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Overview

• Hyperelliptic curves

• Zeta functions and Weil conjectures

• Monsky-Washnitzer cohomology

• Kedlaya’s algorithm for odd characteristic

• Extending Kedlaya’s algorithm to characteristic 2
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Hyperelliptic Curves

Hyperelliptic curve C of genus g over finite field Fq,

C : y2 + h(x)y = f(x)

where deg h ≤ g, f monic, deg f = 2g + 1 and C non-singular.

If char Fq > 2 one can take h = 0 and f has to be squarefree.

Jacobian Jac(C/Fq) is abelian group associated with C which is
quotient group of degree 0 divisors by principal divisors.

Problem: compute order of Jac(C/Fq).
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The Zeta Function and Weil Conjectures

Let C be smooth projective curve over Fq, then zeta function of C is

Z(t) = Z(C; t) = exp

( ∞∑
r=1

Nr
tr

r

)

with Nr the number of points on C with coordinates in Fqr .

Weil Conjectures:

• Z(t) is rational function over Z and can be written as P (t)
(1−t)(1−qt)

• P (t) =
∏2g

i=1(1− αit) with g genus of C and |αi| = √
q

• P (t) =
∑2g

i=0 ait
i with a0 = 1, a2g = qg and ag+i = qiag−i

• Nr = qr + 1−∑2g
i=0 αr

i and P (1) is the order of Jac(C/Fq)
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Unramified Extensions of p-adics

• K extension of Qp of degree n with valuation ring R and
maximal ideal MR = {x ∈ K | |x|p < 1} of R.

• K is called unramified iff its residue field R/MR
∼= Fq.

• Let Fq
∼= Fp[t]/(Q(t)) then K can be constructed as

K ∼= Qp[t]/(Q(t)),

with Q(t) any lift of Q(t) to Zp[t].

• Galois group of K over Qp is cyclic with generator Frobenius
substitution σ and σ modulo MR equals small Frobenius on Fq.
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Computing Zeta Function - General Strategy

• X smooth affine variety over Fq of dimension n

• Monsky and Washnitzer construct vectorspaces Hi(X/K) over
K with an induced action of Frobenius F∗ on it such that

Nr =
n∑

i=0

(−1)iTr
(
(qnF−1

∗ )r|Hi(X/K)
)

Z(X; t) =
∏

i odd

Pi(t)
∏

i even

Pi(t)−1,

with Pi(t) = det(1− tqnF−1
∗ |Hi(X/K)).
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Monsky-Washnitzer Cohomology

• X smooth affine variety over Fq with coordinate ring A

• Let A be finitely generated R-algebra with A/pA ∼= A

• One would like to have lift of Frobenius endomorphism on A, but
in general this is not possible.

• Working with p-adic completion A∞ of A does admit a lift, but
the de Rham cohomology of A∞ can be larger than the one of A.

• For affine line:
∑

pjxpj−1dx = d(
∑

xpj

), but
∑

xpj 6∈ A∞.

• Problem: series
∑

pjxpj−1 does not converge fast enough for its
integral to converge as well. Work with subalgebra A† satisfying
certain growth conditions.

7



'

&

$

%

Dagger rings

• Dagger ring A† of A := R[x1, . . . , xn]/(f1, . . . , fm) is

A† := R〈x1, . . . , xn〉†/(f1, . . . , fm),

where R〈x1, . . . , xn〉† consists of power series
nX

aαxα ∈ R[[x1, . . . , xn]] | ∃C, ρ ∈ R, C > 0, 0 < ρ < 1,∀α : |aα| ≤ Cρ|α|
o

,

where α := (α1, . . . , αn), xα := xα1
1 · · ·xαn

n and |α| := ∑n
i=0 αi.

• Let B/k be finitely generated, with lift B† and g : A → B be a
morphism of k-algebra’s, then there exists an R-homomorphism
G : A† → B† lifting g.
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Monsky-Washnitzer Cohomology Groups

• Define universal module D1(A†) of differentials

D1(A†) := (A† dx1 + · · ·+ A† dxn)/(
m∑

i=1

A†(
∂fi

∂x1
dx1 + · · ·+ ∂fi

∂xn
dxn)).

• Let Di(A†) :=
∧i

D1(A†) the i-th exterior product of D1(A†)
and di : Di(A†) → Di+1(A†) the exterior differentiation. Since
di+1 ◦ di = 0 we get the de Rham complex D(A†)

0 −→ D0(A†) d0−→ D1(A†) d1−→ D2(A†) d2−→ D3(A†) · · ·.

• Define i-th cohomology group Hi(A/R) := Ker di/Im di−1 and
Hi(A/K) := Hi(A/R)⊗R K gives i-th Monsky-Washnitzer
cohomology group.
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Kedlaya’s Algorithm

• Let y2 − f(x) = 0 hyperelliptic curve C of genus g over Fpn with
p small, odd prime.

• Affine curve C
′
obtained from C by deleting support of divisor of

y, then coordinate ring A of C
′
is Fq[x, y, y−1]/(y2 − f(x)).

• Lift C
′
to C ′ over R by taking any lift f(x) ∈ R[x] of f(x) and

removing point at infinity and Weierstrass points of the affine
curve curve y2 − f(x) = 0.

• The coordinate ring of C ′ then is A = R[x, y, y−1]/(y2 − f(x)).

• The elements of the dagger ring A† can be viewed as series∑+∞
k=−∞(Sk(x) + Tk(x)y)y2k with deg Sk, deg Tk ≤ 2g and

valuation of Sk and Tk grows linearly with |k|.
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Kedlaya’s Algorithm

• For a smooth affine curve C
′
one has Hi(A/K) = 0 for i > 1.

• Only need to look at H0(A/K) and H1(A/K):

– From the definition we see that H0(A/K) = K

– Kedlaya proves that H1(A/K) = H1(A/K)+ ⊕H1(A/K)−

∗ H1(A/K)+ is invariant under involution and generated by
xidx/y2 for i = 0, . . . , 2g

∗ H1(A/K)− is anti-invariant under involution and generated
by xidx/y for i = 0, . . . , 2g − 1

• The invariant part corresponds to the 2g + 1 removed points with
y-coordinate zero.
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• The characteristic polynomial of F∗ on H1(A/K)− equals
χ(t) := t2gP (1/t) with Z(C; t) = P (t)

(1−t)(1−qt) .
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Lifting Frobenius to Dagger Ring A†

Lift σ to σ : A† −→ A† as

xσ := xp and σ(y) satisfies (yσ)2 = f(x)σ.

Formula for yσ as element of A†:

yσ = (f(x)σ)1/2

= (f(x)σ − f(x)p + f(x)p)1/2

= f(x)p/2(1 +
f(x)σ − f(x)p

f(x)p
)1/2

= yp
∞∑

k=0

(
1/2
k

)
(f(x)σ − f(x)p)k

y2pk
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Computing Action of Frobenius on H1(A/K)−

• The action of σ∗ on a differential form xkdx/y is given by

σ∗(xkdx/y) ≡ pxpk+p−1dx/σ(y).

• Using the equation of the curve and subtracting suitable exact
differentials we can express σ∗(xkdx/yl) again on H1(A/K)−.

• This gives matrix M which is an approximation of the action of
σ∗ on H1(A/K)−.

• The polynomial χ(t) := t2gP (1/t) can then be approximated by
the characteristic polynomial of MMσ · · ·Mσn−1

.
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Kedlaya in Characteristic 2 - First Attempt

• Let C be hyperelliptic curve over F2n given by the equation

C : y2 + h(x)y = f(x).

• Consider C
′
obtained from C by removing the support of the

divisor of 2y + h(x), then the coordinate ring of C
′
is

A = F2n [x, y, (2y + h(x))−1]/(y2 + h(x)y − f(x)).

• Take any lift C : y2 + h(x)y − f(x) = 0 of C over R and consider
the curve C ′ obtained from C by removing the support of divisor
of 2y + h(x), then C ′ has coordinate ring

A = R[x, y, (2y + h(x))−1]/(y2 + h(x)y − f(x)).
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Kedlaya in Characteristic 2 - First Attempt

• Write the curve C as (2y + h(x))2 = 4f(x) + h(x)2, then we are
in a similar situation as Kedlaya’s original algorithm.

• Lifting σ to A† as xσ = x2 and (2y + h(x))σ defined by
((2y + h(x))σ)2 = 4f(x)σ + (h(x)σ)2 gives problems, since during
Newton iteration one has to reduce modulo 4f(x) + h(x)2.

• The dimension of H1(A/K) is determined by the number of
points one removes from C. Kedlaya finds a basis for H1(A/K)
by constructing a basis for the de Rham cohomology of A and
proving that this also gives a basis for H1(A/K).

• The dimension of the de Rham cohomology is determined by the
number of points you remove from C.

16



'

&

$

%

Kedlaya in Characteristic 2 - Isomorphic Curve

• Given the hyperelliptic curve C : y2 + h(x)y = f(x), let θi ∈ Fq

for i = 1, . . . , s be the different zeros of h(x).

• Define the polynomial H(x) =
∏s

i=0(x− θi) ∈ Fq[x].

• We can assume that H(x) | f(x), since the isomorphism defined
by x 7→ x and y 7→ y +

∑s
i=0 bix

i transforms the curve in

y2 + h(x)y = f(x)−
s∑

i=0

b2
i x

2i − h(x)
s∑

i=0

bix
i.

• Sufficient to choose bi ∈ Fq such that f(θj) =
∑s

i=0 b2
i · θ

2i

j for
j = 0, . . . , s.
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Kedlaya in Characteristic 2 - Lift of Curve

• Consider the curve C
′
by removing the point at infinity and the s

points (θi, 0) for i = 1, . . . , s. The coordinate ring A of C ′ is

F2n [x, y, H(x)−1]/(y2 + h(x)y − f(x)).

• Take any lift H(x) ∈ R[x] of H(x) and lift h(x) and f(x) in such
a way that H(x)|h(x) and H(x)|f(x).

• Consider the curve C ′ obtained from C : y2 + h(x)y − f(x) = 0
by removing the point at infinity and the s points (θi, 0) with
H(θi) = 0 for i = 1, . . . , s. Then the coordinate ring A of C ′ is

R[x, y, H(x)−1]/(y2 + h(x)y − f(x)).
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Kedlaya in Characteristic 2 - Dagger Ring

• Let A† be the dagger ring of A. Any element of A† can be
written as a series

∑∞
k=−∞(Sk(x) + Tk(x)y)H(x)k, with

deg Sk,deg Tk ≤ deg H.

• The growth condition on the dagger ring implies that the
valuation of Sk, Tk grows linearly with |k|.

• Lift σ to an endomorphism σ of A† by defining it as xσ = x2 and
yσ by (yσ)2 + h(x)σyσ − f(x)σ = 0.

• An approximation for yσ is computed as a Laurent series∑L
i=−L(Si(x) + Ti(x)y)H(x)i via the Newton iteration

Wk+1 = Wk − W 2
k + h(x)σWk − f(x)σ

2Wk + h(x)σ
mod 2k+1.
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Kedlaya in Characteristic 2 - H1(A/K)

• The de Rham cohomology of A splits under involution:

– invariant part generated by xi/H(x) dx for 0 ≤ i < deg H

– anti-invariant part generated by xiy dx for 0 ≤ i < 2g

• Analogous to Kedlaya, we devise reduction formulae to express
any differential form on this basis.

• The reduction of Tk(x)H(x)ky dx becomes integral upon
multiplication with c = 3 + blog2(|k + 1| · deg H + g + 1)c.

• Basis for the de Rham cohomology of A is basis for H1(A/K).
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Kedlaya in Characteristic 2 - Zeta Function

• Again it is sufficient to compute the action of Frobenius F∗ on
H1(A/K)− to recover the characteristic polynomial χ(t).

• The action of σ∗ on a differential form xkydx is given by

σ∗(xkydx) ≡ 2x2k+1yσdx.

• Substituting the approximation for yσ, we can write σ∗(xkydx)
on the basis of H1(A/K)− using the reduction formulae.

• This gives matrix M which is an approximation of the action of
σ∗ on H1(A/K)−.

• The polynomial χ(t) := t2gP (1/t) can then be approximated by
the characteristic polynomial of MMσ · · ·Mσn−1

.
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Conclusions

• Now possible to compute the zeta function of hyperelliptic curve
over finite field of any small characteristic.

• Complexity: O(g5+εn3+ε) operations and O(g3n3) space.

• Resulting algorithms can be used to generate hyperelliptic curves
suitable for cryptography, but not as fast as AGM.

• Can we get rid of cubic space complexity ?

• How easy is the algorithm to write down for more general curves
or even surfaces ?
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