Counting Points on Hyperelliptic Curves over Finite Fields of Small Characteristic

Frederik Vercauteren

Computer Science Department University of Bristol Woodland Road, Bristol BS8 1UB, United Kingdom frederik@cs.bris.ac.uk

Overview

- Hyperelliptic curves
- Zeta functions and Weil conjectures
- Monsky-Washnitzer cohomology
- Kedlaya's algorithm for odd characteristic
- Extending Kedlaya's algorithm to characteristic 2

Hyperelliptic Curves

Hyperelliptic curve \overline{C} of genus g over finite field \mathbb{F}_q ,

 $\overline{C}: y^2 + \overline{h}(x)y = \overline{f}(x)$

where deg $\overline{h} \leq g$, \overline{f} monic, deg $\overline{f} = 2g + 1$ and \overline{C} non-singular. If char $\mathbb{F}_q > 2$ one can take $\overline{h} = 0$ and \overline{f} has to be squarefree. Jacobian $\operatorname{Jac}(\overline{C}/\mathbb{F}_q)$ is abelian group associated with \overline{C} which is quotient group of degree 0 divisors by principal divisors.

Problem: compute order of $\operatorname{Jac}(\overline{C}/\mathbb{F}_q)$.

The Zeta Function and Weil Conjectures

Let \overline{C} be smooth projective curve over \mathbb{F}_q , then zeta function of \overline{C} is

$$Z(t) = Z(\overline{C}; t) = \exp\left(\sum_{r=1}^{\infty} N_r \frac{t^r}{r}\right)$$

with N_r the number of points on \overline{C} with coordinates in \mathbb{F}_{q^r} . Weil Conjectures:

• Z(t) is rational function over \mathbb{Z} and can be written as $\frac{P(t)}{(1-t)(1-qt)}$

•
$$P(t) = \prod_{i=1}^{2g} (1 - \alpha_i t)$$
 with g genus of \overline{C} and $|\alpha_i| = \sqrt{q}$

•
$$P(t) = \sum_{i=0}^{2g} a_i t^i$$
 with $a_0 = 1$, $a_{2g} = q^g$ and $a_{g+i} = q^i a_{g-i}$

• $N_r = q^r + 1 - \sum_{i=0}^{2g} \alpha_i^r$ and P(1) is the order of $\operatorname{Jac}(\overline{C}/\mathbb{F}_q)$

Unramified Extensions of *p***-adics**

- K extension of \mathbb{Q}_p of degree n with valuation ring R and maximal ideal $M_R = \{x \in K \mid |x|_p < 1\}$ of R.
- K is called unramified iff its residue field $R/M_R \cong \mathbb{F}_q$.
- Let $\mathbb{F}_q \cong \mathbb{F}_p[t]/(\overline{Q}(t))$ then K can be constructed as

 $K \cong \mathbb{Q}_p[t]/(Q(t)),$

with Q(t) any lift of $\overline{Q}(t)$ to $\mathbb{Z}_p[t]$.

• Galois group of K over \mathbb{Q}_p is cyclic with generator Frobenius substitution σ and σ modulo M_R equals small Frobenius on \mathbb{F}_q .

Computing Zeta Function - General Strategy

- \overline{X} smooth affine variety over \mathbb{F}_q of dimension n
- Monsky and Washnitzer construct vectorspaces $H^i(\overline{X}/K)$ over K with an induced action of Frobenius F_* on it such that

$$N_r = \sum_{i=0}^n (-1)^i \operatorname{Tr} \left((q^n F_*^{-1})^r | H^i(\overline{X}/K) \right)$$

$$Z(\overline{X};t) = \prod_{i \text{ odd}} P_i(t) \prod_{i \text{ even}} P_i(t)^{-1},$$

with $P_i(t) = \det(1 - tq^n F_*^{-1} | H^i(\overline{X}/K)).$

Monsky-Washnitzer Cohomology

- \overline{X} smooth affine variety over \mathbb{F}_q with coordinate ring \overline{A}
- Let A be finitely generated R-algebra with $A/pA \cong \overline{A}$
- One would like to have lift of Frobenius endomorphism on A, but in general this is not possible.
- Working with p-adic completion A[∞] of A does admit a lift, but the de Rham cohomology of A[∞] can be larger than the one of A.
- For affine line: $\sum p^j x^{p^j 1} dx = d(\sum x^{p^j})$, but $\sum x^{p^j} \notin A^{\infty}$.
- Problem: series $\sum p^j x^{p^j-1}$ does not converge fast enough for its integral to converge as well. Work with subalgebra A^{\dagger} satisfying certain growth conditions.

Dagger rings

• Dagger ring A^{\dagger} of $A := R[x_1, \dots, x_n]/(f_1, \dots, f_m)$ is

$$A^{\dagger} := R\langle x_1, \dots, x_n \rangle^{\dagger} / (f_1, \dots, f_m),$$

where $R\langle x_1, \ldots, x_n \rangle^{\dagger}$ consists of power series

 $\left\{\sum a_{\alpha}x^{\alpha} \in R[[x_1, \dots, x_n]] \mid \exists C, \rho \in \mathbb{R}, C > 0, 0 < \rho < 1, \forall \alpha : |a_{\alpha}| \le C\rho^{|\alpha|}\right\},\$

where $\alpha := (\alpha_1, \ldots, \alpha_n), x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ and $|\alpha| := \sum_{i=0}^n \alpha_i$.

• Let \overline{B}/k be finitely generated, with lift B^{\dagger} and $g: \overline{A} \to \overline{B}$ be a morphism of k-algebra's, then there exists an R-homomorphism $G: A^{\dagger} \to B^{\dagger}$ lifting g.

Monsky-Washnitzer Cohomology Groups

• Define universal module $D^1(A^{\dagger})$ of differentials

$$D^{1}(A^{\dagger}) := (A^{\dagger} \ dx_{1} + \dots + A^{\dagger} \ dx_{n}) / (\sum_{i=1}^{m} A^{\dagger} (\frac{\partial f_{i}}{\partial x_{1}} \ dx_{1} + \dots + \frac{\partial f_{i}}{\partial x_{n}} \ dx_{n})).$$

• Let $D^i(A^{\dagger}) := \bigwedge^i D^1(A^{\dagger})$ the *i*-th exterior product of $D^1(A^{\dagger})$ and $d_i : D^i(A^{\dagger}) \to D^{i+1}(A^{\dagger})$ the exterior differentiation. Since $d_{i+1} \circ d_i = 0$ we get the de Rham complex $D(A^{\dagger})$

 $0 \longrightarrow D^0(A^{\dagger}) \xrightarrow{d_0} D^1(A^{\dagger}) \xrightarrow{d_1} D^2(A^{\dagger}) \xrightarrow{d_2} D^3(A^{\dagger}) \cdots$

• Define *i*-th cohomology group $H^i(\overline{A}/R) := \text{Ker } d_i/\text{Im } d_{i-1}$ and $H^i(\overline{A}/K) := H^i(\overline{A}/R) \otimes_R K$ gives *i*-th Monsky-Washnitzer cohomology group.

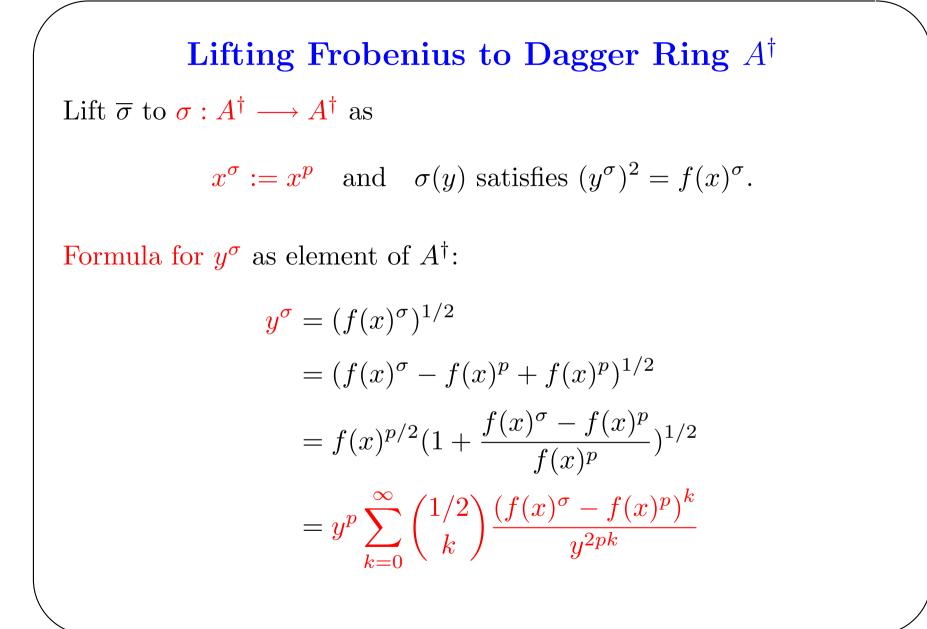
Kedlaya's Algorithm

- Let $y^2 \overline{f}(x) = 0$ hyperelliptic curve \overline{C} of genus g over \mathbb{F}_{p^n} with p small, odd prime.
- Affine curve \overline{C}' obtained from C by deleting support of divisor of y, then coordinate ring \overline{A} of \overline{C}' is $\mathbb{F}_q[x, y, y^{-1}]/(y^2 \overline{f}(x))$.
- Lift \overline{C}' to C' over R by taking any lift $f(x) \in R[x]$ of $\overline{f}(x)$ and removing point at infinity and Weierstrass points of the affine curve curve $y^2 - f(x) = 0$.
- The coordinate ring of C' then is $A = R[x, y, y^{-1}]/(y^2 f(x))$.
- The elements of the dagger ring A^{\dagger} can be viewed as series $\sum_{k=-\infty}^{+\infty} (S_k(x) + T_k(x)y)y^{2k}$ with deg S_k , deg $T_k \leq 2g$ and valuation of S_k and T_k grows linearly with |k|.

Kedlaya's Algorithm

- For a smooth affine curve \overline{C}' one has $H^i(\overline{A}/K) = 0$ for i > 1.
- Only need to look at $H^0(\overline{A}/K)$ and $H^1(\overline{A}/K)$:
 - From the definition we see that $H^0(\overline{A}/K) = K$
 - Kedlaya proves that $H^1(\overline{A}/K) = H^1(\overline{A}/K)^+ \oplus H^1(\overline{A}/K)^-$
 - * $H^1(\overline{A}/K)^+$ is invariant under involution and generated by $x^i dx/y^2$ for i = 0, ..., 2g
 - * $H^1(\overline{A}/K)^-$ is anti-invariant under involution and generated by $x^i dx/y$ for $i = 0, \dots, 2g - 1$
- The invariant part corresponds to the 2g + 1 removed points with y-coordinate zero.

• The characteristic polynomial of F_* on $H^1(\overline{A}/K)^-$ equals $\chi(t) := t^{2g} P(1/t)$ with $Z(\overline{C}; t) = \frac{P(t)}{(1-t)(1-qt)}$.



Computing Action of Frobenius on $H^1(\overline{A}/K)^-$

• The action of σ_* on a differential form $x^k dx/y$ is given by

$$\sigma_*(x^k dx/y) \equiv p x^{pk+p-1} dx/\sigma(y).$$

- Using the equation of the curve and subtracting suitable exact differentials we can express $\sigma_*(x^k dx/y^l)$ again on $H^1(\overline{A}/K)^-$.
- This gives matrix M which is an approximation of the action of σ_* on $H^1(\overline{A}/K)^-$.
- The polynomial $\chi(t) := t^{2g} P(1/t)$ can then be approximated by the characteristic polynomial of $MM^{\sigma} \cdots M^{\sigma^{n-1}}$.

Kedlaya in Characteristic 2 - First Attempt

• Let \overline{C} be hyperelliptic curve over \mathbb{F}_{2^n} given by the equation

 $\overline{C}: y^2 + \overline{h}(x)y = \overline{f}(x).$

• Consider \overline{C}' obtained from \overline{C} by removing the support of the divisor of $2y + \overline{h}(x)$, then the coordinate ring of \overline{C}' is

 $\overline{A} = \mathbb{F}_{2^n}[x, y, (2y + \overline{h}(x))^{-1}]/(y^2 + \overline{h}(x)y - \overline{f}(x)).$

 Take any lift C: y² + h(x)y - f(x) = 0 of C over R and consider the curve C' obtained from C by removing the support of divisor of 2y + h(x), then C' has coordinate ring

 $A = R[x, y, (2y + h(x))^{-1}]/(y^2 + h(x)y - f(x)).$

Kedlaya in Characteristic 2 - First Attempt

- Write the curve C as $(2y + h(x))^2 = 4f(x) + h(x)^2$, then we are in a similar situation as Kedlaya's original algorithm.
- Lifting σ to A^{\dagger} as $x^{\sigma} = x^2$ and $(2y + h(x))^{\sigma}$ defined by $((2y + h(x))^{\sigma})^2 = 4f(x)^{\sigma} + (h(x)^{\sigma})^2$ gives problems, since during Newton iteration one has to reduce modulo $4f(x) + h(x)^2$.
- The dimension of H¹(A/K) is determined by the number of points one removes from C. Kedlaya finds a basis for H¹(A/K) by constructing a basis for the de Rham cohomology of A and proving that this also gives a basis for H¹(A/K).
- The dimension of the de Rham cohomology is determined by the number of points you remove from *C*.

Kedlaya in Characteristic 2 - Isomorphic Curve

- Given the hyperelliptic curve $\overline{C}: y^2 + \overline{h}(x)y = \overline{f}(x)$, let $\overline{\theta}_i \in \overline{\mathbb{F}}_q$ for $i = 1, \ldots, s$ be the different zeros of $\overline{h}(x)$.
- Define the polynomial $\overline{H}(x) = \prod_{i=0}^{s} (x \overline{\theta}_i) \in \mathbb{F}_q[x]$.
- We can assume that $\overline{H}(x) | \overline{f}(x)$, since the isomorphism defined by $x \mapsto x$ and $y \mapsto y + \sum_{i=0}^{s} b_i x^i$ transforms the curve in

$$y^{2} + h(x)y = f(x) - \sum_{i=0}^{s} b_{i}^{2}x^{2i} - h(x)\sum_{i=0}^{s} b_{i}x^{i}$$

• Sufficient to choose $b_i \in \mathbb{F}_q$ such that $f(\overline{\theta}_j) = \sum_{i=0}^s b_i^2 \cdot \overline{\theta}_j^{2i}$ for $j = 0, \dots, s$.

Kedlaya in Characteristic 2 - Lift of Curve

• Consider the curve \overline{C}' by removing the point at infinity and the *s* points $(\overline{\theta}_i, 0)$ for $i = 1, \ldots, s$. The coordinate ring \overline{A} of C' is

 $\mathbb{F}_{2^n}[x, y, \overline{H}(x)^{-1}]/(y^2 + \overline{h}(x)y - \overline{f}(x)).$

- Take any lift $H(x) \in R[x]$ of $\overline{H}(x)$ and lift $\overline{h}(x)$ and $\overline{f}(x)$ in such a way that H(x)|h(x) and H(x)|f(x).
- Consider the curve C' obtained from $C: y^2 + h(x)y f(x) = 0$ by removing the point at infinity and the *s* points $(\theta_i, 0)$ with $H(\theta_i) = 0$ for i = 1, ..., s. Then the coordinate ring A of C' is

 $R[x, y, H(x)^{-1}]/(y^2 + h(x)y - f(x)).$

Kedlaya in Characteristic 2 - Dagger Ring

- Let A^{\dagger} be the dagger ring of A. Any element of A^{\dagger} can be written as a series $\sum_{k=-\infty}^{\infty} (S_k(x) + T_k(x)y)H(x)^k$, with $\deg S_k, \deg T_k \leq \deg H$.
- The growth condition on the dagger ring implies that the valuation of S_k, T_k grows linearly with |k|.
- Lift $\overline{\sigma}$ to an endomorphism σ of A^{\dagger} by defining it as $x^{\sigma} = x^2$ and y^{σ} by $(y^{\sigma})^2 + h(x)^{\sigma}y^{\sigma} f(x)^{\sigma} = 0$.
- An approximation for y^{σ} is computed as a Laurent series $\sum_{i=-L}^{L} (S_i(x) + T_i(x)y) H(x)^i \text{ via the Newton iteration}$

$$W_{k+1} = W_k - \frac{W_k^2 + h(x)^{\sigma} W_k - f(x)^{\sigma}}{2W_k + h(x)^{\sigma}} \mod 2^{k+1}$$

Kedlaya in Characteristic 2 - $H^1(\overline{A}/K)$

- The de Rham cohomology of A splits under involution:
 - invariant part generated by $x^i/H(x) dx$ for $0 \le i < \deg H$
 - anti-invariant part generated by $x^i y \, dx$ for $0 \le i < 2g$
- Analogous to Kedlaya, we devise reduction formulae to express any differential form on this basis.
- The reduction of $T_k(x)H(x)^k y \, dx$ becomes integral upon multiplication with $c = 3 + \lfloor \log_2(|k+1| \cdot \deg H + g + 1) \rfloor$.
- Basis for the de Rham cohomology of A is basis for $H^1(\overline{A}/K)$.

Kedlaya in Characteristic 2 - Zeta Function

- Again it is sufficient to compute the action of Frobenius F_* on $H^1(\overline{A}/K)^-$ to recover the characteristic polynomial $\chi(t)$.
- The action of σ_* on a differential form $x^k y dx$ is given by

 $\sigma_*(x^k y dx) \equiv 2x^{2k+1} y^\sigma dx.$

- Substituting the approximation for y^{σ} , we can write $\sigma_*(x^k y dx)$ on the basis of $H^1(\overline{A}/K)^-$ using the reduction formulae.
- This gives matrix M which is an approximation of the action of σ_* on $H^1(\overline{A}/K)^-$.
- The polynomial $\chi(t) := t^{2g} P(1/t)$ can then be approximated by the characteristic polynomial of $MM^{\sigma} \cdots M^{\sigma^{n-1}}$.

Conclusions

- Now possible to compute the zeta function of hyperelliptic curve over finite field of any small characteristic.
- Complexity: $O(g^{5+\epsilon}n^{3+\epsilon})$ operations and $O(g^3n^3)$ space.
- Resulting algorithms can be used to generate hyperelliptic curves suitable for cryptography, but not as fast as AGM.
- Can we get rid of cubic space complexity ?
- How easy is the algorithm to write down for more general curves or even surfaces ?