Counting Points on Hyperelliptic Curves over
Finite Fields of Small Characteristic

Frederik Vercauteren

Computer Science Department
University of Bristol
Woodland Road, Bristol BS8 1UB, United Kingdom

frederik@cs.bris.ac.uk




Overview

Hyperelliptic curves

Zeta tunctions and Weil conjectures
Monsky-Washnitzer cohomology
Kedlaya’s algorithm for odd characteristic

Extending Kedlaya’s algorithm to characteristic 2




-

Hyperelliptic Curves

Hyperelliptic curve C of genus g over finite field F,,,
C:y* +h(x)y = f(z)

where deg h < g, f monic, deg f = 29 + 1 and C non-singular.
If char F, > 2 one can take h =0 and f has to be squarefree.

Jacobian Jac(C/F,) is abelian group associated with C' which is
quotient group of degree 0 divisors by principal divisors.

Problem: compute order of Jac(C/F,).
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/ The Zeta Function and Weil Conjectures \

Let C' be smooth projective curve over F,, then zeta function of C is

Z(t) = Z(C;t) = exp (i Nrt?f)

with N, the number of points on C with coordinates in Fyr.

Weil Conjectures:

e 7(t) is rational function over Z and can be written as (1_5((?_(1 0
e P(t) = H?il(l — a;t) with g genus of C and |a;| = /g
e P(t) = ?io a;t" with ag = 1, agy = ¢9 and a,4; = q'ay—;

e N.=¢q" +1-— ?io af and P(1) is the order of Jac(C/F,)
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Unramified Extensions of p-adics

K extension of Q, of degree n with valuation ring R and
maximal ideal Mp = {x € K | |z|, < 1} of R.

K is called unramified iff its residue field R/Mpr = F,,.

Let F, 2 F,[t]/(Q(t)) then K can be constructed as
K= Qplt]/(Q1)),
with Q(t) any lift of Q(t) to Z,[t].

Galois group of K over Q, is cyclic with generator Frobenius

substitution o and o modulo Mg equals small Frobenius on F,.
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Computing Zeta Function - General Strategy

e X smooth affine variety over [F, of dimension n

e Monsky and Washnitzer construct vectorspaces H*(X /K) over
K with an induced action of Frobenius F. on it such that

N, Z 1)"Tr ((¢"F, 1) | H (X /K))

=1l po) 1] 2@

7 odd 7 even

with P;(t) = det(1 — t¢"F'|HY (X /K)).




/ Monsky-Washnitzer Cohomology \

e X smooth affine variety over F, with coordinate ring A
o Let A be finitely generated R-algebra with A/pA = A

e One would like to have lift of Frobenius endomorphism on A, but

in general this is not possible.

e Working with p-adic completion A of A does admit a lift, but
the de Rham cohomology of A% can be larger than the one of A.

e For affine line: Y pia?’ ~ldx = d(S 2P’), but S aP & A

e Problem: series 3" p/2?’ ! does not converge fast enough for its
integral to converge as well. Work with subalgebra A" satisfying

certain growth conditions.
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Dagger rings
o Dagger ring AT of A:= R[x1,...,z,]/(f1,.-., fm) is

AT = Rlay, - wn) /(i fin)s

where R(x1,...,x,)" consists of power series

{Zaa:no‘ € R[[z1,...,x,]] | C,p e R,C > 0,0 < p < 1,Va : |aa| §Cp|o‘|},

=gt 22 and |af =00 i

where a = (a,...,Qy), a

e Let B/k be finitely generated, with lift BT and g: A — B be a
morphism of k-algebra’s, then there exists an R-homomorphism
G : A" — BT lifting g.
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/ Monsky-Washnitzer Cohomology (Groups

e Define universal module D'(A") of differentials

Ofi Ofi
T :
8%1 dxl i ékzzn

DY(AY = (AT day + -+ AT day,)/ ZA

o Let DI(AT) := A’ D' (A1) the i-th exterior product of D(A")
and d; : D*(AT) — D*t1(AT) the exterior differentiation. Since
diy1 0d; =0 we get the de Rham complex D(AT)

0 — DO(AT) 25 DAY & p2(At) 22 p3(at)...

e Define i-th cohomology group H'(A/R) := Ker d; /Im d;_; and
HY(A/K):= H(A/R) ®r K gives i-th Monsky-Washnitzer

cohomology group.

~
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Kedlaya’s Algorithm \

Let y? — f(x) = 0 hyperelliptic curve C of genus g over F,» with
p small, odd prime.

Affine curve C obtained from C’ by deleting support of divisor of
y, then coordinate ring A of C is F Jdr,y, v/ (v? — f(x)).

Lift C' to C' over R by taking any lift f(x) € R[z] of f(x) and
removing point at infinity and Weierstrass points of the affine

curve curve y° — f(x) = 0.
The coordinate ring of C’ then is A = Rlz, v,y *]/(y* — f(x)).

The elements of the dagger ring AT can be viewed as series
Zk_ (Sk(z) + Ty(z)y)y** with deg Sk, deg Ty, < 2g and

valuation of Sy and T}, grows linearly with |k|.

/
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Kedlaya’s Algorithm

e For a smooth affine curve C' one has H' (A/K) =0 for i > 1.
e Only need to look at HY(A/K) and H'(A/K):

— From the definition we see that H%(A/K) = K
— Kedlaya proves that H'(A/K) = HY(A/K)™ ® H'(A/K)~
x H'(A/K)™ is invariant under involution and generated by
xldr/y? for i =0,...,2g
x+ H'(A/K)™ is anti-invariant under involution and generated
by x'dx/y for i =0,...,29 — 1

e The invariant part corresponds to the 2g + 1 removed points with
y-coordinate zero.

\_ /
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e The characteristic polynomial of F, on H'(A/K)~ equals

x(t) == 129 P(1/t) with Z(C;t) = =p(i=ery-
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Lift 7 too: AT — AT as

~

Lifting Frobenius to Dagger Ring A’

o)

7 ;=2 and o(y) satisfies (y7)* = f(z)°.

Formula for y” as element of AT:

Y7 = (f(z)7)"/?

(122) <f<x>0y;p£<x>p>k

Yy

k=0
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Computing Action of Frobenius on H!(A/K)~

The action of o, on a differential form x*dx/y is given by

o (xFdx/y) = paP* TP dx Jo(y).

Using the equation of the curve and subtracting suitable exact

differentials we can express o, (z"dz/y') again on H*(A/K)

This gives matrix M which is an approximation of the action of
0. on HY(A/K)™.

The polynomial () := t*9P(1/t) can then be approximated by
the characteristic polynomial of MM? ... M°" .
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/ Kedlaya in Characteristic 2 - First Attempt \

e Let C be hyperelliptic curve over Fon given by the equation

C:y* + h(z)y = f(x).

e Consider C' obtained from C by removing the support of the
divisor of 2y + h(zx), then the coordinate ring of C is

A =Tonz,y, 2y + h(2)) ']/ (v° + h(z)y — f(x)).

e Take any lift C : 4> + h(z)y — f(z) = 0 of C over R and consider

the curve C’ obtained from C by removing the support of divisor
of 2y + h(x), then C”" has coordinate ring

A= Rlz,y, 2y + h(z)) ]/ (y* + h(z)y — f(2)).

\_ /
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/ Kedlaya in Characteristic 2 - First Attempt \

e Write the curve C as (2y + h(z))? = 4f(x) + h(z)?, then we are
in a similar situation as Kedlaya’s original algorithm.

e Lifting o to A" as 27 = 22 and (2y + h(z))° defined by
((2y + h(x))?)? = 4f(2)° + (h(x)?)? gives problems, since during

Newton iteration one has to reduce modulo 4f(z) + h(x)?.

e The dimension of H!(A/K) is determined by the number of
points one removes from C. Kedlaya finds a basis for H'(A/K)
by constructing a basis for the de Rham cohomology of A and
proving that this also gives a basis for H!(A/K).

e The dimension of the de Rham cohomology is determined by the

number of points you remove from C.

\_ /
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/Kedlaya in Characteristic 2 - Isomorphic Curve\

e Given the hyperelliptic curve C : y* + h(z)y = f(2), let 6; € F,
for i = 1,...,s be the different zeros of h(z).

e Define the polynomial H(z) = [[_,(z — 0;) € F,[z].

e We can assume that H(z) | f(x), since the isomorphism defined

by x—axandy—y+ >, b;z" transforms the curve in
y2 + h(z 252 = h(x) ) b
i=0

e Sufficient to choose b; € F, such that f(6;) =>"_ b7 531 for
7=0,...,s8

x | Y,
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/ Kedlaya in Characteristic 2 - Lift of Curve \

e Consider the curve C’ by removing the point at infinity and the s
points (6;,0) for i = 1,...,s. The coordinate ring A of C" is

]F2” [,CC, y,ﬁ(ﬂf)_l]/(yQ + E(I)y o f(ZC))

e Take any lift H(z) € R[x] of H(x) and lift A(x) and f(z) in such
a way that H(x)|h(z) and H(x)|f(x).

e Consider the curve C’ obtained from C' : y* + h(z)y — f(z) = 0
by removing the point at infinity and the s points (0;,0) with
H(0;) =0fori=1,...,s. Then the coordinate ring A of C’ is

Rlz,y, H(z)"']/(y* + h(z)y — f(2)).

\_ /
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/ Kedlaya in Characteristic 2 - Dagger Ring \

o Let A" be the dagger ring of A. Any element of A" can be
written as a series Y - (Sk(x) + Tk (2)y)H (x)", with
deg Sk, deg T < deg H.

e The growth condition on the dagger ring implies that the
valuation of Sk, Ty grows linearly with |k|.

e Lift & to an endomorphism o of AT by defining it as 2% = z? and
y? by (y7)° + h(x)?y" — f(x)” =0.

e An approximation for y? is computed as a Laurent series
ZZ-L:_L(Sz‘(CE) + T;(x)y)H ()" via the Newton iteration

W2+ h(z)° Wy, — f(z)° 5
W = Wy — d 2~ +1,
R Wy + h(z)e

\_ /
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Kedlaya in Characteristic 2 - H!(A/K)

The de Rham cohomology of A splits under involution:

— invariant part generated by z'/H (z) dx for 0 < i < deg H

— anti-invariant part generated by z'y dz for 0 < i < 2g

Analogous to Kedlaya, we devise reduction formulae to express
any differential form on this basis.

The reduction of T} (x)H (x)*y do becomes integral upon
multiplication with ¢ = 3 + [log,(|k + 1| -deg H + g+ 1)].

Basis for the de Rham cohomology of A is basis for H'(A/K).
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/ Kedlaya in Characteristic 2 - Zeta Function \

e Again it is sufficient to compute the action of Frobenius F, on

H'(A/K)~ to recover the characteristic polynomial x(¢).
e The action of o, on a differential form z*ydz is given by

o, (2" ydr) = 2227 Ty da.

e Substituting the approximation for y°, we can write o, (z"ydx)
on the basis of H'(A/K)~ using the reduction formulae.

e This gives matrix M which is an approximation of the action of
0. on HY(A/K)~.

e The polynomial () := t*9 P(1/t) can then be approximated by
the characteristic polynomial of MM? --. M°" .

\_ /
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Conclusions

Now possible to compute the zeta function of hyperelliptic curve
over finite field of any small characteristic.

Complexity: O(g°"¢n’*¢) operations and O(g®n”) space.

Resulting algorithms can be used to generate hyperelliptic curves

suitable for cryptography, but not as fast as AGM.
Can we get rid of cubic space complexity ?

How easy is the algorithm to write down for more general curves

/

or even surfaces 7
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