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Abstract

The increasing deployment of small-scale wireless embedded systems calls for proper
security measures. While cyptographic algorithms provide the necessary security,
practical cryptographic implementations have shown to leak information that is
supposed to be secret. This information is leaked through side-channels and can
be observed using side-channel analysis. The order of the analysis is defined by
the amount of observations one uses to compromise the system. Masking is one
popular way to thwart attacks that exploit the side-channels. A masking scheme gives
directions on how to divide a secret variable into shares and how to perform operations
on these shares. Non-linear operations pose the difficulty in these schemes. Therefore,
we focus on the non-linear S-boxes of block ciphers. A new side-channel occuring from
CMOS transistor switching during computations, has shown to deteriorate the effect
of masking. Therefore, extra restrictions need to be applied to a masking scheme to
provide glitch resistance. One such a glitches free masking scheme has been proposed
in the literature[26]. This scheme is provably-secure and can be implemented to
thwart any order of side-channel analysis. The sharing in the proposed masking
scheme is based on Shamir’s secret sharing scheme. In addition, it uses a secure multi-
party computation protocol introduced by Ben-Or et al. for the secure operations on
these shares. The glitch resistance in this scheme is achieved by temporal or spatial
separation. Temporal separation means that no operations on different shares that
mask the same hidden variable, may be done at the same time. Spatial separation
requires the implementation of each multi-party player to be on a different platform.
This thesis considers a 1st-order glitch resistant hardware implementations for the
present S-box and the mCrypton S0 S-box. Two implementations are proposed,
one is based on the guidelines in [20], the other is an adaptation of this design in
order to reduce the area. One of these designs is implemented for both S-boxes and
their costs are compared w.r.t. the area, the speed and the amount of randomness.
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Chapter 1

Introduction

With the ever increasing presence of computing devices in our environment, the
notion of ubiquitous computing is steadily taking shape. This paradigm introduces
new challenges to the design of embedded systems. In addition to power consumption,
speed, size and cost, the inherent security risk requires extra attention from the
system designer.

Radio-frequency Identification (RFID) systems, wireless sensor networks, smart
cards and other compact mobile applications have become prevalent in everyday life.
Their deployment in applications ranging from supply chains to intelligent homes and
even electronic body implants, has made a pressing issue of their security and privacy.
Using common security measures like the Advanced Encryption Standard (AES)
or the Triple Data Encryption Standard (3-DES) result in large implementation
overheads with respect to a.o. silicon area. Therefore, lightweight, i.e. compact
and power efficient, ciphers have emerged to reduce this overhead. Security in these
ciphers is relaxed to meet other design goals, making them favourable for usage in
real-world embedded systems.
One might argue that with the implications of Moore’s law on miniaturisation and
with enough time, the application of AES and 3-DES can become acceptable in con-
strained environments. However, as the computation capacity also increases, longer
keylengths are required to keep exhaustive key searches unrealisable. This again
increases the footprint of and implementation and therefore, the use of lightweight
ciphers can not be omitted.

Encryption strategies can be divided in two categories: asymmetric and symmetric
cryptography. In asymmetric cryptography, the keys to encrypt and decrypt are
different. Symmetric cryptography on the other hand, uses only one secret key. In
hardware environments, it makes sense to rely on symmetric cryptography as the
keys can be burned in the devices and the area overhead for implementing both
encryption and decryption is smaller. Symmetric ciphers can further be divided into
stream ciphers and block ciphers. Stream ciphers are faster and more compact but
their design is less understood than that of block ciphers [4]. Therefore, it is safer to
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1. Introduction

consider lightweight block ciphers for securing hardware.
A block cipher translates a plaintext into a ciphertext using a secret key. The goal
for the ciphertext is to appear as a keyed pseudo-random sequence. The algorithm
divides plaintext into equal blocks of bits, e.g. 64-bits or 128-bits. The blocks are
then processed independently by iteratively repeating round operations. Before
each round and after the last one, a round key is added to the input of the round,
making the output key-dependent. This round key is derived from a key schedule,
an algorithm that relies on the key for this derivation. When a round consists of a
non-linear substitution followed by a permutation, it is referred to as a Substitution-
Permutation Network (SP-Network). The permutation layer can be as simple as a
scrambling of the bits. The substitution is performed by a Substitution-box (S-box)
that maps an amount of input bits m to a number of output bits n, where m and
n are not necessarily equal. One way to perform this substitution is by means of a
lookup table stored in the memory. As this is expensive, lightweight block ciphers
consider very small S-boxes. A common class of bijective S-boxes is obtained when
m and n are set to four bits. In that case, they are referred to as 4-bit S-boxes.
Two 4-bit S-boxes are considered for hardware implementation. The candidates are
the present S-box and the mCrypton S0 S-box. These are designed with area and
power constraints in mind [4, 16] and are therefore ideal for the evaluation of their
practical, real-world security.

In practice, embedded systems leak information when performing cryptographic
operations. These leakages, as pointed out by Kocher et al. [13], are known as
side-channels. Values that are assumed to be secret on the algorithmic level, can be
revealed or reconstructed by observing the side-channels of a cryptographic imple-
mentation. This Side-channel Analysis (SCA) can be done e.g. by measuring the
electro-magnetic emission or the power consumption. In addition, [13] introduces
Simple Power Analysis (SPA) and Differential Power Analysis (DPA), two meth-
ods to succesfully attack the side-channels by measuring the instantaneous power
consumption of a device. Higher-order Side-channel Analysis (HO-SCA) generalizes
such attacks by mixing several observations from different leakages. The amount of
these one exploits, defines the order of the attack. To assure that the security of a
device is not compromised too easily, proper countermeasures have to be taken to
protect cipher implementations against SCA attacks. This problem is relevant as the
required equipment to perform such attacks is available at reasonable costs and with
a certain level of skill and experience, secret information can easily be extracted.

In [17], a new side-channel in the form hardware glitches was pointed out. The
information leaked by the switching behaviour of Complementary Metal Oxide Semi-
conductor (CMOS) transistors have shown to be relevant in several papers[19, 18].
These glitch attacks can be performed successfully on devices that consider classical
higher-order SCA countermeasures. To ensure the protection of sensitive variables,
i.e. key and plaintext related information, it is important to also counteract these
glitch attacks.
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SCA attacks can be thwarted in numerous ways. Secure cell libraries that bal-
ance the power consumption on different values can be used. Another way to achieve
resistance is to introduce noise in the form of random delays, random execution
orders or even by inserting dummy operations. A specific way to cope with the effect
from glitches is to balance the signal propagation, but this is expensive and requires
expertise. All these methods increases the cost and size of a design significantly.
A more popular countermeasure able to thwart higher-order SCA and in in some
cases the effect of glitches is masking. This is a way to conceal sensitive interme-
diate values of computations by inserting randomness on the sensitive variables.
It is characterized by both the amount of randomness n needed and the highest
order of HO-SCA security d it can provide. Such a dth-order masking scheme can
theoretically always be broken by a (d + 1)th-order SCA attack. The complexity
to mount a HO-SCA attack grows exponentially with the order d [6], this way, a
desired level of security can be reached by choosing the right order d. Masking
schemes operate on (n,d)-sharings of variables instead of on sensitive variables.
Two schemes that have shown resilience against higher-order SCA in the presence
of glitches are the polynomial masking scheme [26] and threshold implementations [21].

The general principle of masking is to split every sensitive variable x of a com-
putation into d+ 1 shares x0, ..., xd. Shares x1, ..., xd (called the masks) are picked
randomly while the first share x0 (called the masked variable) is chosen to satisfy an
equality of the form:

x = x0 ⊥ x1 ⊥ ... ⊥ xd

This masking scheme is referred to as additive boolean masking when ⊥ denotes
the addition over a field F2n with characteristic 2, where n is some positive integer.
Operations on these shares must be executed such that each tuple of d shares is
independent of any sensitive variable while still preserving the correctness of the
computations. In addition, each sharing of a variable needs to be independent of
all other sharings. In [22], it is shown that additive boolean masking in thresh-
old implementations achieve dth-order glitch free security at the first order only.
Even though this thesis only considers first-order glitch free implementations, the
polynomial masking scheme is chosen with higher-order implementations in mind.
As masking schemes with greater algebraic complexity are more resistant against
SCA attacks, the boolean masking scheme shows weaker provable security than the
more complex polynomial masking[2]. This further motivates the choice to apply
polynomial masking to secure the 4-bit S-box implementations against dth-order SCA
attacks.

Polynomial masking is a provably secure, Higher-order Glitch Free (HOGF) SCA
countermeasure. Its sharing construction is based on Shamir’s sharing scheme [27]
and the shares are processed using the Secure Multi-party Computation (SMC)
protocol introduced by Ben’Or et al. in [3], but can be built from any SMC protocol.
To thwart the leakage from glitches, either a spatial or a temporal separation of
the multi-party players is necessary [26]. A spatial separation, where all players
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1. Introduction

are implemented on different platforms, introduces an unacceptable area and cost
overhead. While the temporal separation of players is slower, it is more feasible on
CMOS platforms and will therefore be chosen.

1.1 Related Work
An algorithmic description of a d-glitches free AES implementation using polynomial
masking is given in [26]. In [20], this masking scheme is used to implement AES
on a hardware platform with temporally separated players. The present and
mCrypton S-boxes have not yet been implemented using polynomial masking. The
present S-box has been implemented in a first-order glitch free way using threshold
implementations by Kutzner et al. [14] and Poschmann et al. [24] resulting in 2105
GE and 2282 GE respectively. An encryption only mCrypton block cipher with a
96-bit keylength has been implemented using multiplicative masking by Karpinskyy
et al. [12] resulting in 7446 GE . No numbers are given for the S-boxes alone, but
the key schedule, which includes the S-box, amounts to 2677 GE.

1.2 Contribution
In this thesis, the HOGF method is applied on the 4-bit S-box from the present
block cipher and the 4-bit S0 S-box from the mCrypton block cipher and the result
is implemented in hardware. The polynomial masking scheme is used to acquire
first-order glitch freeness. For both S-boxes, two designs are proposed. The first
one, the regular design, is based on the guidelines for a first-order glitch free AES
implementation as suggested in [20]. With a further reduction of the area in mind, a
second design is proposed. A folded design results in a more compact implementation
at the cost of computation time.
A validation of the security of the designs is considered by applying Welsh’s t-test.

1.3 Thesis Overview
In Chapter 2, a formal overview of the necessary background theory is given w.r.t.
the polynomial masking scheme, the present and mCrypton S-boxes and the SCA
attacks. Afterwards, in Chapter 3, the four glitch free designs are described and
their costs are evaluated. The results from the SCA attacks are assessed in Chapter
4. A conclusion is drawn in Chapter 5 and in addition, some open questions are
presented.
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Chapter 2

Preliminaries

In this chapter, an overview of the background information is given. In the first
Section, the polynomial masking scheme is discussed in more detail. To better
understand the working principles of this scheme, formal definitions w.r.t. the SCA
attacks and the countermeasures are given. The operations on masked variables
are discussed and special attention is given to the problem of shared multiplication.
Furthermore, the complexity of this masking scheme is examined. In Section 2, the
S-boxes of the present and mCrypton are described. Their setting and design
objectives are explained. Using finite field arithmetics, the S-boxes are translated
to polynomials and their computational costs are compared. Section 3 presents the
details of the SCA evaluation method: the Welch’s t-test.

2.1 Masking

The overview given here is similar to the original paper where the polynomial masking
scheme is introduced [26].

2.1.1 Formal Definitions

The formal definitions of the attacks and the general principles to thwart these are
given in what follows.

The system under SCA attack will be referred to as a circuit and is defined as:

Definition 1 (Circuit Cf ). A circuit Cf that implements a function f using
operations from a set O is an oriented graph. Each node ci defines an operation and
each edge holds an intermediate variable Vij. This variable serves as the output of
operation ci and as the input of operation cj. The set of all edges of a circuit is
denoted by I.

This definition can be applied to both hardware and software implementations. In
the former case, O contains logical binary operations. In the latter case, the set O
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2. Preliminaries

contains field operations ⊕ and ⊗ in F2m , where an m-bit architecture is assumed.

A popular model for a practical SCA attacker against a circuit Cf is the prob-
ing adversary model and is defined hereafter.

Definition 2 (dth-order Probing Adversary Model). A dth-order Probing Ad-
versary against a circuit Cf is an adversary that can choose a subset J of edges I
in Cf with #J = d. This Adversary can observe the variable (Lij(Vij)(i,j)∈J), where
(Lij(.))ij is a d-tuple of noisy leakage functions from a set of noisy leakage functions
L.

In hardware implementations, this set of leakage functions L becomes the iden-
tity function. In the software context, L can be defined as the set of functions
L(.) = HW (.) + B(µ, σ), where HW denotes the Hamming weigth function and B
represents gaussian noise with mean µ and standard deviation σ.

To assess the effect of glitches, the circuit definition has to be transformed from a
static to a dynamic one. This can be done by making the edges time dependent. The
edges of the dynamic circuit are then denoted as Vij(t). These can change over time,
even when the circuit input is fixed.

In what follows, Cf (t′) refers to an internal state transition at time t′ of a cir-
cuit Cf . This encompasses all non-zero transitions of the value (Vij(t))(i,j)∈I at time
t = t′. The dth-order Glitches Adversary Model can then be defined as:

Definition 3 (dth-order Glitches Adversary Model). A dth-order Glitches Ad-
versary against a circuit Cf can choose d times t1, t2, ..., td and can observe the
internal state transition at these d selected times (Li(Cf (ti)))1≤i≤d, where Li is an
element in the set of leakage functions L.

Together with these adversary models comes the notion of security. The following
defines the security w.r.t. the dth-order probing adversaries.

Definition 4 (d-probing Security). A circuit Cf is d-probing secure if and only
if no family of at most d elements in the set of edges is sensitive.

The most common approach to achieve d-probing security is to split the sensitive
variable into several shares and perform the operations on these shares instead. This
technique of (n, d)-sharing is defined as:

Definition 5 ((n, d)-sharing). With n and d both positive integers satisfying n > d,
an (n, d)-sharing of a variable X ∈ F2m is a family of n variables (Xi)1≤i≤n that
satisfy the following conditions:

1. there exists a deterministic function F : Fn2m → F2m such that:

F(X1, ..., Xn) = X
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2.1. Masking

2. for every subset I ⊂ {1, ..., n} with cardinality lower than or equal to d:

Pr(X|(Xi)i∈I) = Pr(X)

Together with the concept of (n, d)-sharing comes the definition of independent
sharings:

Definition 6 (Independence of (n, d)-sharings). With n and d both positive
integers such that n > d, two (n, d)-sharings (Xi)1≤i≤n and (Yi)1≤i≤n of two arbitrary
variables X and Y are independent if for every pair of subsets (Ix ⊂ {1, ..., n}, Iy ⊂
{1, ..., n}), each of cardinality lower than or equal to d, we have:

Pr((Xi)i∈Ix |(Yi)i∈Iy ) = Pr((Xi)i∈Ix)

It is important to keep different sharings independent when performing operations.
Remasking is therefore needed when two operands originally come from the same
masking material. As pointed out in [7], it is important to perform this remasking
correctly to prevent leakages.

In additive masking, d-probing security can be achieved for any order d. To be secure
in the glitches adversary model however, extra countermeasures need to be taken.
In [26], the authors propose a hermetical separation of computation by splitting
a circuit Cf into n sub-circuits Cf1≤i≤n

. When each sub-circuit operates on one
share only and if their computations leaks independently, the observation of d or less
sub-circuits can give no information on the original input of the circuit Cf . When
the function f can not be split into n independent computations, the different sub-
circuits need to exchange shares. A SMC protocol introduces the ability to exchange
intermediate results between sub-circuits. To keep the d-probing security intact, the
sent information needs to be shared itself between all n sub-circuits. Each sub-circuit
can then only be given a single share of a (n, d)-sharing of the intermediate result
from the sub-circuit. Moreover, all shares accessed by a sub-circuit need to come
from distinct and independent (n, d)-sharings. By introducing n− 1 communication
channels ($ij)i 6=j between all sub-circuits Cfi

and Cfj
, i, j ∈ {1, ...n}∧ i 6= j, that are

not accessible by another sub-circuit Cfk 6=i∨j
, extended sub-circuits (Cfi

, ($ij)i 6=j)i
are created and the result is called an (n, d)-multi-party circuit.
It can be formally defined as follows:

Definition 7 ((n, d)-multi-party circuit). Let (Xi)1≤i≤n be an (n, d)-sharing
of an input X to a circuit Cf that is composed of n extended sub-circuits ((Cf1,
($1j)j 6=1), ... , (Cfn, ($nj)j 6=n)). Cf is an (n, d)-multiparty circuit if and only if:

1. every sub-circuit Cfi
is input with share Xi only

2. for i 6= j, each sub-circuit Cfi
can access a share of an (n, d)-shared intermediate

result from sub-circuit Cfj
through $ij

3. all shares received by a sub-circuit Cfi
relate to mutually independent (n, d)-

sharings
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2. Preliminaries

4. the outputs of all sub-circuits (Cfi
)1≤i≤n form an (n, d)-sharing of f(X)

5. for i 6= j, the leakage from Cfi
and Cfj

are independent

Two possible ways to achieve independent leakage in the different sub-circuits are
spatial and temporal separation. Spatial separation suggests the execution of different
sub-circuits on different platforms, e.g. all sub-circuits are implemented on different
FPGAs. In temporal separation, independent leakage is obtained by only allowing
execution on one sub-circuit at a given time.

Note that d-glitches freeness implies d-probing security while the reverse is false.

Proof of Security

The (n, d)-multi-party circuit can be proven d-glitches free by following reasoning:
when a secret variable X is (n, d)-shared and each share X1≤i≤n is confined to one
sub-circuit only, the adversary needs to observe at least d+ 1 sub-circuits to gain
information on X, considering that the most powerful dth-order glitches attack can
uncover the input of a circuit. As the variables sent through the channels $ij are
shares independent of X1≤i≤n, the adversary can only recover information about the
input of the sender sub-circuit when observing these. When the circuit is designed
to make the sub-circuits leak independently, the adversary has to perform at least a
(d+ 1)th-order glitches attack to break the scheme.

2.1.2 Polynomial Masking

The polynomial masking scheme as introduced in [26], is built upon the conditions
for d-glitches freeness. Its sharing is based on Shamir’s sharing scheme [27] to mask
the sensitive variables. The computations on these shared variables are then secured
by applying the SMC protocol introduced by Ben Or et al. in [3], which is referred
to as BWG’s protocol.

In Shamir’s scheme, a secret Z ∈ K ≡ F2m) is shared among n < 2m players
such that d players are needed to reconstruct Z. A dealer generates a degree-d
polynomial PZ(X) ∈ K[X] with a constant term Z and secret coefficients ai:

PZ(X) = Z +
d∑
i=1

aiX
i

This polynomial is then evaluated in n distinct, non-zero elements α1, ..., αn ∈ K,
which are called the public coefficients. These coefficients are made publicly available
and the value Zi = PZ(αi) is distributed to each player. The secret Z can be
reconstructed from the private values Zi by polynomial interpolation and evaluation
of PZ(X) in zero, as Z = PZ(0). Note that while in [26], the condition that coefficient
ad must be different from zero was found to introduce first order leakage. After
correspondance with the authors, this condition is confirmed to be a syntax error.

8



2.1. Masking

This masking scheme is characterized by both the number n of random shares
and the smallest number d+ 1 of them required to reconstruct the shared variable.
Using this secret sharing scheme, a d-private SMC protocol is constructed where the
number of players n satisfies n > 2d.

Note that there is an upper boundary on the order d of security that can be
provided, namely 2m − 1. So technicaly, d-glitches freeness can not be provided
for any order. Fortunately, in presence of noise the complexity of an attack grows
exponentially with d [6] and there is no need (yet) to resort to countermeasures at
those high orders.

Operations

An SMC protocol can be characterized by the maximum number of players d an
adversary is allowed to corrupt before the security is compromised. Such a protocol
with threshold d is then called a d-private protocol. BWG’s protocol is said to be
d-private when 2d < n [26]. In that case, it satisfies the conditions in definition
7. The protocol defines secure operations that are used in the polynomial masking
scheme. The classes of operations in K ≡ F2m that can be distinguished are now
discussed. Hereafter, the polynomials PX and PY are defined over K[z].

A univariate affine operation O over the field K, applied on a shared variable
X1≤i≤n can be computed independently by all players. As O is affine, O(X1≤i≤n)
is an (n, d)-sharing of X and the polynomial O(PX(z)) is a degree-d polynomial
PO(X)(z). Both PO(X)(0) = O(X) and PO(X)(α1≤i≤n) = O(X1≤i≤n) are satisfied.
Operations in this class are multiplication and addition with constants.

The bivariate addition operation O ≡ ⊕ over K can also be processed by all players in-
dependently. Adding two independent sharesX1≤i≤n and Y1≤i≤n in each player results
in O(X1≤i≤n, Y1≤i≤n) = PX(α1≤i≤n) ⊕ PY (α1≤i≤n) which is a polynomial with de-
gree of at most d. Furthermore, correctness is guaranteed as (PX(0)⊕PY (0)) = X⊕Y .

The bivariate multiplication operation O ≡ ⊗ over K is the tricky part in BWG’s
protocol. Players can not process this operation independently and as a result,
communication is required between the players. The secure shared multiplication as
presented in [26] is given in algorithm 1. First, a 2d-degree polynomial PX(z)⊗PY (z)
is obtained. As the shares O(Xi, Yi)i are not an (n, d)-sharing, a degree reduction
and a re-randomization is needed. Therefore, an (n, d)-sharing (Qi(αj))j of C(Xi, Yi)
is sent to all other players. Finally, each player computes Q(αi) =

∑n
j=1 λjQj(αi).

This (n, d)-sharing corresponds to the evaluation of polynomial Q(z) in the pub-
lic coefficients αi. Furthermore, this polynomial is of degree-d and has constant
term O(X,Y ). When evaluations of the form O ≡ bkX

2k are needed, the shared
multiplication can be omitted when following conditions are imposed:

9



2. Preliminaries

Algorithm 1: Secure Shared Multiplication in a Sub-circuit (Cfi
, ($ij)j 6=i)

INPUT: the ith element Px(αi) of an (n,d)-sharing of x, the ith element Py(αi)
of an (n,d)-sharing of y and a set of channels ($ij)j 6=i.
OUTPUT:the ith element zx⊗y(αi) of an (n,d)-sharing of x⊗ y.
PUBLIC: the n public coefficients αi, the first row (λ1, ..., λn) of the inverse
Vandermonde matrix (αji )1≤i,j≤n.

1 do ti ←− Px(αi)⊗ Py(αi)
// Generate a d-tuple of random numbers aj in F2m

2 for j = 1 to d do
ai ←−rand(GF(2m));

end
// Compute an (n,d)-sharing (qi(α1), ..., qi(αn)) of ti

3 for j = 1 to n do
qi(αj)←− ti ⊕

⊕d
k=1 akα

k
i ;

end
// Send the shares of ti(αi) to the other sub-circuits Cfj

using
the channels $ij

4 for j = 1 to n, j 6= i do
write(qi(αj), $ij);

end
// Receive share qj(αi) on $ji from all sub-circuits Cfj

5 for j = 1 to n, j 6= i do
read(qi(αj), $ij);

end
// Compute the output share zx⊗y(αi)

6 do zx⊗y(αi)←−
⊕n
j=1 λjqj(αi);

• The public coefficients αi are distinct and non-zero

• The public coefficients αi are stable over the frobenius automorphism: for every
αi, there exists an αj such that αj = α2

i

Each player can then separately perform O(X) = bk(PX(αi))2k = PO(X)(z). As the
sets {α2k

i }i and {αi}i are equal and as a result {PO(X)(α2k

i )}i≤n = {PO(X)(αi)}i≤n,
this results in an (n, d)-sharing of O(X). A reordering of the shares will in some
cases be needed as αj is not necessarily equal to αi when the second condition is
fulfilled.

Masking Complexity

The complexity of the masked addition, shared multiplication and squaring operations
for the polynomial masking scheme in terms of the number of random values d is

10
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given in table 2.1. Here, n = 2d + 1 is chosen as this is the minimal amount
op players needed for d-glitches freeness. To cope with glitches, each addition
and squaring operation in a function needs to be replaced with n versions of that
operation. The shared multiplication on the other hand, requires n2(d + 1) + n
multiplications, n2(d + 1) − n additions and 2(n-1) read/write operations. It is
clear that, theoretically, it is beneficial to avoid the use of shared multiplications and
consider the squared operation whenever possible.

Table 2.1: Polynomial masking complexity in terms of the number of random values
d [26]

Polynomial Masked Operations in
Operation ⊕ ⊗ Rand
addition 2d+ 1 - -

multiplication 4d3 + 8d2 + 7d+ 2 4d3 + 8d2 + 3d 2d2 + d

square - 2d+ 1 -

2.2 S-Boxes

A 4-bit S-box can be seen as a non-linear function f : F24 → F24 . Its purpose is to
increase the complexity of the relation between the key and the ciphertext in a block
cipher, this is the property known as confusion. In this section, the present and
mCrypton S0 S-boxes considered for HOGF implementation are introduced.

2.2.1 Present

The present block cipher performs 31 rounds, each consisting of an SP-Network.
The block length equals 64-bits and key lengths of 80-bits and 128-bits are supported.
The 80-bit version is recommended for lightweight applications. The substitution
layer uses 16 identical 4-bit S-boxes to cover the whole block length. The S-boxes
are followed by a bit oriented permutation layer that can easily be implemented in
hardware using wiring. As bit-oriented permutations are not software-friendly, the
target platform of the present is a hardware one.

The present S-box has been used in other lightweight crypto algorithms including
the led block cipher[11], the gost revisited block cipher[23] and even the photon
lightweight hash function[10]. This block cipher is designed with constraints on
performance, space and timing requirements in mind. Further details can be found
in [4]. As of 2012, it has been standardized and it is part of the ISO/IEC 29192-2.

The proposed S-box fulfills following 4-bit to 4-bit substitution [4]:
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Table 2.2: 4-bit to 4-bit substitution of the present S-box [4]

z 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[z] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

2.2.2 mCrypton

The mCrypton block cipher is derived from the crypton block cipher, which was a
candidate for the AES competition [15]. It operates on 64-bit block lenghts and three
key length options are supported: 64-bits, 96-bits and 128-bits. The transformation
from plain- to ciphertext is done by applying 12 consecutive rounds consisting of an
SP-Network. A round consists of a substitution layer followed by a bit permutation
within each column and a transposition of the state matrix. The state matrix is a
4×4 matrix of nibbles. Four different 4-bit S-boxes are used on this state matrix in
the substitution layer. These S-boxes S0, S1, S2 and S3 are based on the inverse x−1

in F24) and are related as: S2 = S−1
0 and S3 = S−1

1 .

The four mCrypton S-boxes are given in the table 2.3. In [16], further details
can be found.

Table 2.3: The four mCrypton S-boxes [16]

z 0 1 2 3 4 5 6 7 8 9 A B C D E F
S1[z] 4 F 3 8 D A C 0 B 5 7 E 2 6 1 9
S2[z] 1 C 7 A 6 13 5 3 F B 2 0 8 4 9 E
S3[z] 7 E C 2 0 9 D A 3 F 5 8 6 4 B 1
S4[z] B 0 A 7 D 6 4 2 C E 3 9 1 5 F 8

2.2.3 Polynomial Normal Forms

The function f : F24 → F24 of a 4-bit S-box can be represented by a unique univariate
polynomial over F24 with a degree of at most 24 − 1 = 15. This polynomial can be
obtained by expanding the following expression [8]:

S(x) =
∑
z∈F24

S(z)(1 + (x+ z)15)

Once expanded, the polynomial has the form:

S(x) =
15⊕
i=0

cix
i

12
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Using the Mattson-Solomon polynomial, the coefficients of S(x) can be directly
computed by:

ci =


S(0), if i = 0∑24−2
k=0 S(αk)α−ki, if i ≤ i ≤ 24 − 2

S(1) +
∑24−2
i=0 ci, if i = 24 − 1

where α is a primitive element in F24 .
The coefficients of the polynomial normal forms of the S-boxes are listed in table 2.4
when r(x) = x4 +x+ 1 is used as irreducible polynomial for the construction of F24 .

Table 2.4: Polynomial normal form coefficients of the S-boxes

S-Box c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0

present S(x) 0 D D C E 9 9 7 4 C A E 7 7 0 C
mCrypton S0(x) 0 D 6 D 8 9 A 7 8 6 5 9 6 6 3 4

In addition, as the mCrypton S-boxes are based on the multiplicative inverse, an
affine transformation of the form S = A(I(B(x)) can be found that satisfies:

B(x) = b8x
8 ⊕ b4x

4 ⊕ b2x
2 ⊕ b1x⊕ b0

I(x) = x−1 = x14

A(x) = a8x
8 ⊕ a4x

4 ⊕ a2x
2 ⊕ a1x⊕ a0

Coefficients b8, b4, b2, b1, b0 and a8, a4, a2, a1, a0 can be found by exhaustive search.
An example of a valid transformation is given below.

B(x) = 9x8 ⊕ 3x4 ⊕ 13x2 ⊕ 10x
I(x) = x−1 = x14

A(x) = 2x8 ⊕ 6x4 ⊕ 12x2 ⊕ 12x⊕ 4

2.2.4 Comparison

The masked evaluation of the polynomial representation of a 4-bit S-box is composed
of F4

2-affine functions and of non-linear multiplications. The masking complexity
of an S-box is defined in [5] as the minimal amount of non-linear multiplications
required to evaluate its polynomial. Based on this number, the complexity of the
S-box evaluations can be compared.

When calculating a power xα from another power xβ, non-linear multiplication
can be omitted if and only if α and β lie in the same cyclotomic class. A cyclotomic
class is define as:

13
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Definition 8 (Cyclotomic Class Cα). The cyclotomic class Cα of α ∈ [0; 2n − 2]
is the set define by:

Cα = {α · 2i mod 2n − 1, i ∈ [0;n− 1]} (2.1)

An important result is that squaring is linear within a cyclotomic class. Consequently,
the S-box complexity is related to the amount of these classes. For the field F24

with r(x) = x4 + x+ 1 as irreducible polynomial, following cyclotomic classes can be
found:

C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, C, 9}, C5 = {5, A}, C7 = {7, E,D,B}

present

The evaluation of the present S-box polynomial requires three non-linear multipli-
cations:

x3 ← x⊗ x2

x5 ← x⊗ x4

x7 ← x⊗ x2 ⊗ x4

In the last expression, x3 or x5 is assumed to be obtained from a previous multipli-
cation.

mCrypton

To evaluate the mCrypton polynomial, the amount of traversed cyclotomic classes
required is the same as for the present. When evaluating this way, the masking
complexity is also three.

However, mCrypton is based on the inverse and the masking complexity is in-
variant w.r.t. F4

2-affine bijections in input or output so all S-boxes equivalent to the
inverse have the same masking complexity [5].
The evaluation of the inverse power function requires only two nonlinear multiplica-
tions:

x7 ← x⊗ x2 ⊗ x4

From x7, the inverse x−1 = x14 is only a linear square away.

While the whole mCrypton block cipher is larger than the present one [4], the
mCrypton S-box results in a less complex evaluation. It is therefore interesting to
consider its higher-order glitch free implementation.
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2.3. Side-channel Analysis Evaluation

2.3 Side-channel Analysis Evaluation
One way to perform SCA on a cryptographic system is proposed by Goodwill et al.
[9]. This standardized method allows developers to test for potential side-channel
leakage. The test is designed to be both easy to perform and sensitive enough to
cover a wide range of potential problems. It needs to be said though, that no single
test can be designed to guarantee complete resistance against all attacks. In the first
place, the test is an indication that sufficient care regarding SCA countermeasures
was taken during the design of the device. The proposed test is based on the Welsh’s
t-test, a generalization of the Student’s t-test that allows samples to have unequal
variances [28]. It is similar to a difference of means test, but takes the sample
variances and the sample sizes into account. The t-test statistic is calculated as:

t = Ta − Tb√
s2

a
Na

+ s2
b
Nb

(2.2)

where Ti, s2
i , Ni are the sample means, sample variance and sample size of the set

Ti∈a,b.

The null hypothesis of the test is that two sets of power traces have equal means,
indicating that it is not influence by the processed sensitive data. The alternate
hypothesis is a difference between the means of the sets, meaning that processing
different intermediates influences the power consumption in a statistically significant
way, making the device vulnerable to SCA.
The evaluator selects an intermediate for investigation and divides the power traces
based on the values at that place. Different sets are acquired and the t-statistic trace
is computed on pairs of these sets. When no trace exceeds a confidence threshold
±C, the null hypothesis holds. If the threshold is crossed, another t-test is performed
on different traces. When the t-statistic trace exceeds ±C at the same place as in the
first test, the null hypothesis can be rejected with a percentage of certainty related
to C.

To summerize, the t-test is performed as follows[9]:

1. The set of power traces is divided in two disjoint sets, Group 1 and Group 2.
Two independent Welch’s t-tests are executed on these two sets.

2. First t-test on Group 1:

a) Partition the Group 1 in two subsets A and B based on some intermediate
value.

b) Compute the means Ta, Tb and the standard deviations s2
a, s2

b of subsets
A and B for each point in time. The results have the same sample size
Na and Nb as the traces.

c) Compute the t-statistic trace over each time instant using formula 2.2.
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d) Note the time instants in the t-statistic trace where the value crosses the
confidence threshold ±C.

3. Second t-test on Group 2: The same steps as in the Group 1 test are performed.
The traces and its two subsets will be different. The time instants where the
t-statistic trace crosses the confidence threshold ±C are noted.

If there is any point in time for which the t-test statistic exceeds the confidence
threshold in both Group 1 and Group 2, the Device Under Test (DUT) fails. Otherwise
it passes.
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Chapter 3

Implementation

In this chapter, the implementations are describe in detail. First, all operations of
the polynomial masking scheme are listed for the case of 1st-order glitch resistance. A
secret is then shared between three players and the polynomial for hiding the secret
input is a linear function. Afterwards, the multiplier in F24 is shortly discussed, as
its implementation is the same for all designs. The designs for the present S-box
and the mCrypton S0 S-box are then described. This chapter is concluded with a
comparison of all designs. The chapter follows the same pattern as in [20], but it is
applied on the present and mCrypton S0 S-boxes instead of the AES block cipher.

3.1 Polynomial Masking Scheme with (3,1)-sharing

This section lists the equations for the construction of, reconstruction from and the
operations on the shares. In what follows, the multiplication in F24 is denoted as ⊗
and the finite-field addition by ⊕.

For all these operations, first, three distinct non-zero elements in F24 need to be
chosen. These are referred to as the public coefficients α1, α2 and α3. Together with
these points, the first row of the inverse Vandermonde matrix (αji )1≤i,j≤3, (λ1, λ2, λ3)
is needed. These values can be calculated as follows:

λ1 = α2 ⊗ α3 ⊗ (α1 + α2)−1 ⊗ (α1 ⊕ α3)−1

λ2 = α1 ⊗ α3 ⊗ (α1 + α2)−1 ⊗ (α2 ⊕ α3)−1

λ3 = α1 ⊗ α2 ⊗ (α1 + α3)−1 ⊗ (α2 ⊕ α3)−1

where .−1 denotes the multiplicative inverse. Elements α1, α2, α3, λ1, λ2 and λ3 are
publicly available to all three Players.

Sharing a value x ∈ F24 requires a random secret coefficient a and the public
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coefficients. The resulting shares x1, x2, x3 are calculated as:

x1 = x⊕ (a⊗ α1)
x2 = x⊕ (a⊗ α2)
x3 = x⊕ (a⊗ α3)

Each Player i has access to only one share xi.

Reconstruction of the hidden secret relies on the values λ1, λ2, λ3:

x = (x1 ⊗ λ1)⊕ (x2 ⊗ λ2)⊕ (x3 ⊗ λ3)

Addition with a constant c can be done by each Player independently as:

z1 = x1 ⊕ c = x⊕ (a⊗ α1)⊕ c = (x⊕ c)⊕ (a⊗ α1)
z2 = x2 ⊕ c = x⊕ (a⊗ α2)⊕ c = (x⊕ c)⊕ (a⊗ α2)
z3 = x3 ⊕ c = x⊕ (a⊗ α3)⊕ c = (x⊕ c)⊕ (a⊗ α3)

The resulting shares of the addition represents the correct secret z = c⊕ x, where
the random secret coefficient is left unchanged.

Multiplication with a constant c is performed in a similar way and can also be
processed by each Player independently as:

z1 = x1 ⊗ c = (x⊕ (a⊗ α1))⊗ c = (x⊗ c)⊕ (a⊗ c⊗ α1)
z2 = x2 ⊗ c = (x⊕ (a⊗ α2))⊗ c = (x⊗ c)⊕ (a⊗ c⊗ α2)
z3 = x3 ⊗ c = (x⊕ (a⊗ α3))⊗ c = (x⊗ c)⊕ (a⊗ c⊗ α3)

Considering a ⊗ c as the new secret coefficient, z1, z2 and z3 result in the desired
secret output. Reconstruction of the masked secret does not depend on the coefficient
a but depends on λ1, λ2 and λ3, which only depend on the public coefficients. The
reconstructed value will correspond to the desired result.

Similar to the (3,1)-sharing of x, i.e. x1, x2, x3, with secret coefficient a, y ∈ F24

is represented with the sharing y1, y2, y3, constructed with an independent random
secret coefficient b.

Addition of two shared secrets is executed in following way:

z1 = x1 ⊕ y1 = x⊕ (a⊗ α1)⊕ y ⊕ (b⊕ α1) = (x⊕ y)⊕ (a⊕ b)⊗ α1)
z2 = x2 ⊕ y2 = x⊕ (a⊗ α2)⊕ y ⊕ (b⊕ α2) = (x⊕ y)⊕ (a⊕ b)⊗ α2)
z3 = x3 ⊕ y3 = x⊕ (a⊗ α3)⊕ y ⊕ (b⊕ α3) = (x⊕ y)⊕ (a⊕ b)⊗ α3)
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Seeing a ⊕ b as the secret coefficient, the resulting shares account for the desired
hidden variable, z = x⊕ y.

Multiplication of two shared secrets is composed of three steps:

1. The Players i first compute ti

t1 = x1 ⊗ y1 = (x⊗ y)⊕ (((a⊗ y)⊕ (b⊗ x))⊗ α1)⊕ (a⊗ b⊗ α2
1)

t2 = x2 ⊗ y2 = (x⊗ y)⊕ (((a⊗ y)⊕ (b⊗ x))⊗ α2)⊕ (a⊗ b⊗ α2
2)

t3 = x3 ⊗ y3 = (x⊗ y)⊕ (((a⊗ y)⊕ (b⊗ x))⊗ α3)⊕ (a⊗ b⊗ α2
3)

2. Each Player then randomly selects a coefficient ai and remasks ti as

qi,1 = ti ⊕ (ai ⊗ α1)
qi,2 = ti ⊕ (ai ⊗ α2)
qi,3 = ti ⊕ (ai ⊗ α3)

Each qi,∀j 6=i is subsequently send to the corresponding Player j.

3. The outputs q1,i, q2,i, q3,i of each Player i are then distributed and reconstructed
as

zi = (q1,i ⊗ λ1)⊕ (q2,i ⊗ λ2)⊕ (q3,i ⊗ λ3)

When considering (a1⊗ λ1)⊕ (a2⊗ λ2)⊕ (a3⊗ λ3) as secret coefficient, z1, z2 and z3
provide the correct and desired shared representation of secret z.

Square of a shared secret can only be computed in the straightforward way,
i.e., as z = x2 or

z1 = x2
1 = x2 ⊕ (a2 ⊗ α2

1)
z2 = x2

2 = x2 ⊕ (a2 ⊗ α2
2)

z3 = x2
3 = x2 ⊕ (a2 ⊗ α2

3)

when α1, α2, α3 satisfy the conditions for frobenious stability. In our case, this results
in the condition of α1 = 1, (α2)2 = α3 and (α3)2 = α2. This shows that, a reordering
between the second and the third Player is needed when squaring is of the form .2

i

and is i uneven. When this reordering is not performed, two public coefficients have
changed value and the result can not be reconstructed in the same way as the other
sharings. The benefits of squaring over a shared multiplier are its smaller size, a
lower complexity and that it does not require randomness.
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3.2 Finite-field Multiplier
The finite-field multiplier in F24 used throughout this chapter is combinatorially
implemented in VHDL using its algebraic normal form. The 4-bit inputs A =
(a3, a2, a1, a0) and B = (b3, b2, b1, b0) result in output C = (c3, c2, c1, c0) by following
bitwise operations:

c0 = a0b0 ⊕ a1b3 ⊕ a2b2 ⊕ a3b1

c1 = a0b1 ⊕ a1b0 ⊕ a1b3 ⊕ a2b2 ⊕ a2b3 ⊕ a3b1 ⊕ a3b2

c2 = a0b2 ⊕ a1b1 ⊕ a2b0 ⊕ a2b3 ⊕ a3b2 ⊕ a3b3

c3 = a0b3 ⊕ a1b2 ⊕ a2b1 ⊕ a3b0 ⊕ a3b3

where A, B and C are in little-endian notiation.

3.3 Designs
In this section, the implementations of the S-box designs are discussed when con-
sidering 1st-order glitch resistance. First, the present S-box is covered. The
implementation of a design based on [20] is discussed, this will be called the regular
design. Afterwards, a new design is proposed which will be referred to as the folded
design. The same is done for the mCrypton S0 S-box. First, its regular design is
discussed, followed by the description of the folded design.

In all designs considered, we choose a temporal separation to thwart 1st-order
glitch attacks. This results in a much smaller implementation at the cost of more
clock cycles. The implications of temporal separation are that at no point in time,
operations can be done on more than one share. After each operation on a share,
the intermediate result will be stored and left unaltered while operations are done
on other shares. This has a drawback for the shared multiplication. The algorithm
for this operation can be split in two levels: a remasking and a reconstruction. For
the reconstruction part, the intermediate remasked results from all the other shares
are needed. This gives rise to the need for intermediate storage registers and extra
clock cycles. A last general issue arises from the control of the multiplexers [20].
Multiplexers are needed to assign different inputs to the shared multiplier. Their
control signals must be hazardless, otherwise side-channel leakage between two shares
can occur. As a result, extra registers are needed to synchronize these signals.

3.3.1 present

As seen in the previous chapter, the present S-box can be described with a polyno-
mial. When using r(x) = x4 + x+ 1 as irreducible polynomial for the construction
of F24 , the S-box representation is:

S(x) = Dx14 +Dx13 + Cx12 + Ex11 + 9x10 + 9x9 + 7x8

+ 4x7 + Cx6 +Ax5 + Ex4 + 7x3 + 7x2 + C
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The order of the evaluation of this polynomial is based on the proposal by Carlet
et al. in [5]. The proposed execution order is adapted to reduce the memory usage.
Starting from the input x, squaring is consecutively carried out until all elements in
a cyclotomic class are covered. A multiplication with the last element of that class is
then done with a previously calculated element. This way, another cyclotomic class
is accessed, where squaring can again be performed. This scheme is applied until all
powers of x in the polynomial are evaluated. Starting with an input x, all but one
cyclotomic classes can be visited by just squaring and multiplication with x. As a
result an extra power of x needs to be stored during the evaluation.

The block diagram of the shared present S-box evaluation is depicted in Fig-
ure 3.1. The gray multiplier denotes a multiplication with a constant while the black
multiplier represents shared multiplication.

x

S(x)c
7 e 7 79 c c d d4e 9 a

x2 x4 x8 x9 x3 x6 x12 x13 x7 x14 x10 x5x11

Figure 3.1: Evaluation of the present S-box.

By calculating the polynomial this way, the designs can easily be extended with a
squaring module and benefit from the advantages it brings along.

Regular present Design

The shared multiplication is discussed first. The working principles are described in
series of clock cycles. Such a serie consists of six clock cycles and is related to the
control signals em1≤i≤6, which can be seen in both the architecture in Figure 3.2
and in the finite state machine in Figure 3.4.

• The first clock cycle of a series, enables signal em1. The two necessary inputs
for the shared multiplier are selected by selm1, of which the resulting outputs
are listed in Table 3.1. At the same time, a new random number a1 is fed to
the first multiplier element mult_el11. Together with this random number,
the fixed public coefficients α1, α2 and α3 are used to remask the multiplied
result t1.
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Figure 3.2: Architecture diagram for the regular present implementation

• The previous described procedure is repeated in the second clock cycle using
signal em2 and on the third clock cycle using em3 for the second (in mult_el12)
and third (in mult_el13) share respectively.

• In the fourth clock cycle, by activating signal em4, the results from the previous
three clock cycles with respect to the public coefficient α1 are stored in the
registers q1,1, q2,1, q3,1. The combinatorial logic in mult_el22 then performs
the unmasking using λ1, λ2 and λ3. This outputs the first share of the shared
multiplication. The result is not saved in this clock cycle, but will be done at
the start of the next series, with the activation of the select signal em1.

• In the fifth and sixth clock cycle, the same principles as in the fourth clock
cycle are apply. The enable signals em5 handles Player 2 (in mult_el22) and
em6 serves Player 3 (in mult_el22).

As can be seen in the block diagram of the present S-box in Figure 3.1, we need to
store one extra intermediate value x11. When this value is output at the mult_el2i
blocks, the es1, es2, es3 signals follow the levels of the em1, em2, em3 signals to
store the shares of x11 in the registers controlled by es1≤i≤3.
To calculate the polynomial, the powers of x need to be multiplied with a constant
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selmi Output 1 Output 2
00 ini ini
01 emi emi

10 emi ini
11 emi esi

Table 3.1: Selected multiplexer output signals based on selmi in the regular present
design.

and accumulated with the previously obtained results. This is handled by the
add_acci∈{1,2,3} blocks. When a desired power of a share xi is obtained from the
shared multiplier, the enable signal eai activates with the corresponding emi. With
this signal, a new coefficient (chosen by selcoef) is fed to an input of the add_acci
multiplier, resulting in the right multiplication of a constant and its corresponding
power of x. Using the selai select signal, in the first series of clock cycles the constant
value of the polynomial is added to an empty (zero) register. In the consecutive
series, the register output is chosen for to accumulate the results of the other series.
The eoi signal enables the output share i of the S-box after the registers holds the
right value.

To show that the temporal separation of calculations on independent shares is
achieved, the relevant signal changes are shown in the Figure 3.3. The three
add_buf_o signals in the timing diagram, belong to the ouputs of the regis-
ters of the three different add_acc_els. From top to bottom, they belong to the
first, second and third share.

In the timing diagram, the clock signal is not included, as it is related to the
emi signals. In addition, the esi, eai and eoi signals are also omitted as they can
be deduced from the described working principles and the finite state machine from
Figure 3.4. The outputs of the shared multiplier and the outputs of the accumulation
registers show the desired separation of share manipulation.

Folded present Design

Based on the regular design, a folded design is proposed with an area reduction in
mind. In this design, mult_el1 and mult_el2 are used by all Players, instead of
dedicating these two multiplier elements for all Players. Especially for higher-orders,
this design is expected to have a significant impact on the area. The drawback of this
design is an increase of clock cycles needed for an S-box evaluation. The architecture
for the folded present S-box is shown in Figure 3.5.
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Figure 3.3: Timing diagram for the regular present implementation

Care has to be taken to make sure the design does not leak from the effect of
glitches. As, except for the manipulation of the control and select signals, the only
change involved is the shared multiplier structure. These changes are now discussed
from top to bottom. To guide the right signals to mult_el1 one at a time, a
multiplexer with select signal sel01 is used. To avoid influence of adjacent shares, the
circuits must be initialized between all remaskings of intermediate result. For this
purpose, the multiplexer can output zeros to the multiplier. In addition, the pseudo
random number can be turned off by the multiplexer with control signal sel_rng,
which then outputs zeros to mult_el1. The outputs of the first multiplier element
are each wired to their three corresponding registers. The values in these registers
are updated using the temporally separated em4, em5 and em6 control signals. To
get the right values to mult_el2 for reconstruction, a multiplexer with control
signal sel02 is used. Again, the circuit must be initialized between every remasking.
Therefore, the multiplexer can output zeros to the mult_el2 inputs. The outputs
of this second multiplier element are wired to all registers, which are clocked by the
temporally separated em1, em2 and em3 control signals.

To process the outputs of the shared multiplier safely, following scheme is followed.

• While the remasking part is performed in mult_el1, zeros are input to
mult_el2. In the first clock cycle of a series, the first pair of shares are input
for multiplication and remasking. The results are saved in the second clock
cycle using em4. The mult_el1 circuit is initialized in the third cycle, by
applying zeros to its inputs. In the fourth clock cycle, the second pair of shares
is applied to the first multiplier element. In the following clock cycle, the
result is stored using em5. Afterwards, the circuit is initialized again. This is
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Figure 3.5: Architecture diagram for the folded present implementation

repeated for the third pair of shares. After the last circuit initialization, the
inputs are held to zero while the reconstruction is performed in mult_el2.

• With the inputs of mult_el1 tied to zero, the right register values are chosen
as input for mult_el2 using the lower multiplexer. The same select-store-
initialize pattern is followed here to output the right shares to the three Players.

This version of the masked S-box has not yet been implemented. Another folded
design architecture was implemented, but the multiplier circuits were not initialized
in between shared operations. We suspect that this design leaks and therefore, this
new design is proposed eventhough it is not yet implemented.
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3.3.2 mCrypton

To calculate the mCrypton S0 S-box, we choose the path that leads to the least
amount of non-linear multiplications. As was seen in the previous chapter, the S-box
can be calculated in that way using two affine transforms A and B and an inversion:

S(x) = A(I(B(x)))

with

B(x) = 9x8 ⊕ 3x4 ⊕ 13x2 ⊕ 10x
I(x) = x−1 = x14

A(x) = 2x8 ⊕ 6x4 ⊕ 12x2 ⊕ 12x⊕ 4

Similarly, the coefficients come from the construction of F24 with r(x) = x4 + x+ 1
as irreducible polynomial.

The same evaluation method as with the present S-box is used here. The affine
transformations all lie in the same cyclotomic class. Only squaring is needed to
evaluate these powers. For the inverse, elements from three cyclotomic classes need
to be traversed. Its evaluation is chosen to only require squaring or multiplications
with x. This way, no extra memory is needed. The order of calculations for the
powers of x is then shown in the diagram of Figure 3.6. Again, the black and grey
multiplication elements mean shared and constant multiplication respectively.

x

a d 3 9

B(x)

B(x) I(B(x))

4

c c 6 2

I(B(x))

A(I(B(x)))

x2 x4 x8

B2 B6B3 B7 B14

I2 I4 I8

Figure 3.6: Evaluation of the mCrypton S-box.

As with the present S-box evaluation, the designs can also here be easily extended
with a squaring module and benefit from its advantages.
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Regular mCrypton Design

The working principles of the masked mCrypton S-box are now described for the
regular design. The architecture diagram is shown in Figure 3.7 and the correspond-
ing finite state machine is depicted in Figure 3.9. The outputs of the ctrl_el
multiplexers the are listed in Table 3.2.
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Figure 3.7: Architecture diagram for the regular present implementation

In general, the same working principles as with the regular present S-box ap-
ply regarding the shared multiplier and the accumulation block. Therefore, we will
focus on the changes made to incorporate the affine transformation. The outputs of
the accumulation registers are now fed back to the multiplexers in the CTRL_ELs.
This is needed to perform the inversion from the result of the first affine.
The execution of the functions B(x), I(x) and A(x) are now descibed.

• At the start of the first affine transformation, the input x is multiplied with
unity in the shared multiplier. Afterwards, it is multiplied with its constant
and accumulated in the register. This consumes one extra serie of clock cycles
but saves us a multiplexer per add_acc_eli block. The multiplexer for this
would select between either the input share ini or the output of the eai register
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selmi Output 1 Output 2
00 ini 1
01 emi emi

10 affi affi
11 emi affi

Table 3.2: Selected multiplexer output signals based on selmi in the regular mCrypton
design.

in the cntrl_eli. From there on, the remainder of the affine polynomial can
be evaluated using the standard working principles.

• The inverse operation starts when the resulting shares of the first affine are
stored in the accumulation registers. These are input to the multiplexer in the
cntrl_eli blocks. During the whole calculation of the inverse, the result of
the first affine is kept in the registers.

• The second affine transformation can be initiated when the resulting shares
of the inverse are stored in the eai registers from the cntrl_eli blocks. The
registers add_acc_eli are set to the constant coefficient B(x). This is done
by selecting the zero coefficient in the multiplexer controlled by selcoeff and
by setting the constant input of the multiplexer controlled by selai as output.
This way, the value after the multiplier of the accumulator is zero, which is
added to the right constant of B(x). This can also be performed using a
dedicated reset for each accumulator register. This results in an increased area,
but saves a serie of clock cycles for the evaluation. From there on, the standard
evaluation procedure can be followed to reach the required output shares.

As was noted before and in contrast with the present S-box, all cyclotomic
classes can be traversed using squaring and multiplication with an input x. As a
result, the registers controlled by esi can be omitted.

To show the temporal separation, the relevant signal changes are shown in the
Figure 3.8. Again, the clock signal and the esi, eai, eoi signals are omitted. Also
here, the outputs of the shared multiplier and the outputs of the accumulation
registers show the desired separation of share manipulation. The same remark about
the add_buf_os as in the present S-box timing diagram applies.

Folded mCrypton Design

A folded design can also be applied to the mCrypton S-box. The architecture for
the folded mCrypton S-box is shown in Figure 3.10. The same working principles
as with the folded present S-box apply to the shared multiplier. The control and
accumulator structure remain unchanged w.r.t the regular mCrypton S-box. This

29



3. Implementation

0 10 ns

u A

u 0

u 9

u 0

u 0 D 0

u 0 5 0

U

U

u 0 2 C B 1 2 D E F A 5 2 D 7 A 8 0

u 0 7 4 A 3 4 D 6 E 0

U

u 0 5 6 1 9 5 6 1 9 5 9 6 D F 0

u 0 4 C F 2 4 2 C 4 D 0

U

u 0 4 F 8 C 4 9 5 E 1 7 D 4 C E 0

u 0 E 9 2 4 6 5 D 5 0

U

U

U

Time
rst

input1[3:0]

input2[3:0]

input3[3:0]

output1[3:0]

output2[3:0]

output3[3:0]

rd

rq

em1

z1_o[3:0]

add_buf_o[3:0]

em2

z2_o[3:0]

add_buf_o[3:0]

em3

z3_o[3:0]

add_buf_o[3:0]

em4

em5

em6

Figure 3.8: Timing diagram for the regular mCrypton

version has also not yet been implemented. Again, a mistake was made in the
design of a previous folded mCrypton S-box, therefore this new design architecture
is proposed.

3.3.3 Area and performance

The area in GE of the components and the total S-boxes are given in Table 3.3.
The mCrypton S-box shows to be more compact than the present S-box. The
esi controlled registers that could be dropped in the mCrypton design amount for
aroung half of the difference. The results come from heuristics so the differences do
not necessarily add up. For the folded designs, and solely based on the difference in
the shared multiplier, we have 1433 GE for the present S-box and 1356 GE for the
mCrypton S-box. The shared multiplier can be estimated to require 702 GE. The
estimates for the multiplexers are obtained from the analysis of a previous folded
design, where a 9:3 multiplexer results in 41 GE and a 6:2 multiplexer accounts for
28 GE. Both regular implementations need 89 clock cycles from the activation of the
request signal to the output of all three shares. For the folded designs, this becomes
269 clock cycles. The secure evaluation of the present S-box requires 156-bits of
randomness. For the mCrypton S-box, 132 random bits are needed. When linear
squaring would be used, this randomness drops to 36-bits and 24-bits for respectively
the present and mCrypton. For the folded designs, these numbers stay the same.
The impact on the area resulting from a higher number of shares still needs to be
investigated, but from the area of the individual components, it can be expected
that the folded designs promise a more compact result. The numbers are obtained
from synopsis using the NanGate Open Cell Library [1].

30



3.3. Designs

cnt = 1

em1 = 0
em2 = 1
ea1 = 0
ea2 = 1
if stage_cnt = 13 then eo2 = 1
cnt = 2

cnt = 0

em6 = 0
em1 = 1
ea1 = 1
if stage_cnt = 13 then eo1 = 1
cnt = 1

cnt = 3
em3 = 0
em4 = 1
ea3 = 0
cnt = 4

cnt = 2

em2 = 0
em3 = 1
ea2 = 0
ea3 = 1
if stage_cnt = 13 then eo3 = 1
cnt = 3

cnt = 4
em4 = 0
em5 = 1
cnt = 5

cnt = 5
em5 = 0
em6 = 1
cnt = 0
stage_cnt ++

PROCESS OUTPUTS

stage_cnt = 0

selmi = 01
sel_ai = 0
sel_coeff = 000

stage_cnt = 1

selmi = 01
sel_ai = 0
sel_coeff = 001

stage_cnt = 2

selmi = 01
sel_ai = 0
sel_coeff = 010

stage_cnt = 3

selmi = 01
sel_ai = 0
sel_coeff = 011

stage_cnt = 4

selmi = 10
sel_ai = 0
sel_coeff = 100

stage_cnt = 5

selmi = 11
sel_ai = 0
sel_coeff = 100

stage_cnt = 6

selmi = 01
sel_ai = 0
sel_coeff = 100

stage_cnt = 7

selmi = 11
sel_ai = 0
sel_coeff = 100

stage_cnt = 8

selmi = 01
sel_ai = 1
sel_coeff = 100

stage_cnt = 9

selmi = 01
sel_ai = 0
sel_coeff = 101

stage_cnt = 10

selmi = 01
sel_ai = 0
sel_coeff = 101

stage_cnt = 11

selmi = 01
sel_ai = 0
sel_coeff = 110

stage_cnt = 12

selmi = 01
sel_ai = 0
sel_coeff = 111

stage_cnt = 13

selmi = 01
sel_ai = 0
sel_coeff = 100

stage_cnt = 14
selmi = 00
sel_ai = 0
sel_coeff = 000
RD = 1

cnt_end = 0

eo1 = 0
reset registers share1

cnt_end = 1

eo2 = 0
reset registers share2

cnt_end = 2
eo3 = 0
RD = 0
reset registers share3
reset counters
reset control signals

DISABLE OUTPUTS

IDLE

RQ = 0 & RD = 1RQ = 1 & RD = 0

RD = 0RD = 1
PROCESS
OUTPUTS

DISABLE
OUTPUTS

Figure 3.9: Finite state machines for the regular mCrypton implementation
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Component Area (GE)
present mCrypton

Multiplier 47 47
edge_triggered_Dff 8 8
reg4 28 28
muxer_2_1 10 10
muxer_4_2 26 27
muxer_8_1 47 47
mult_el1 233 233
mult_el2 232 232
shared_mult 1360 1360
add_acc_el 127 124
add_acc 379 379
ctrl_el 120 94
ctrl 352 275
S-box 3594 3407

Table 3.3: Area in GE of the regular implementations
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Chapter 4

Side-channel Evaluation

For the practical evaluation of the side-channel leakage during the S-box calculations,
a SASEBO-G (Side-channel Attack Standard Evaluation Board) is used [25]. It
features two FPGAs: a cryptographic FPGA (Xilinx Virtex-2 Pro xc2vp7-fg456-5)
and a control FPGA (Xilinx Virtex-2 xc2vp30-fg676-5). The power consumption
traces are measured with a Tektronix DPO 7254C oscilloscope. The board is clocked
with an external frequency of 3.072MHz.

The host PC sends the following to the control FPGA through an RS-232 serial
port: two sharings of two plaintext inputs, the public coefficients α1, α2, α3 and
the corresponding λ1, λ2, λ3, a 128-bit plaintext for the AES, the desired amount of
traces and the mode of operation. Six modes of operation are supported:

1. Fixed vs. Fixed Input, Masks On

2. Fixed vs. Random Input, Masks On

3. Random vs. Random Input, Masks On

4. Fixed vs. Fixed Input, Masks Off

5. Fixed vs. Random Input, Masks Off

6. Random vs. Random Input, Masks Off

The modes without masking are used to check the measurement setup. The device
should not pass the tests as the leakage countermeasure is disabled. In that case, the
DUT essentially evaluates a non-masked S-box three times. After validating the test
setup, the masks can be turned on. When the DUT does not leak, there is confidence
that this absence of leakage is resulting from the masking countermeasure.

After receiving the data from the PC, the control FPGA executes two AES en-
cryptions. During the first encryption, the received plaintext is used, while in all
consecutive encryptions, the ciphertext from the previous encryption is input as
plaintext . The key is fixed in the FPGA during the evaluation. After the AES
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outputs are calculated and stored, they are used as pseudo random numbers. The re-
ceived input sharings are remasked and one sharing is forwarded to the cryptographic
FPGA, along with the necessary amount of random nibbles, the public coefficients
α1≤i≤3 and the first row λ1≤i≤3 of the inverse Vandermonde matrix. The control
FPGA sets a request signal RQ high and goes into an idle state before the S-box
evaluation is started. When the outputs are ready, the crypto FPGA sets a ready
signal RD high, which causes the control FPGA to go out of its idle state. After the
outputs are saved, the request signal RQ is deactivated. The crypto FPGA disables
its outputs and resets its internal registers. Before the next calculation is started, the
control FPGA waits for an adjustable amount of clock cycles to allow the fastframing
feature of the oscilloscope to work. This way traces can be collected at much faster
rates. This process is repeated until the desired amount of evaluations are done.
When the last evaluation is finished, the output shares and the last ciphertext of
the AES are send back to the PC for validation. To check the correctness of the
results, an implementation of the expected behaviour in matlab is run with the
same settings. The code was written in verilog by adapting an already existing
framework. The finite state machines of both FPGAs are given in figure 4.1.

The input sharing sent to the S-box is chosen by a coin flip. The last bit of
the AES ciphertext is used as the outcome of this tossing. Depending on the mode
of operation, both input sharings are changed in a certain way before one of them
is transmitted to the crypto FPGA. In the fixed vs. fixed operation mode, the two
reconstructed inputs keep their same value but their sharings are remasked before
each evaluation. In the fixed vs. random operation mode, the first reconstructed
input is fixed at all times but the sharing is refreshed before every evaluation. The
second input shares are obtained by masking a random 4-bit value that represents
a new reconstructed input. The random vs. random operation mode masks two
random 4-bit inputs to create two new sharings before evaluation.

By starting the measurement with the request signal RQ and stopping the measure-
ment when the ready signal RD is activated, the instantaneous power consumption
of the S-box is traced. The power traces are divided in sets based on an intermediate
value in the calculation, e.g. the input or output. The mean and variance of each set
of power traces is calculated. The t-test is then performed between two different sets
and the confidence threshold is checked.

4.1 Results

The erroneous folded mCrypton design, that is not presented in this thesis, was
analysed and shown to leak in the fixed vs. fixed mode without masking. The
next evaluation run, the masks were enabled. The design showed 1st-order leakage
when the amount of power traces were small, but disappeared when the amount of
evaluations increased. This could be due to the absence of reinitialization between
shared operations in the multiplier circuit. In addition, the behaviour of the control
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Figure 4.1: Finite state machines for the control and cryptographic FPGAs
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4. Side-channel Evaluation

FPGA at the time of the evaluation was assumed to have to much correlation between
subsequent shares. Instead of the earlier described behaviour of the operation modes,
the output shares were either discarded (fixed input) or used to overwrite the input
shares chosen for evaluation (random input). As nothing was remasked, all shares
were dependent. This mistake has been corrected to match the desired behaviour.

The SCA evaluation has not yet been performed with the updated assignation
and remasking of input shares. No conclusions can be made about the security of
the designs, although theoretically, the conditions are fulfilled, countermeasures can
only be verified by physical testing.
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Chapter 5

Conclusion

In this thesis, two 4-bit S-boxes were implemented on a hardware platform. After
the setting and the problem description were introduced, an overview was given of
the masking principles, the S-boxes and the method for practical security evaluation.
The present S-box and the mCrypton S0 S-box each were secured against 1st-order
glitch attacks by means of the polynomial masking scheme introduced in [26]. For
each S-box, two designs were then proposed. A regular design based on the guidelines
in [20] and a folded design that trades off speed with area to enable a less costly
higher-order implementation.

The regular designs result in 3594 GE for the present S-box and 3407 GE for
the mCrypton S-box. An estimation of the folded designs gives 1433 GE for the
present S-box and 1356 GE for the mCrypton S-box. Both regular implementations
need 89 clock cycles to output the shares. For the folded designs, this increases to a
total of 269 clock cycles. In both the regular and folded designs, secure evaluation re-
quires 156-bits of randomness for the present S-box and 132 random bits are needed
for the mCrypton S-box. When linear squaring would be used, this randomness
drops to 36-bits and 24-bits for respectively the present and mCrypton.

5.1 Future Work

Work for the near future includes: implementing the folded designs, validating all
design by checking their 1st-order leakage. Then, when the designs are proven to be
secure, implementations for higher orders can be considered. Accurate values regard-
ing the amount of gate equivalents can bring insights in the practical realisability of
higher order glitches freeness.
The glitch resistant polynomial masking scheme can be applied to the whole block
ciphers. This way, the impact on the whole cipher can be assessed. When the
footprint results in too expensive designs, a weaker adversary model w.r.t glitches
can be considered [26]. Another possibility for reducing the cost is to investigate less
generic and more efficient SMC protocols [26]. This way glitch free designs might
become feasible for lightweight applications. The advantage of introducing a squarer
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5. Conclusion

in the designs is the reduction of the needed randomness. This however increases
the required area. To compensate this, other, e.g. smaller multiplier architectures
can be considered.
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