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Pairings

I Let G1, G2, GT be groups of prime order r . A pairing is a
non-degenerate bilinear map e : G1 ×G2 → GT .

I Bilinearity:
I e(g1 + g2,h) = e(g1,h)e(g2,h),
I e(g,h1 + h2) = e(g,h1)e(g,h2).

I Non-degenerate:
I for all g 6= 1: ∃x ∈ G2 such that e(g, x) 6= 1
I for all h 6= 1: ∃x ∈ G1 such that e(x ,h) 6= 1

I Examples:
I Scalar product on euclidean space 〈·, ·〉 : Rn × Rn → R.
I Weil- and Tate pairings on elliptic curves and abelian

varieties.
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Pairings in cryptography

I Exploit bilinearity: original schemes G1 = G2
I MOV: DLP reduction from G1 to GT

DLP inG1 : (g, xg)⇒ DLP in GT : (e(g,g),e(g,g)x )

I Decision DH easy in G1

DDH : (g,ag,bg, cg) test if e(g, cg) = e(ag,bg)

I Identity based crypto, short signatures, . . .
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Creating “new” pairings

I Given G1, G2, GT a pairing e is completely determined by
(P,Q, z) with

e(P,Q) = z and G1 = 〈P〉,G2 = 〈Q〉

I Any other non-degenerate bilinear pairing is a fixed power
of one given pairing

I Conclusion: on given prime order groups, all pairings can
be obtained as powers of Tate

I However: could be more efficient to compute than Tate
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Elliptic curves

I Let E be an elliptic curve over a finite field Fq, i.e.

E : y2 = x3 + ax + b for p > 5

I Point sets E(Fqk ) define an abelian group by
I Chord-tangent method
I Point at infinity O ∈ E(Fq) is neutral element.

I Hasse-Weil: number of points in E(Fq) is q + 1− t with

|t | ≤ 2
√

q
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Torsion subgroups

I E [r ] subgroup of points of order dividing r , i.e.

E [r ] = {P ∈ E(Fq) | rP = O}

I Structure of E [r ] for gcd(r ,q) = 1 is Z/rZ× Z/rZ.
I Let r |#E(Fq), then E(Fq)[r ] gives at least one component.
I Embedding degree: k minimal with r | (qk − 1).
I Note r -roots of unity µr ⊆ F×qk .

I If k > 1 then E(Fqk )[r ] = E [r ].
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Frobenius endomorphism

I Frobenius: ϕ : E → E : (x , y) 7→ (xq, yq)

I Characteristic polynomial: ϕ2 − [t ] ◦ ϕ+ [q] = 0
I Eigenvalues on E [r ]: 1 and q since r | #E(Fq)

I For k > 1 have q 6= 1 mod r , thus decomposition of E [r ]
into Frobenius eigenspaces:

E [r ] = E(Fqk )[r ] = 〈P〉 × 〈Q〉

with ϕ(P) = P and ϕ(Q) = qQ
I Notation used before: G1 = 〈P〉 and G2 = 〈Q〉
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Recap of setup

I Elliptic curve E/Fq with r |#E(Fq)

I Security parameter k with (qk − 1) ≡ 0 mod r

⇒ r | Φk (q)

I Nice basis of E(Fqk )[r ] consisting of ϕ-eigenspaces

E(Fqk )[r ] = 〈P〉 × 〈Q〉

with ϕ(P) = P and ϕ(Q) = qQ
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Functions and divisors
I Divisor is formal sum of points D =

∑
i niPi

I Degree of divisor deg(D) =
∑

i ni

I Let f be a function on E , then

(f ) =
∑

P∈E(Fq)

ordP(f )(P)

where ordP(f ) denotes the order of vanishing of f at P
I Let f be a function on E and D =

∑
i niPi a divisor then

f (D) =
∏

i

f (Pi)
ni

I If deg(D) = 0 and g = cf for c ∈ F×q , then f (D) = g(D).
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Miller functions

I Let P ∈ E(Fq) and n ∈ N.
I A Miller function fn,P is any function in Fq(E) with divisor

(fn,P) = n(P)− ([n]P)− (n − 1)(O)

I fn,P is determined up to a constant c ∈ F×q .
I fn,P has a zero at P of order n.
I fn,P has a pole at [n]P of order 1.
I fn,P has a pole at O of order (n − 1).
I For every point Q 6= P, [n]P,O, we have fn,P(Q) ∈ F×q .

Fré Vercauteren Optimal Ate Pairings



Pairings
Tate Pairing
Ate Pairing

Optimal Ate Pairings

Tate pairing

I Let P ∈ E(Fqk )[r ] and fr ,P ∈ Fqk (E) with

(fr ,P) = r(P)− r(O)

I Note: fr ,P has zero of order r at P and pole of order r at O.
I Tate pairing is defined as (assuming normalisation)

〈P,Q〉r = fr ,P(Q)

I Domain and image:

〈·, ·〉r : E(Fqk )[r ]× E(Fqk )/rE(Fqk )→ F×qk/(F×qk )r

I Reduced Tate pairing: t(P,Q) = 〈P,Q〉(q
k−1)/r

r
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Miller’s algorithm

I Use double-add algorithm to compute fn,P for any n ∈ N.
I Exploit relation:

fm+n,P = fm,P · fn,P ·
l[n]P,[m]P

v[n+m]P

I l[n]P,[m]P : the line through [n]P and [m]P
I v[n+m]P : the vertical line through [n + m]P
I Evaluate at Q in every step
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Computing Tate pairing

I Miller’s algorithm: double-add algorithm using bits of r
I Loop length for Tate is log2(r)

I Many optimisations when restricting domain to G1 ×G2

I Tate pairing still defined on the whole of E [r ]× E/rE
I How to construct efficient pairing only defined on G1 ×G2?
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Ate pairing

I Power of Tate pairing defined on G2 ×G1, but evaluates
smaller Miller function

I Idea: consider power of Tate

t(Q,P)m = fr ,Q(P)m(qk−1)/r = fmr ,Q(P)(qk−1)/r

I Follows from
fab,Q = f b

a,Q · fb,[a]Q

I If r - m, then fmr ,Q(P) also defines non-degenerate pairing
I Ate: specific multiple of r and simplification of function
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Ate pairing

I Fix any λ ≡ q mod r , then r |(λk − 1), since r |(qk − 1).
I Define m = (λk − 1)/r , then fλk−1,Q = fλk ,Q

I Using [λi ]Q = [qi ]Q gives

fλk ,Q = f λ
k−1

λ,Q f λ
k−2

λ,[q]Q · · · fλ,[qk−1]Q .

I Since ϕ(P) = P and ϕ(Q) = [q]Q we get

fλk ,Q(P) = fλ,Q(P)
Pk−1

i=0 λk−1−i qi

I Thus: fλ,Q(P) defines a non-degenerate pairing if r - m
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Ate pairing

I Minimal size of λ: have Φk (q) ≡ 0 mod r and λ ≡ q mod r
I Thus: Φk (λ) ≡ 0 mod r , so λ at least r1/ϕ(k)

I Recall: r |q + 1− t , so can always take λ = t − 1
I Similar reasoning works for λi ≡ qi mod r
I Ate pairings: fλi ,Q(P) with λi ≡ qi mod r for some i
I In several cases, one root of Φk (x) mod r has size r1/ϕ(k)

I Question: can this bound always be achieved?
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Optimal pairing

I Optimal pairing: if pairing can be computed using
log2 r/ϕ(k) Miller iterations

I Does not imply that pairing has to be of the form fλ,Q(P)

I For some families of elliptic curves, Ate is already optimal
I Main idea: products and fractions of pairings are also

pairings

Fré Vercauteren Optimal Ate Pairings



Pairings
Tate Pairing
Ate Pairing

Optimal Ate Pairings

Generating more pairings
I Let λ = mr =

∑l
i=0 ciqi with small coefficients ci

I Expand fλ and divide out powers of Ate pairings

a[c0,...,cl ] :G2 ×G1 → µr :

(Q,P) 7→

(
l∏

i=0

f qi

ci ,Q
(P) ·

l−1∏
i=0

l[si+1]Q,[ci qi ]Q(P)

v[si ]Q(P)

)(qk−1)/r

with si =
∑l

j=i cjqj , defines a bilinear pairing.
I If

mkqk−1 6≡ ((qk − 1)/r) ·
l∑

i=0

iciqi−1 mod r ,

then the pairing is non-degenerate.
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If it looks too good to be true, . . .

I r | Φk (q), so could try λ = Φk (q), then ci tiny and pairing
a[c0,...,cl ] extremely efficient

I But: pairing will be degenerate!
I Should only consider λ of the form

λ = mr =

ϕ(k)−1∑
j=i

cjqj
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Automagical construction

I The best multiple λ can be obtained as short vectors in

L =


r 0 0 · · · 0
−q 1 0 · · · 0
−q2 0 1 · · · 0

...
...

. . .
−qϕ(k)−1 0 . . . 0 1

 .

I Volume of L is easily seen to be r , so by Minkowski

V ∈ L with ‖ V ‖∞≤ r1/ϕ(k)

where ‖ V ‖∞= maxi |vi |.

Fré Vercauteren Optimal Ate Pairings



Pairings
Tate Pairing
Ate Pairing

Optimal Ate Pairings

Lower bound on shortest vector

I The shortest vector V in L satisfies

‖V‖2 ≥
r1/ϕ(k)

‖Φk‖2
and ‖V‖∞ ≥

r1/ϕ(k)

ϕ(k)

I Idea of proof: consider number field Q[ξk ] ' Q[x ]/Φk (x)

I Prime ideal: p = (r , ξk − q)

I Short vectors in L give elements in p of small norm
I But norm of the ideal is r so

r ≤ |No(

ϕ(k)−1∑
i=0

viξ
i
k )| = |Res(V (x),Φk (x))| .
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An example

I BN-curves have k = 12 and is given by:

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1

r(x) = 36x4 + 36x3 + 18x2 + 6x + 1 .

I The shortest vectors in the lattice L are

V1(x) = [x + 1, x , x ,−2x ] V2(x) = [2x , x + 1,−x , x ]

I Short vectors with minimal number of coefficients of size x

W (x) = [6x + 2,1,−1,1]

Fré Vercauteren Optimal Ate Pairings



Pairings
Tate Pairing
Ate Pairing

Optimal Ate Pairings

Conclusion

I New construction for Ate pairings
I Automagically finds best set of parameters
I Lower bound on what is possible
I For all parametrised families of curves obtain optimal

pairing
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