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Pairings

» Let Gy, Go, Gt be groups of prime order r. A pairing is a
non-degenerate bilinear map e : Gy x Go — Gr.
» Bilinearity:
> (g1 + g2, h) = e(91, h)e(gz, h),
> e(9, hi + h2) = e(g, hi)e(g, h2).
» Non-degenerate:
» forall g # 1: 3x € G, such that e(g, x) # 1
» forall h# 1: 3x € Gy such that e(x, h) # 1
» Examples:

» Scalar product on euclidean space (-,-) : R” x R” — R.
» Weil- and Tate pairings on elliptic curves and abelian
varieties.
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Pairings in cryptography

» Exploit bilinearity: original schemes Gy = Go
» MQV: DLP reduction from G; to Gr

DLPinG; : (g, xg) = DLPin Gr : (e(g, 9) (9, 9)")
» Decision DH easy in G,
DDH : (g, ag, bg. cg) test if (g, cg) = e(ag, bg)

» |dentity based crypto, short signatures, ...
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Creating “new” pairings

» Given Gy, Go, Gt a pairing e is completely determined by
(P, Q, z) with

e(P,Q)=z and Gi =(P),G, =(Q)

» Any other non-degenerate bilinear pairing is a fixed power
of one given pairing

» Conclusion: on given prime order groups, all pairings can
be obtained as powers of Tate

» However: could be more efficient to compute than Tate

Fré Vercauteren Optimal Ate Pairings



Tate Pairing

Elliptic curves

» Let E be an elliptic curve over a finite field [y, i.e.
E:y?=x*+ax+b forp>5

» Point sets E(F ) define an abelian group by

» Chord-tangent method
» Point at infinity O € E(Fy) is neutral element.

» Hasse-Weil: number of points in E(Fg) is g+ 1 — t with

it <2vq
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Tate Pairing

Torsion subgroups

» E[r] subgroup of points of order dividing r, i.e.
Elr]={P e E(Fy) | rP = O}
» Structure of E[r] for gcd(r,q) = 1S Z/rZ x Z/rZ.
» Let r|#E(Fq), then E(Fq4)[r] gives at least one component.
» Embedding degree: k minimal with r | (gX — 1).
» Note r-roots of unity u, C F;k.
> If k > 1 then E(Fg)[r] = E[r].
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Tate Pairing

Frobenius endomorphism

Frobenius: ¢ : E — E : (x,y) — (x9,y9)
Characteristic polynomial: ¢ — [f]lop +[q] =0
Eigenvalues on E[r]: 1 and g since r | #E(Fg)

For k > 1 have g # 1 mod r, thus decomposition of E[r]
into Frobenius eigenspaces:

vV v. v Y

Elr] = E(Fg)[r] = (P) x(Q)

with o(P) = P and ¢(Q) = qQ
Notation used before: G; = (P) and Go = (Q)

v
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Tate Pairing

Recap of setup

» Elliptic curve E /IFq with r|#E(Fq)
» Security parameter k with (g — 1) = 0 mod r

= r | ®x(q)
» Nice basis of E(F 4)[r] consisting of ¢-eigenspaces

E(Fq)[r] = (P) x (Q)
with o(P) = P and »(Q) = gQ
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Tate Pairing

Functions and divisors

» Divisor is formal sum of points D = >, n;P;
» Degree of divisor deg(D) = >, n;
» Let f be a function on E, then

(=S ordp(f)(P)

PeE(Fq)

where ordp(f) denotes the order of vanishing of f at P
» Let f be a function on E and D = ), n;P; a divisor then

(o) =TT #P)"

» If deg(D) = 0 and g = cf for ¢ € F§, then f(D) = g(D).



Tate Pairing

Miller functions

v

Let P € E(Fq) and n e N.
A Miller function f, p is any function in Fy(E) with divisor

(fo,p) = n(P) — ([n]P) — (n —1)(O)

f»,p is determined up to a constant ¢ € Fj.
fn,p has a zero at P of order n.
fo p has a pole at [n] P of order 1.

v

f, p has a pole at O of order (n—1).
For every point Q # P, [n]P, O, we have f, p(Q) € Fy.

vV v. v v Y
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Tate Pairing

Tate pairing
> Let P € E(Fg)[r] and f; p € F o« (E) with

(frp) = r(P) —r(0)

» Note: f; p has zero of order r at P and pole of order r at O.

» Tate pairing is defined as (assuming normalisation)
(P,Q)r = 1,p(Q)

» Domain and image:

(et EF)[r] % E(Fge) [rE(Fqe) — F2% /(E%)

e _ (a"=1)/r
» Reduced Tate pairing: {(P, Q) = (P, Q);
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Tate Pairing

Miller’s algorithm

v

Use double-add algorithm to compute f, p for any n € N.
Exploit relation:

v

i mip

fm+n,P = fm,P *In,P
Vin+m]P

v

Imp,;mp: the line through [n]P and [m]P
Vin+-mp- the vertical line through [n + m]P
Evaluate at Q in every step

v

v
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Tate Pairing

Computing Tate pairing

Miller’s algorithm: double-add algorithm using bits of r
Loop length for Tate is log,(r)

Many optimisations when restricting domain to Gy x Go
Tate pairing still defined on the whole of E[r] x E/rE

How to construct efficient pairing only defined on Gy x G>?

vV v v v .Y
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Ate Pairing

Ate pairing

» Power of Tate pairing defined on G> x Gy, but evaluates
smaller Miller function

» ldea: consider power of Tate
HQ. P)™ = f,.q(P)™ @ /" = fr o(P)@1/"

» Follows from

fano = foq - fofa0
» If r{ m, then £, o(P) also defines non-degenerate pairing
» Ate: specific multiple of r and simplification of function
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Ate Pairing

Ate pairing
» Fix any A = g mod r, then r|(\¥ — 1), since r|(g" — 1).
> Define m= (A —1)/r, then fx_; g = fu g
» Using [\]Q = [¢']Q gives
k—2

fra = R .Q fA[a]O higna-
» Since ¢(P) = P and ¢(Q) = [q]Q we get

fi a(P) = fa(Py=io X4
» Thus: f, o(P) defines a non-degenerate pairing if r { m
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Ate Pairing

Ate pairing
» Minimal size of A: have ®,(q) =0 mod r and A = g mod r
» Thus: ®x()\) = 0 mod r, so \ at least r'/¢#(K)
» Recall: rlg+ 1 —t, so can always take A =t — 1
» Similar reasoning works for \; = ¢’ mod r
> Ate pairings: fy, o(P) with \; = g’ mod r for some i
» In several cases, one root of ®(x) mod r has size r'/#(¥)

» Question: can this bound always be achieved?
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Optimal Ate Pairings

Optimal pairing

» Optimal pairing: if pairing can be computed using

log, r/ (k) Miller iterations
» Does not imply that pairing has to be of the form f, o(P)
» For some families of elliptic curves, Ate is already optimal

» Main idea: products and fractions of pairings are also
pairings
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Optimal Ate Pairings

Generating more pairings

> Let A = mr = 3"!_, ciq’ with small coefficients ¢;
» Expand f, and divide out powers of Ate pairings

dicy,....c] :Go x Gy — pur

/ 1—1
i [ -
Q,P)— fq P) . [sit1]Q,[ciq']Q
(Q,P) (/lzol 5.q(P) 0

(P)) (g =1)/r

with s; = Z/I':i chf defines a bilinear pairing.
> If l
mkq*! # (" =1)/r)-> icig mod r,
i=0
then the pairing is non-degenerate.

Fré Vercauteren Optimal Ate Pairings



Optimal Ate Pairings

If it looks too good to be true, ...

> r| ®x(q), so could try A = ®,(q), then ¢; tiny and pairing
lc,,...,c] EXtremely efficient

» But: pairing will be degenerate!
» Should only consider X of the form
p(k)—1

A=mr= Y ¢¢

=i
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Optimal Ate Pairings

Automagical construction

» The best multiple A can be obtained as short vectors in

r 0 0 0
—q 1 0 0

[ — —¢?2 0 1 0
—ch'U‘)*1 0 ... 0 1

» Volume of L is easily seen to be r, so by Minkowski
Vel with | V]e<r/¢k)

where || V ||oo= max;|vj|.
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Optimal Ate Pairings

Lower bound on shortest vector

» The shortest vector V in L satisfies

i AL v _rew
2= okl = k)

» Idea of proof: consider number field Q[¢x] ~ Q[x]/Pk(x)
» Primeideal: p = (r, &k — q)
» Short vectors in L give elements in p of small norm
» But norm of the ideal is r so
p(k)—1

r<[No( Y vig)l = [Res(V(x), &x(x))|.

i=0
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Optimal Ate Pairings

An example

» BN-curves have k = 12 and is given by:

p(x) = 36x* + 36x3 4 24x% + 6x + 1
r(x) = 36x* +36x3 + 18x® +-6x + 1.

» The shortest vectors in the lattice L are
Vi(x) =[x+ 1,x,x,—2x] Vo(x) =[2x,x + 1, —x, X]
» Short vectors with minimal number of coefficients of size x

W(x)=[6x+2,1,—1,1]
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Optimal Ate Pairings

Conclusion

» New construction for Ate pairings
» Automagically finds best set of parameters
» Lower bound on what is possible

» For all parametrised families of curves obtain optimal
pairing
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