first n qubits of the final state |ψ3〉 and obtain

|0〉⊗n the function f(x) is constant. When any other basic state is obtained after the

measurement the function f(x) is balanced.

4.2 Simon’s algorithm

The next algorithm we discuss is Simon’s algorithm [17]. This algorithm was the first

quantum algorithm with an exponential improvement over classical algorithms. Simon

proved that the best classical algorithm takes exponential time to solve the problem

stated below, namely it would need to make O(
√

2n) function evaluations. His quantum

algorithm takes only O(n) function evaluations (here represented by an oracle) and a

polynomial number of other operations.

Problem. Given a 2-to-1 function f : {0, 1}n → {0, 1}n with the property that there is

an a ∈ {0, 1}n with a 6= 0n such that for all x: f(x) = f(y) iff y = x or y = x ⊕ a, with

⊕ addition modulo 2. Find this a.

In this algorithm we use an oracle Uf that on input |x〉|0〉⊗n returns |x〉|f(x)〉, both

x and f(x) are n-bit strings. We again use two registers, both with n qubits this time.

The input of the algorithm is the state |0〉⊗n|0〉⊗n and we first apply the H⊗n transform

on the first register. We obtain the state

|ψ1〉 =
2n−1∑
x=0

1√
2n
|x〉|0〉⊗n.

Next, we apply our oracle to obtain

|ψ2〉 =
2n−1∑
x=0

1√
2n
|x〉|f(x)〉.
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Now the algorithm measures the second register. Let b be the result of this measurement,

then b is a random element in the image of f . The state of the first n qubits is now a

superposition over exactly those values of x that are consistent with the outcome of the

measurement. Suppose x = j and x = j ⊕ a are the two values for which f(x) = b, then

the resulting state is

|ψ3〉 = 1√
2
(|j〉+ |j ⊕ a〉).

On this state we apply the H⊗n transform to obtain

|ψ4〉 =
1√
2n+1

(
2n−1∑
i=0

(−1)j·i|i〉+
2n−1∑
i=0

(−1)(j⊕a)·i|i〉

)

=
1√
2n+1

(
2n−1∑
i=0

(−1)j·i(1 + (−1)a·i)|i〉

)
.

There are two cases. The first one is when a · i = 1, in this case the amplitude becomes

zero. This means that we cannot observe this basic state if we measure our n remaining

qubits. The second case is when a · i = 0, in this case the amplitude will be different from

0. Furthermore, each i such that a ·i = 0 has an equal probability of occurring. Therefore,

each time we run the algorithm and perform a measurement we obtain a random i from

{0, 1}n that gives us a bit of information about a. Namely, each time we obtain an

equation of the form

i1a1 ⊕ ...⊕ inan = 0.

From linear algebra, we know that we can determine a uniquely once we have n − 1

linearly independent equations. So, we run this algorithm over and over until we have our

n − 1 linearly independent equations. The solution of this system of equations can then

be computed efficiently by Gaussian elimination.



Chapter 5

Shor’s algorithm

Two important quantum algorithms are Peter Shor’s factoring algorithm and discrete

logarithm algorithm [16, 15].

It has been known for a very long time that every integer n ≥ 2 can be uniquely

decomposed into a product of primes. This is stated in the fundamental theorem of

arithmetic. Mathematicians have always been interested in the question of how to factor

a random integer into this product of primes. The best currently known classical factoring

algorithm is the number field sieve [12], which in order to factor an integer n takes

asymptotic running time O(exp(c(log n)1/3(log log n)2/3)) for some constant c.

The discrete logarithm problem, as we have already briefly seen in Section 2.3, in a

more concrete setting is the following: Suppose we have a prime p and a generator g

of the multiplicative group Z∗p. The discrete logarithm of a number x is the integer r

with 0 ≤ r ≤ p − 1 such that gr ≡ x mod p. The best classical algorithm is Gordon’s

adaptation of the number field sieve [10], which in order to find the discrete logarithm

takes asymptotic running time O(exp((log p)1/3(log log p)2/3)).

Both of Shor’s quantum algorithms take a polynomial amount of steps, namely the

factoring algorithm takes asymptotically O((log n)2(log log n)(log log log n)) steps along

with a polynomial amount of time on a classical computer to convert the output of the

quantum computer to factors of n. The discrete logarithm algorithm takes asymptotically

O((log p)2(log log p)(log log log p)) steps.

Much of modern cryptography is based on the conjecture that no fast (i.e. polynomial

time) factoring algorithm or discrete logarithm algorithm exists. The most important

20
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cryptosystems based on these conjectures are the RSA and ElGamal cryptosystems. These

would thus be broken if Shor’s algorithms could be physically realized for sufficiently large

integers.

In this chapter we start by discussing Shor’s factoring algorithm. Shor uses a reduction

from the factoring problem to the order finding problem, and uses a quantum algorithm

to solve this problem. This reduction will be explained first. Next we will introduce the

quantum Fourier transform, this transformation is an important aspect of both Shor’s

algorithms. After this we will give the order finding algorithm itself, followed by the

discrete logarithm algorithm.

5.1 Reduction to Order-finding

In the multiplicative group Z∗n, for an element x, there is a least integer r such that

xr ≡ 1(mod n). This integer r is called the order of the element x in this group. The

order-finding problem is then defined as follows:

Problem. Given a certain x ∈ Z∗n. Find the order of x.

The reduction from factoring to order finding goes as follows. Suppose we want to

find a factor of an odd integer n, given a method for order finding. We choose a random

x ∈ {2, ..., n− 1} and try to find its order r in Z∗n.

If for the random x we choose it holds that x 6∈ Z∗n, or in other words if x and n are

not coprime, the order of x in Z∗n does not exist. In this case however we can easily find a

factor by computing gcd(x,n), which can be done in O((log n)2) time using the Euclidean

algorithm.

If x ∈ Z∗n with order r, we have:

xr ≡ 1 (mod n) ⇐⇒

(xr/2 − 1)(xr/2 + 1) = xr − 1 ≡ 0 (mod n).

This means that the numbers gcd(xr/2 − 1, n) and gcd(xr/2 + 1, n) are two factors of n.

This procedure can sometimes fail, namely when we choose x such that the order r is

odd or if xr/2 ≡ −1 (mod n). In the first case r/2 is not an integer while in the second

case we could get the trivial factors 1 and n.
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This procedure, when applied to a random x (mod n), gives us a nontrivial factor of

n with probability at least 1− 1/2m, with m the number of distinct odd prime factors of

n. This is stated in Theorem 1.

Theorem 1. Suppose n = pα1
1 ···pαmm is the prime factorization of an odd composite positive

integer. Let x be an integer chosen uniformly at random, subject to the requirement that

1 ≤ x ≤ n− 1 and x is coprime to n. Let r be the order of x modulo n. Then

Prob(r is even and xr/2 6= −1(mod n)) ≥ 1− 1
2m

.

This theorem and associating proof can also be found in Nielsen’s and Chuang’s book

[13, Appendix 4].

5.2 Quantum Fourier Transformation

One transformation that is widely used in classical computing is the discrete Fourier

transform. The notations we use in this paper are in accordance with [20, 16] and [13,

Chapter 5]. The discrete Fourier transform takes as input a vector of complex numbers

x0, ..., xN−1 and outputs a vector of complex numbers y0, ..., yN−1 defined by

yk = 1√
N

N−1∑
j=0

xje
−2πijk/N .

The inverse discrete Fourier transform is then

xk = 1√
N

N−1∑
j=0

yje
2πijk/N .

The inverse discrete Fourier transform can be represented by a matrix, which we denote

FN . The rows of this matrix will be indexed by j ∈ {0, ..., N − 1} and the columns of

this matrix by k ∈ {0, ..., N − 1}. The (j, k)-element of this matrix is then defined by

1√
N
e2πijk/N .

We can now define the quantum Fourier transformation. This transformation is of

great importance for Shor’s algorithm as we will see later on. The quantum Fourier

transform is essentially the exact same transformation as the inverse discrete Fourier

transform in the sense that it is represented by the same matrix. This means that the

action on an arbitrary state can be written as



CHAPTER 5. SHOR’S ALGORITHM 23

N−1∑
j=0

xj|j〉 →
N−1∑
k=0

yk|k〉,

where the amplitudes yk are the inverse discrete Fourier transform of the amplitudes xj.

Equivalently, the quantum Fourier transform on a basic state |j〉 is defined as

|j〉 → 1√
N

N−1∑
k=0

e2πijk/N |k〉.

We will now show the unitarity of the quantum Fourier transform by constructing

a quantum circuit that computes the quantum Fourier transform. In the following we

assume N = 2n. We write the state |j〉 using the binary representation j = j1j2...jn for

j = j12
n−1 + j22

n−2 + ... + jn20. We also use the notation 0.jljl+1...jm to represent the

binary fraction jl/2 + jl+1/4 + ...+ jm/2
m−l+1. The quantum Fourier transform can then

be given using the following product representation:

|j1, ..., jn〉 →
(|0〉+e2πi0.jn |1〉)(|0〉+e2πi0.jn−1jn |1〉)···(|0〉+e2πi0.j1j2...jn |1〉)

2n/2
.

The equivalence of the product representation and the previous definition follows from

the following calculations:

|j〉 → 1

2n/2

2n−1∑
k=0

e2πijk/2
n|k〉

=
1

2n/2

1∑
k1=0

...
1∑

kn=0

e2πij(
∑n
l=1 kl2

−l)|k1...kn〉

=
1

2n/2

1∑
k1=0

...
1∑

kn=0

n⊗
l=1

e2πijkl2
−l |kl〉

=
1

2n/2

n⊗
l=1

(
1∑

kl=0

e2πijkl2
−l |kl〉

)

=
1

2n/2

n⊗
l=1

(
|0〉+ e2πij2

−l |1〉
)

=
(|0〉+ e2πi0.jn |1〉) (|0〉+ e2πi0.jn−1jn|1〉) · · · (|0〉+ e2πi0.j1j2...jn|1〉)

2n/2
.

(5.1)

This product presentation makes it easier to describe an efficient quantum circuit for

the quantum Fourier transformation. Such a circuit consists of multiple Hadamard gates

and multiple phase shift gates R2π/2k , which we will also denote Rk. These Rk gates are
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used as controlled-Rk gates, where the control bit is the second bit in contrast to the

previously seen CNOT gate where the control bit is the first bit. This means that the Rk

will be applied if and only if the second bit is equal to 1. The circuit is shown in Figure

5.1.

Figure 5.1: Efficient circuit for the quantum Fourier transform

We will now show that this circuit indeed computes the quantum Fourier transform.

We start with the state |j1, ..., jn〉. Applying the Hadamard gate to the first bit results in

the state

1√
2

(|0〉+ e2πi0.j1|1〉) |j2, ..., jn〉.

Applying the controlled-R2 gate results in

1√
2

(|0〉+ e2πi0.j1j2|1〉) |j2, ..., jn〉.

After this we apply the controlled-R3 until the controlled-Rn gate in this order, we

obtain

1√
2

(|0〉+ e2πi0.j1j2...jn|1〉) |j2, ..., jn〉.

We now perform a similar operation on the second bit. We start again with applying

the Hadamard gate, followed by the controlled-R2 through Rn−1 to obtain the following

state:

1√
22

(|0〉+ e2πi0.j1j2...jn|1〉) (|0〉+ e2πi0.j2...jn|1〉) |j3, ..., jn〉.

We repeat this procedure on each qubit and find
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1√
2n

(|0〉+ e2πi0.j1j2...jn|1〉) (|0〉+ e2πi0.j2...jn|1〉) · · · (|0〉+ e2πi0.jn|1〉).

The last step we need to do to obtain the output of the quantum Fourier transform

is to reorder the qubits. This can be done using multiple quantum swap operation. This

quantum swap operation is explained in Appendix B.

On the first qubit we use n quantum gates. On the second qubit we use n−1 quantum

gates. On each of the following qubits we use one gate less. We see thus that the total

number of gates is equal to n+ (n−1) + ...+ 1 = n(n+1)
2

. At most n/2 swaps are required,

therefore this circuit provides a O(n2) algorithm for the quantum Fourier transform.

For this construction we assumed that N = 2n. Cleve [4] has shown the construction

of FN for all smooth numbers N . Where we consider an integer N smooth if his prime

factors are at most O(log N).

5.3 Order-finding algorithm

In this section we will describe the algorithm for finding the order of x (mod n) for x and

n given. We begin by calculating q = 2l with n2 ≤ q < 2n2. The integers x, n and q will

be constant throughout the algorithm. We will use two registers, the first one contains l

qubits. For the second register we need enough qubits to represent all integers up to n.

Let us denote the number of qubits in the second register as k, then k = l/2 qubits if l is

even and k = bl/2c + 1 qubits if l is odd. The initial state is now |0〉⊗l|0〉⊗k, where H⊗l

is applied to the first l qubits. The resulting state is now

1√
q

q−1∑
a=0

|a〉|0〉⊗k.

Now we apply an oracle Uf that on input |a〉|0〉⊗k returns |a〉|f(a)〉 with f(a) = xa (mod

n). This operation is called modular exponentiation and is the bottleneck of the algorithm

which takes asymptoticallyO((log n)2(log log n)(log log log n)) steps. A detailed analysis

giving the quantum gates needed to implement this operation for the algorithm is given

by Beckman [1].

Applying the oracle results in the state

1√
q

q−1∑
a=0

|a〉|xa(mod n)〉.
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We now apply the quantum Fourier transform on the first register, this transforms |a〉

to

1√
q

q−1∑
c=0

e2πi
ac
q |c〉.

The resulting state is now

1
q

q−1∑
a=0

q−1∑
c=0

e2πi
ac
q |c〉|xa(mod n)〉.

This is our final state before our measurement. Measuring the second register gives

some value |xk(mod n)〉, where we can assume that 0 ≤ k < r. Because the order of x

(mod n) is r, for each a of the form a = jr+k it holds that xk(mod n) = xa(mod n). Let

m be the number of elements of {0, ..., q−1} that satisfy this condition. The first register

then collapses to the state

1
q

m−1∑
j=0

q−1∑
c=0

e2πi
(jr+k)c

q |c〉.

The amplitude of a certain state |c〉 is then

1
q

m−1∑
j=0

e2πi
(jr+k)c

q = 1
q
e2πi

kc
q

m−1∑
j=0

e2πi
jrc
q .

We can ignore the global phase factor e2πikc/q since it has magnitude 1. Using that∑m−1
j=0 z

j = (1− zm)/(1− z) when z 6= 1, we obtain

1

q

m−1∑
j=0

e2πi
jrc
q =

1

q

m−1∑
j=0

(
e2πi

rc
q

)j
=


m
q

if e2πi
rc
q = 1,

1−e2πi
rcm
q

q(1−e2πi
rc
q )

if e2πi
rc
q 6= 1.

There are two distinct cases, either r divides q or r does not divide q.

Suppose r divides q, then m = q/r. In this case e2πi
rc
q = 1 iff c is a multiple of q/r. The

probability to observe such a c is equal to m2/q2 = 1/r2. Because there are exactly r

such c and the second register can be r different value for each such c, there are r2 states

for which c is a multiple of q/r. Thus together they have a probability of 1. Thus we are

left with a superposition where only the c that are integer multiples of q/r have non-zero

amplitudes. This means that when we measure our final state we will obtain a random

c = bq/r, with 0 ≤ b < r. Thus we find a c such that
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c
q

= b
r
.

Both c and q are known values, so when b and r are coprime, we just need to write c/q in

lowest terms and find our r. If b and r are not coprime we repeat the procedure above,

measure our final state to find again a random c and calculate c/q until we find our r.

For example, we run the order finding algorithm 500 times with n = 65 and x = 44

and keep track of the observed values each time we measured |c〉. Figure 5.2 displays

the number of times each value has been observed. In this case q = 8192 and r = 4

which means r divides q. We observe that there are four possible values for c that can be

measured; namely 0, 2048, 4096 and 6144. All those values have an equal probability of

being measured like we saw before.

Figure 5.2: Frequency of the outcome of the final measurement when simulated 500 times

for n = 65 and x = 44

The second case where r does not divide q is the more general case. In this case, q/r

is no longer an integer. This means that e2πi
rc
q 6= 1, using |1−eix| = 2|sin(x/2)| we obtain

that the probability of observing a random c is equal to∣∣∣ 1−e2πi rcmq
q(1−e2πi

rc
q )

∣∣∣2 = sin2(πmrc/q)

q2sin2(πrc/q)
.

If there is an integer d such that

− r
2
≤ rc− dq ≤ r

2
,
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or in other words if the residue of rc modulus q is small enough, then this probability will

be at least 1/3r2 [19].

Thus the probability of observing a certain state c where there is a d such that − r
2
≤

rc− dq ≤ r
2
, or in other words c is close to an multiple of q/r, is at least 1/3r2. Dividing

by rq results then in ∣∣∣ cq − d
r

∣∣∣ ≤ 1
2q

.

Using a continued fraction expansion, explained in Appendix C, on c/q will then

result in d/r. As for the case where r divided q, if d is not coprime with r, we repeat the

procedure until we find our r.

We ran the order finding algorithm 10000 times to find the order of 20 in Z∗77, which is

10. In Figure 5.3 below, the number of times each state has been observed when measuring

|c〉 is plotted. The observed values that resulted in the right factors of 77 are plotted in

green, the values that didn’t result in the factors are plotted in red. In this figure we can

indeed see that with high probability we observe a value that is close to a multiple of q/r.

We can also see that if the observed c is close enough to dq/r and d is coprime with r we

indeed find the right order and thus the right factors.

In some cases we find a wrong order r′ but we do find the right factors. This occurs

when either (xr
′/2 + 1) or (xr

′/2 − 1) has a common factor with n. This happened in our

simulations when we measured c close enough to 5q/r. In this case the continued fraction

expansion resulted in 1/2 which means we take r′ = 2 as possible order. This is the wrong

order but the factors 7 and 11 were found because (xr
′/2 + 1) = (x1 + 1) = 21, which has

7 as common factor with 77. Unfortunately this is not common, most of the times when

we find a wrong order r′ this does not result in the right factors.
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Figure 5.3: Frequency of the outcome of the final measurement when simulated 10000

times for n = 77 and x = 20

In Figure 5.4 we zoomed in on one of the spikes of the figure above, namely the

spike between 5700 and 5750. In this figure we have a better view on the distribution

of the observed values. As expected there are other values that do not satisfy the given

condition that can be measured. We also observe that the closer the values are to the

right c value that satisfies the bound, the higher their probability is to be the outcome of

the measurement.
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Figure 5.4: Frequency of the outcome of the final measurement when simulated 10000

times for n = 77 and x = 20 around 5750

The number of states |c〉|xk(mod n)〉 for which we will find the right r can be ap-

proximated as follows. There are φ(r) possible values of d which are relative prime to r,

where φ(r) is again the totient function. There are also r possible values for xk because

the order of x is r. This means that there are rφ(r) states |c〉|xk(mod n)〉 which result in

the right r. Since each of these states occur with probaility at least 1/3r2, we will find r

with probability at least φ(r)/3r. When we use the theorem that φ(r)/r > σ/log log r for

some constant σ [11] we find r with probability at least σ/log log r. Thus by repeating

the algorithm only O(log log r) times we will find r with high probability. Because the

order r of a random x ∈ Z∗n is always smaller then n we will find the right factors of

n after repeating the algorithm O(log log n) times with high probability. To illustrate

this we provided some plots of the number of times the algorithm had to run to find the

right factors. The x-axis represents the number of times the algorithm had to be repeated

before we found the right factors. The y-axis represents the frequency of the number of

repetitions. In Figure 5.5 we used 5000 simulations and in Figure 5.6 and Figure 5.7 we

used 1000 simulations.



CHAPTER 5. SHOR’S ALGORITHM 31

Figure 5.5: Frequency of repetitions needed before the right factors were found when

simulated 5000 times for n=77

Figure 5.6: Frequency of repetitions needed before the right factors were found when

simulated 1000 times for n=221
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Figure 5.7: Frequency of repetitions needed before the right factors were found when

simulated 1000 times for n=527

As expected we see that as the integer we want to factor increases, the expected

number of runs before we find the factors also increase. The number of times we find the

right factors after just one run decreases and the slope of the figures above will flatten

out the higher the integer n becomes.

5.4 Minor improvements to the factoring algorithm

There are some minor improvements that can be done after the quantum part to find the

right factors more often. This would reduce the amount of quantum computations which

is always preferable assuming quantum computation is more expensive than classical

computation.

First, when the observed state c does not result in the right factors, we could try the

numbers close to c such as c ± 1, c ± 2, ... In the case that c was not close enough to a

multiple dq/r of q/r by only a small part where d and r are coprime these have a chance

to be close enough to dq/r.

Second and most important, if c/q is rounded off to d′/r′ by continued fractions and
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the obtained r′ does not result in the right factors because d and r were not coprime we

could consider its small multiples 2r′, 3r′, ... to see if one of these is the actual order of x.

This second technique will reduce the expected number of repetitions from O(log log n)

to O(1) if the first (log n)1+ε multiples of r′ are considered, with ε a constant.

5.5 Shor’s algorithm as prime verification

Because Shor’s algorithm finds the factors of an integer n in polynomial time Shor’s al-

gorithm by itself can also be used as a algorithm for prime verification. Because for a

composite integer n there holds that you find his factors after O(log log n) operations

with high probability we can conclude that for a random integer m holds that if we have

not found any factors after O(log log m) operations this integer m is prime with high

probability. There also exists algorithm for primality testing where the outcome if an

integer is prime or not is certain. The fastest know algorithm is Chau’s and Lo’s quan-

tum Pocklington-Lehmer n− 1 primality test using Shor’s algorithm [3]. This algorithm

determines whether an integer n is prime or not in O((log n)3(log log n)(log log log n))

operations. Verifying whether an integer is prime or not is important before you start

the attempt to factor the integer. It would be a waste of time trying to factor a prime

number. Especially when your factoring algorithm does not always result in the right

factors and you have to repeat the algorithm a number of times before you find the right

factors.

5.6 Discrete Logarithm algorithm

Suppose we have a prime p and a generator g of the multiplicative group Z∗p. The discrete

logarithm of a number x is the integer r with 0 ≤ r ≤ p−1 such that gr ≡ x mod p. This

algorithm finds r when x, g and p are given. First we will discuss the easy case where we

assume that p − 1 is smooth. In this case we can construct an efficient quantum circuit

for the quantum Fourier transform as we mentioned at the end of Section 5.2.

The algorithm uses three registers and we start the algorithm by preparing the two

first registers in the following state



CHAPTER 5. SHOR’S ALGORITHM 34

1
p−1

p−2∑
a=0

p−2∑
b=0

|a〉|b〉.

Next we apply modular exponentiation to compute gax−b(mod p), which is stored in

the third register. The resulting state is

1
p−1

p−2∑
a=0

p−2∑
b=0

|a〉|b〉|gax−b(mod p)〉.

Next we apply the quantum Fourier transform Fp−1 on the first two registers, mapping

|a〉 and |b〉 to the following states

|a〉 → 1√
p−1

p−2∑
c=0

e2πiac/(p−1)|c〉,

|b〉 → 1√
p−1

p−2∑
d=0

e2πibd/(p−1)|d〉.

This leaves us in the following quantum state

1
(p−1)2

p−2∑
a=0

p−2∑
b=0

p−2∑
c=0

p−2∑
d=0

e2πi(ac+bd)/(p−1)|c〉|d〉|gax−b(mod p)〉.

This is the resulting state of the algorithm which will be measured. The probability

of obtaining a certain state |c〉|d〉|y〉 with y ≡ gk(mod p) is equal to∣∣∣∣∣ 1
(p−1)2

∑
a,b:a−rb=k

e2πi(ac+bd)/(p−1)

∣∣∣∣∣
2

.

Where the sum is taken over all the amplitudes of the states that are consistent with

the outcome of the measurement, in other words all the states for which it holds that

a − rb ≡ k(mod p − 1). If we substitute the equation a ≡ rb + k(mod p − 1) in the

expression above we obtain ∣∣∣∣ 1
(p−1)2

p−2∑
b=0

e2πi(kc+b(d+rc))/(p−1)
∣∣∣∣2.

Now if d + rc 6≡ 0(mod p − 1), this sum is equal to zero because it is a sum over

a set of (p − 1) roots of unity equally spaced on the unit circle. This means that the

outcome of the measurement is a random c(mod p− 1) and d ≡ −rc(mod p− 1). When

c is relative prime with p − 1, we find r by division. Because all possible c’s have the

same probability, the chance that c and p− 1 are relative prime is φ(p− 1)/(p− 1), with

φ(p− 1)/(p− 1) > 1/log(p). This means that we only need a number of runs polynomial

in log p to obtain r with a high probability.
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In general p− 1 is not smooth, which means that we first have to calculate a smooth

integer q that is close to p to be able to perform the quantum Fourier transform in

polynomial time. More precise we calculate q as a power of 2 such that p < q < 2p. The

algorithm uses three registers as in the easy case. We start the algorithm in the same way

as the easy case, namely we prepare the state

1
p−1

p−2∑
a=0

p−2∑
b=0

|a〉|b〉|gax−b(mod p)〉.

Again as in the easy case our next step is applying the quantum Fourier transform on

the first two registers sending |a〉 → |c〉 and |b〉 → |d〉, but now we apply Fq instead of

Fp−1. That is, we take the state |a〉|b〉 to the state

1
q

q−1∑
c=0

q−1∑
d=0

e2πi
ac+bd
q |c〉|d〉.

The resulting state is then

1
(p−1)q

p−2∑
a,b=0

q−1∑
c,d=0

e2πi
ac+bd
q |c〉|d〉|gax−b(mod p)〉.

This is the final state that will be measured. The probability of observing a state

|c〉|d〉|y〉 with y ≡ gk(mod p) is∣∣∣∣∣ 1
(p−1)q

∑
a,b:a−rb=k

e2πi(ac+bd)/q

∣∣∣∣∣
2

,

where the sum is again over all a and b with a − rb ≡ k(mod p − 1). Because the

denominator in the exponent is now q instead of p− 1 we cannot simply substitute rb+ k

for a in the equation. Instead we use the following relation

a = br + k − (p− 1)
⌊
br+k
p−1

⌋
,

and substitute this in the expression of the amplitude to obtain

1
(p−1)q

p−2∑
b=0

e2πi(brc+kc+bd−c(p−1)b
br+k
p−1 c)/q.

From this expression we can take out the global phase factor e2πikc/q because it does

not change the probability. Next we split the resulting exponent into two parts

1
(p−1)q

p−2∑
b=0

e2πibT/qe2πiV/q.
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with

T = rc+ d− r
p−1{c(p− 1)}q,

V =
(

br
p−1 −

⌊
br+k
p−1

⌋)
{c(p− 1)}q.

The notation {a}q means the residue of a (mod q).

We now classify possible outputs as “good” or “bad” and will show that if we get

enough “good” outputs we can find r. An output is “good” if it satisfies two conditions.

The first condition is

|T | ≤ 1
2
,

in this case as b varies between 0 and p − 2 the phase of the first exponential term

only varies over at most half the unit circle because p− 2 < q, namely it varies from 0 to

at most π. This means that the sum of p − 1 complex numbers where the phase varies

from 0 to exactly π is a lower bound for
p−2∑
b=0

e2πibT/q:

p−2∑
b=0

e(
πb
p−2

) ≤
p−2∑
b=0

e2πibT/q.

The second condition is

{c(p− 1)}q ≤ q
20

;

in this case |V | is always at least − q
20

because
(

br
p−1 −

⌊
br+k
p−1

⌋)
can vary from -1 to

0, and thus the second exponential term is never farther than eπi/10 from 1. The phase

of this second exponential term varies from −π/10 to 0. We will now show that both

conditions will hold with constant probability and a reasonable sample of c’s for which

the first condition holds will allow us to find r.

A lower bound on the probability to obtain a “good” output can then be found by

putting the previously found phases together. This lower bound is given in following

formula: ∣∣∣∣ 1
(p−1)q

p−2∑
b=0

e(
πb
p−2
− π

10
)i

∣∣∣∣2.
Because eiθ = cos(θ) + isin(θ) and |eiθ| =

√
cos(θ)2 + sin(θ)2 a lower bound on this

probability is
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∣∣∣∣ 1
(p−1)q

p−2∑
b=0

sin( πb
p−2 −

π
10

)

∣∣∣∣2.
Replacing this sum by an integral we find that this probability is approximately equal

to (
1

(p−1)q

∫ p−2
0

sin( πb
p−2 −

π
10

)db
)2

,

Thus, after change of variables, we find that the probability of observing a state

|c〉|d〉|y〉 that satisfying both conditions is at least(
1
qπ

∫ 9π/10

−π/10 sin(b)db
)2

,

which is roughly equal to 0.366/q2 > 1/3q2. Now the number of pairs (c, d) such that the

first condition holds is equal to the number of possible c’s because for every c there is

exactly one d such that the first condition holds. The number of possible c’s such that the

second condition holds is approximatly q/20. This means that there are q/20 pairs (c, d)

that satisfy both conditions. There are p − 1 possible y’s so this gives us approximatly

pq/20 states |c〉|d〉|y〉. Multiplying this number of “good” states with the lower bound of

the probability of each good states gives us the probability of obtaining any “good” state,

which is at least p/60q or 1/120 since q < 2p. Note that each “good” c has a probability

of at least (p− 1)/(3q2) ≥ 1/6q of being observed because there are p− 1 possible values

of y and only one possible value of b with which c can make a “good” state.

We must now recover r from such a pair (c, d) with

− 1
2q
< d

q
+ rc

q
− r{c(p−1)}q

q(p−1) < 1
2q

.

This can be rewritten as

− 1
2q
< d

q
+ r

(
c(p−1)−{c(p−1)}q

q(p−1)

)
< 1

2q
.

The multiplier on r can be written as a fraction where the denominator is p−1 because

q divides c(p − 1) − {c(p − 1)}q. If we would then round d/q off to the nearest fraction

where the denominator is also p− 1 and divide by the integer

c′ = c(p−1)−{c(p−1)}q
q

,

we obtain a candidate r. As with the factoring algorithm, we only need to repeat this

procedure a polynomial amount of time to find the right discrete logarithm [15].
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Conclusion

Peter Shor developed two quantum algorithms that efficiently solve two mathematical

problems, namely the factoring problem and the discrete logarithm problem, which are

used in the RSA cryptosystem and the ElGamal cryptosystem. Both cryptosystems are

still used at this moment. A fully functional quantum computer where Shor’s algorithm

could be implemented with large enough parameters would thus be able to break those

systems.

Shor’s factoring algorithm has a polynomial running time, where the bottleneck is the

modular exponentiation operation. A more efficient quantum circuit to implement this

operation would also improve the efficiency of the factoring algorithm in general. With

a theoretical analysis we found that the algorithm needs only a polynomial amount of

repetitions to find the right factors of an certain integer with high probability. This result

was supported by the outcome of the simulations carried out using the ‘Libquantum’

library.

Shor’s second algorithm, the discrete logarithm algorithm, was very similar. It used

the same quantum transformation and has the same running time. As for the factoring

algorithm we only need to repeat the algorithm a polynomial amount of times to find the

discrete logarithm with high probability.

38
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Appendix A

Tensor product

A single qubit is a unit vector in the Hilbert space C2. If we have multiple qubits, the

state space is the tensor product of the state spaces of the component qubit systems.

The tensor product captures the essence of superposition, that is if the first qubit |ψ〉 is

in state |ψ〉 = a|0〉 + b|1〉 and the second qubit |φ〉 in state |φ〉 = c|0〉 + d|1〉 then each

amplitude of the 2-qubit system should have something of |ψ〉 and something of |φ〉. The

tensor product expresses this.

Let V and W be vector spaces with bases {v1...vn} and {w1...wm}, the tensor product

V ⊗W is a nm-dimensional vector space spanned by {vi ⊗ wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, a

basis for the tensor product space.

Let x be an element of V and y be an element of W , i.e. x =
n∑
i=1

xivi and y =
m∑
j=1

yjwj.

The element x⊗ y of the tensor product space V ⊗W is then of the form∑
i,j

aijvi ⊗ wj,

with aij = xiyj.

If we take our two qubits |φ〉 and |ψ〉 as an example, the tensor product |φ〉 ⊗ |ψ〉 =

ac|0〉⊗|0〉+ad|0〉⊗|1〉+bc|1〉⊗|0〉+bd|1〉⊗|1〉. This is a unit vector in the Hilbert space

C2 ⊗ C2 = C4. In general, we represent an n-particle system by n copies of C2 tensored

together, the notation for this is (C2)⊗n = C2n .

When multiple transformations are applied on different sets of qubits, the resulting

42
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transformation on the whole system is also represented with the tensor product. Suppose

we have two unentangled states |v〉 and |w〉 of n and m qubits respectively. The state of

the combined n+m-qubit system is |v〉 ⊗ |w〉 on C2n+m . When a unitary transformation

A is applied on |v〉 and a unitary transformation B is applied on |w〉, the state of the

combined system becomes A|v〉 ⊗B|w〉.

However, in most cases the two subsystems |v〉 and |w〉 will be entangled, this means

that the combined state cannot be written as a tensor product (see section 3.2). So when

the transformation A is applied on the first subsystem and the transformation B is applied

on the second subsystem, we say that the operator A ⊗ B is applied on the combined

system. A⊗B is defined as follows:

Let |v1〉, ..., |v2n〉 be a basis for the first subsystem and |w1〉, ..., |w2m〉 be a basis for the

second subsystem, we can write A =
2n∑
i,j=1

aij|vi〉〈vj| and B =
2m∑
k,l=1

bkl|wk〉〈wl| with aij the

i, jth element and bkl the k, lth element of A and B respectively. A basis for the combined

system is then |vi〉 ⊗ |wj〉 and the operator A⊗B is

A⊗B =

(∑
ij

aij|vi〉〈vj|

)
⊗

(∑
kl

bkl|wk〉〈wl|

)

=
∑
ijkl

aijbkl|vi〉〈vj| ⊗ |wk〉〈wl|

=
∑
ijkl

aijbkl(|vi〉 ⊗ |wk〉)(〈vj| ⊗ 〈wl|).

The matrix for A⊗B is then 
a11B a12B ...

a21B a22B ...

... ... ...

,

where in the (i, j)th subblock, we multiply aij by the matrix for B.



Appendix B

Quantum swap operation

The quantum circuit in Figure B.1 accomplishes a simple but useful operation, namely it

swaps the states of two qubits. This circuit consists of three CNOT gates where for the

second CNOT gate the control bit and target bit are switched. To see that this circuit

swaps the states of two qubits, note that the sequence of gates has the following sequence

of effects on a certain basis state |a, b〉:

|a, b〉 → |a, a⊕ b〉

→ |a⊕ (a⊕ b), a⊕ b〉 = |b, a⊕ b〉

→ |b, (a⊕ b)⊕ b〉 = |b, a〉.

(B.1)

The circuit indeed swaps the states of two qubits.

Figure B.1: Quantum circuit swapping two qubits
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Appendix C

Continued fraction

We will explain continued fractions in the framework of Shor’s algorithms. For a more

detailed analysis we refer to [11, Chapter X].

Every positive rational number x can be written as an expression in the form

x = a0 +
1

a1 +
1

a2 +
1

...+
1

an

.

where a0 is a non-negative integer and a1, ..., an are positive integers. Such an expres-

sion is called a continued fraction or continued fraction expansion of x and is uniquely

defined for each different x under the condition an > 1. Another notation is [a0, a1, ..., an].

Given x, the following procedure gives the continued fraction expansion of x:

a0 = bxc, x1 = 1/(x− a0),

a1 = bx1c, x2 = 1/(x1 − a1),

a2 = bx2c, x3 = 1/(x2 − a2),

...

This procedure ends when we find a xn which is an integer.

For example, take the rational integer x = 415
93

, we find the continued fraction as follows

a0 = b415
93
c = 4, x1 = 1/(x− a0) = 93

43
,

a1 = b93
43
c = 2, x2 = 1/(x1 − a1) = 43

7
,

45
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a2 = b43
7
c = 6, x3 = 1/(x2 − a2) = 7,

a3 = 7.

Thus we find the following continued fraction expansion

415
93

= 4 +
1

2 +
1

6 +
1

7

.

The fraction xm = [a0, a1, ..., am], with 0 ≤ m ≤ n, is called the m-th convergent of

the continued fraction expansion of x. In Shor’s algorithm we use the following theorem:

Theorem 2. If x is a rational number and a and b are positive integers satisfying

|a
b
− x| < 1

2b2
,

then a/b is a convergent of the continued fraction of x.
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