Prof. Dr. Ir. Frederik Vercauteren

Katholieke Universiteit Leuven

29 October 2014

ヘロン 人間 とくほ とくほ とう

Fully Homomorphic Encryption

RLWE-based Somewhat Homomorphic Encryption

Bootstrapping: From Somewhat to Fully

Prof. Dr. Ir. Frederik Vercauteren Fully Homomorphic Encryption

イロト イポト イヨト イヨト

ъ

Encryption / Decryption

• **Encryption**: function $Enc(\cdot, \cdot)$ from $\mathcal{M} \times \mathcal{K}_{E}$ to \mathcal{C}

$$c = \operatorname{Enc}(m, k_E)$$

- ▶ input message *m*
- encryption key k_E
- ciphertext c

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Encryption / Decryption

• **Encryption**: function $Enc(\cdot, \cdot)$ from $\mathcal{M} \times \mathcal{K}_E$ to \mathcal{C}

$$c = \operatorname{Enc}(m, k_E)$$

- input message m
- encryption key k_E
- ciphertext c
- **Decryption**: function $Dec(\cdot, \cdot)$ from $C \times K_D$ to M
- If k_D is the decryption key corresponding to k_E we have

 $Dec(Enc(m, k_E), k_D) = m$

イロン 不良 とくほう 不良 とうほ

• If c is not a valid encryption, Dec should return \perp

Homomorphic Encryption

► Enc(·, ·) is homomorphic for an operation □ on message space *M* iff

 $\operatorname{Enc}(m_1 \Box m_2, k_E) = \operatorname{Enc}(m_1, k_E) \diamond \operatorname{Enc}(m_2, k_E)$

with \diamondsuit operation on ciphertext space \mathcal{C}

- If $\Box = +$, then Enc is additively homomorphic
- If $\Box = x$, then Enc is multiplicatively homomorphic

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Homomorphic Encryption: Examples

Caesar cipher is homomorphic for concatenation

ヘロン 人間 とくほ とくほ とう

Homomorphic Encryption: Examples

- Caesar cipher is homomorphic for concatenation
- Textbook RSA is multiplicatively homomorphic
- Public key: modulus $N = p \cdot q$, encryption exponent *e*
- Given two ciphertexts $c_1 = m_1^e \mod N$ and $c_2 = m_2^e \mod N$

$$c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

ヘロン 人間 とくほ とくほ とう

Fully Homomorphic Encryption

A fully homomorphic encryption allows evaluation of arbitrary functions on encrypted messages

ヘロト ヘアト ヘビト ヘビト

Fully Homomorphic Encryption

A fully homomorphic encryption allows evaluation of arbitrary functions on encrypted messages

$$\begin{array}{c|c} m_1, \dots, m_t \\ \\ \mathsf{Enc}(\cdot, k_E) \\ \\ c_1, \dots, c_t \end{array}$$

ヘロト ヘアト ヘビト ヘビト

Fully Homomorphic Encryption

 A fully homomorphic encryption allows evaluation of arbitrary functions on encrypted messages

・ロト ・ 理 ト ・ ヨ ト ・

Fully Homomorphic Encryption

 A fully homomorphic encryption allows evaluation of arbitrary functions on encrypted messages

イロン 不良 とくほう 不良 とうほ

Fully Homomorphic Encryption

 A fully homomorphic encryption allows evaluation of arbitrary functions on encrypted messages

イロン 不良 とくほう 不良 とうほ

Fully Homomorphic Encryption

A fully homomorphic encryption allows evaluation of arbitrary functions on encrypted messages

Size of new ciphertext should still be compact

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Uses of Homomorphic Encryption

Private data and public functions:

- Example: Health care data stored encrypted in cloud
- Cloud computes known functions on this data, e.g. statistics on blood pressure measurements

ヘロト ヘアト ヘビト ヘビト

æ

Uses of Homomorphic Encryption

- Private data and public functions:
 - Example: Health care data stored encrypted in cloud
 - Cloud computes known functions on this data, e.g. statistics on blood pressure measurements
- Private data and private functions:
 - Example: Financial data and models are both encrypted

Uses of Homomorphic Encryption

- Private data and public functions:
 - Example: Health care data stored encrypted in cloud
 - Cloud computes known functions on this data, e.g. statistics on blood pressure measurements
- Private data and private functions:
 - Example: Financial data and models are both encrypted
- Note: in some scenario's do not need power of fully homomorphic encryption
 - Computing average: additive scheme suffices
 - Standard deviation / logistic regression: additions and one multiplication

ヘロン 人間 とくほ とくほ とう

Uses of Homomorphic Encryption

- Use: delegate processing of data without revealing data
- **Fully homomorphic** encryption:
 - Any processing function is possible
 - Computationally very expensive
- Somewhat homomorphic encryption
 - Restricted set of functions can be evaluated
 - Cheaper computationally

< 🗇 🕨

Homomorphic Functionality

 A normal computer computes any function of data by manipulating bits

ヘロト ヘアト ヘビト ヘビト

Homomorphic Functionality

- A normal computer computes any function of data by manipulating bits
- Any function on bits can be expressed by using only two operations:
 - AND : b_1 AND $b_2 = 1$ iff $b_1 = b_2 = 1$
 - Note that AND is multiplication modulo 2

• XOR :
$$b_1$$
 XOR $b_2 = 0$ iff $b_1 = b_2$

Note that XOR is addition modulo 2

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Homomorphic Functionality

- A normal computer computes any function of data by manipulating bits
- Any function on bits can be expressed by using only two operations:
 - AND : b_1 AND $b_2 = 1$ iff $b_1 = b_2 = 1$
 - Note that AND is multiplication modulo 2
 - XOR : b_1 XOR $b_2 = 0$ iff $b_1 = b_2$
 - Note that XOR is addition modulo 2
- Sufficient to compute addition and multiplication homomorphically to evaluate any function!
 - Need to express the function as a Boolean circuit ...

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition of FHE

- Like before: KeyGen, Enc, Dec
- Two extra functions:
 - ► Add: c₃ = Add(c₁, c₂) then Dec(c₃) = Dec(c₁) + Dec(c₂) modulo 2
 - Mult: c₃ = Mult(c₁, c₂) then Dec(c₃) = Dec(c₁) ⋅ Dec(c₂) modulo 2

- Concept proposed in 1978, but unsolved for 30 years
- In 2009, Gentry presented first Fully Homomorphic Encryption scheme

ヘロト ヘアト ヘビト ヘビト

- Concept proposed in 1978, but unsolved for 30 years
- In 2009, Gentry presented first Fully Homomorphic Encryption scheme
- Gentry's scheme uses two key ideas:
 - Ideal lattices
 - Bootstrapping a somewhat homomorphic scheme into a fully homomorphic scheme

ヘロン 人間 とくほ とくほ とう

- Concept proposed in 1978, but unsolved for 30 years
- In 2009, Gentry presented first Fully Homomorphic Encryption scheme
- Gentry's scheme uses two key ideas:
 - Ideal lattices
 - Bootstrapping a somewhat homomorphic scheme into a fully homomorphic scheme
- Since then several other schemes and optimizations have appeared
 - Schemes based on Learning With Errors (LWE) and ring LWE

ヘロン 人間 とくほ とくほ とう

- Schemes based on Approximate GCD assumption
- Schemes based on NTRU (similar to ring LWE)

Limitations of Fully Homomorphic Encryption

 FHE can evaluate circuits efficiently in time proportional to size of circuit

ヘロン 人間 とくほ とくほ とう

Limitations of Fully Homomorphic Encryption

- FHE can evaluate circuits efficiently in time proportional to size of circuit
- FHE does not handle Random Access Machines
 - Conditional jumps: if ... then ... else
 - Since the condition in the if statement is encrypted, one has to compute both branches!
 - Indirect addressing: FHE does not do pointers
 - Since address you want to fetch is encrypted, have to get everything ...

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Learning with Errors over Rings

- ▶ Let $f(x) \in \mathbb{Z}[x]$ be monic irreducible polynomial of deg *n*
 - Popular choice is $f(x) = x^n + 1$ with $n = 2^k$
- Denote $R = \mathbb{Z}[x]/(f(x))$
- For an integer q, let $R_q = R/qR$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Learning with Errors over Rings

- ▶ Let $f(x) \in \mathbb{Z}[x]$ be monic irreducible polynomial of deg *n*
 - Popular choice is $f(x) = x^n + 1$ with $n = 2^k$
- Denote $R = \mathbb{Z}[x]/(f(x))$
- For an integer q, let $R_q = R/qR$
- RLWE:
 - choose $\mathbf{s} \in R_q$ at random
 - distinguish uniform random distribution on $R_q \times R_q$ from

$$(\mathbf{a}_i, \mathbf{a}_i \cdot \mathbf{s} + \mathbf{e}_i)$$

where $\mathbf{a}_i \in R_q$ random and $\mathbf{e}_i \in R_q$ has "small" coefficients

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• "small": when reduced to (-q/2, q/2]

Encryption based on RLWE

- Plaintext space is taken as R₂
- Let $\Delta = \lfloor q/2 \rfloor$
- Denote $[\cdot]_q$ reduction in (-q/2, q/2]
- χ error distribution on R_q

イロト イポト イヨト イヨト 三日

Encryption based on RLWE

- Plaintext space is taken as R₂
- Let $\Delta = \lfloor q/2 \rfloor$
- Denote $[\cdot]_q$ reduction in (-q/2, q/2]
- χ error distribution on R_q
- Secret key: sample $\mathbf{s} \leftarrow \chi$

イロト イポト イヨト イヨト 三日

Encryption based on RLWE

- Plaintext space is taken as R₂
- Let $\Delta = \lfloor q/2 \rfloor$
- Denote $[\cdot]_q$ reduction in (-q/2, q/2]
- χ error distribution on R_q
- Secret key: sample $\mathbf{s} \leftarrow \chi$
- Public key:
 - ▶ sample $\mathbf{a} \leftarrow R_q$, $\mathbf{e} \leftarrow \chi$ and output

$$pk = ([(-\mathbf{a} \cdot \mathbf{s} + \mathbf{e})]_q, \mathbf{a}).$$

イロト イポト イヨト イヨト 三日

• Can interpret pk as degree 1 polynomial pk(x) with

$$[pk(\mathbf{s})]_q = \mathbf{e}$$

Encryption based on RLWE

- Encrypt message $\mathbf{m} \in R_2$, let $\mathbf{p}_0 = pk[0]$, $\mathbf{p}_1 = pk[1]$
- Sample $\mathbf{u}, \mathbf{e}_1, \mathbf{e}_2 \leftarrow \chi$ and set

$$\mathtt{ct} = \left([\mathbf{p}_0 \cdot \mathbf{u} + \mathbf{e}_1 + \Delta \cdot \mathbf{m}]_q, [\mathbf{p}_1 \cdot \mathbf{u} + \mathbf{e}_2]_q \right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Encryption based on RLWE

- Encrypt message $\mathbf{m} \in R_2$, let $\mathbf{p}_0 = pk[0]$, $\mathbf{p}_1 = pk[1]$
- Sample $\mathbf{u}, \mathbf{e}_1, \mathbf{e}_2 \leftarrow \chi$ and set

$$\texttt{ct} = \left(\left[\mathbf{p}_0 \cdot \mathbf{u} + \mathbf{e}_1 + \Delta \cdot \mathbf{m} \right]_q, \left[\mathbf{p}_1 \cdot \mathbf{u} + \mathbf{e}_2 \right]_q \right)$$

Decrypt ciphertext ct: set c₀ = ct[0], c₁ = ct[1] and compute

$$\left[\left\lfloor \frac{\left[\mathbf{c}_0 + \mathbf{c}_1 \cdot \mathbf{s} \right]_q}{\Delta} \right] \right]_2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Decryption Analysis

Writing out definition

$$\mathbf{c}_0 + \mathbf{c}_1 \cdot \mathbf{s} = \mathbf{p}_0 \cdot \mathbf{u} + \mathbf{e}_1 + \Delta \cdot \mathbf{m} + \mathbf{p}_1 \cdot \mathbf{u} \cdot \mathbf{s} + \mathbf{e}_2 \cdot \mathbf{s} \mod q$$
$$= \Delta \cdot \mathbf{m} + \mathbf{e} \cdot \mathbf{u} + \mathbf{e}_1 + \mathbf{e}_2 \cdot \mathbf{s} \mod q$$

ヘロト 人間 とくほとく ほとう

₹ 990

Decryption Analysis

Writing out definition

$$\begin{aligned} \mathbf{c}_0 + \mathbf{c}_1 \cdot \mathbf{s} &= \mathbf{p}_0 \cdot \mathbf{u} + \mathbf{e}_1 + \Delta \cdot \mathbf{m} + \mathbf{p}_1 \cdot \mathbf{u} \cdot \mathbf{s} + \mathbf{e}_2 \cdot \mathbf{s} \mod q \\ &= \Delta \cdot \mathbf{m} + \mathbf{e} \cdot \mathbf{u} + \mathbf{e}_1 + \mathbf{e}_2 \cdot \mathbf{s} \mod q \end{aligned}$$

- Firror term $\mathbf{e} \cdot \mathbf{u} + \mathbf{e}_1 + \mathbf{e}_2 \cdot \mathbf{s}$ is small in (-q/2, q/2]
- ► As long as error term < ∆/2 decryption works correctly</p>

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Decryption Analysis

Writing out definition

$$\begin{aligned} \mathbf{c}_0 + \mathbf{c}_1 \cdot \mathbf{s} &= \mathbf{p}_0 \cdot \mathbf{u} + \mathbf{e}_1 + \Delta \cdot \mathbf{m} + \mathbf{p}_1 \cdot \mathbf{u} \cdot \mathbf{s} + \mathbf{e}_2 \cdot \mathbf{s} \mod q \\ &= \Delta \cdot \mathbf{m} + \mathbf{e} \cdot \mathbf{u} + \mathbf{e}_1 + \mathbf{e}_2 \cdot \mathbf{s} \mod q \end{aligned}$$

- Firror term $\mathbf{e} \cdot \mathbf{u} + \mathbf{e}_1 + \mathbf{e}_2 \cdot \mathbf{s}$ is small in (-q/2, q/2]
- ► As long as error term < ∆/2 decryption works correctly</p>
- Valid ciphertext = polynomial ct(x) such that

$$[\mathtt{ct}(\mathbf{s})]_q = \Delta \cdot m + \mathbf{v}$$

ヘロン 人間 とくほ とくほ とう

э.

with $|\mathbf{v}| < \Delta/2$

Homomorphic Operation: Addition

• Let ct_i for i = 1, 2 be two ciphertexts, with

$$[\operatorname{ct}_i(\mathbf{s})]_q = \Delta \cdot \mathbf{m}_i + \mathbf{v}_i$$

then

$$\left[\operatorname{ct}_1(\mathbf{S}) + \operatorname{ct}_2(\mathbf{S})\right]_q = \Delta \cdot \left[\mathbf{m}_1 + \mathbf{m}_2\right]_2 + \mathbf{v}_1 + \mathbf{v}_2 + \epsilon,$$

where ϵ comes from reduction modulo 2 of $\mathbf{m}_1 + \mathbf{m}_2$

- Polynomial addition thus gives plaintext addition modulo 2
- Error grows additively in original errors

ヘロン 人間 とくほ とくほ とう

Homomorphic Operation: Multiplication

Write the evaluation of ct_i(x) in s as an equality in R as follows

$$\operatorname{ct}_i(\mathbf{s}) = \Delta \cdot \mathbf{m}_i + \mathbf{v}_i + q \cdot \mathbf{r}_i$$
 .

Multiply these expressions together to obtain:

$$\begin{aligned} (\texttt{ct}_1 \cdot \texttt{ct}_2)(\mathbf{s}) &= \Delta^2 \cdot \mathbf{m}_1 \cdot \mathbf{m}_2 + \Delta \cdot (\mathbf{m}_1 \cdot \mathbf{v}_2 + \mathbf{m}_2 \cdot \mathbf{v}_1) \\ &+ q \cdot (\mathbf{v}_1 \cdot \mathbf{r}_2 + \mathbf{v}_2 \cdot \mathbf{r}_1) + \mathbf{v}_1 \cdot \mathbf{v}_2 \\ &+ q \cdot \Delta \cdot (\mathbf{m}_1 \cdot \mathbf{r}_2 + \mathbf{m}_2 \cdot \mathbf{r}_1) + q^2 \cdot \mathbf{r}_1 \cdot \mathbf{r}_2. \end{aligned}$$

Need to scale over △ to recover encryption of product of plaintexts.

イロト イポト イヨト イヨト 三日

Homomorphic Operation: Multiplication

• Write $ct_1(x) \cdot ct_2(x) = \mathbf{c}_0 + \mathbf{c}_1 \cdot x + \mathbf{c}_2 \cdot x^2$, then product of ciphertexts is

$$\left[\boldsymbol{\mathsf{d}}_{0},\boldsymbol{\mathsf{d}}_{1},\boldsymbol{\mathsf{d}}_{2}\right]:=\left[\left\lfloor\boldsymbol{\mathsf{c}}_{0}/\Delta\right\rceil,\left\lfloor\boldsymbol{\mathsf{c}}_{1}/\Delta\right\rceil,\left\lfloor\boldsymbol{\mathsf{c}}_{2}/\Delta\right\rceil\right]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Homomorphic Operation: Multiplication

• Write $ct_1(x) \cdot ct_2(x) = \mathbf{c}_0 + \mathbf{c}_1 \cdot x + \mathbf{c}_2 \cdot x^2$, then product of ciphertexts is

$$\left[\boldsymbol{d}_{0},\boldsymbol{d}_{1},\boldsymbol{d}_{2}\right]:=\left[\left\lfloor\boldsymbol{c}_{0}/\Delta\right\rceil,\left\lfloor\boldsymbol{c}_{1}/\Delta\right\rceil,\left\lfloor\boldsymbol{c}_{2}/\Delta\right\rceil\right]$$

• If original errors < E, then we have

$$\left[\mathbf{d}_0 + \mathbf{d}_1 \cdot \mathbf{s} + \mathbf{d}_2 \cdot \mathbf{s}^2\right]_q = \Delta \cdot \left[\mathbf{m}_1 \mathbf{m}_2\right]_2 + \mathbf{v},$$

with $||\mathbf{v}|| < 2 \cdot C_R \cdot ||\mathbf{s}|| \cdot E$

- C_R a constant depeding only on R
- Use secret with ||s|| = 1

イロト イポト イヨト イヨト 三日

Homomorphic Operation: Multiplication

Problem: ciphertext grows with each multiplication.

ヘロン 人間 とくほ とくほ とう

Homomorphic Operation: Multiplication

- Problem: ciphertext grows with each multiplication.
- Relinearisation: from degree 2 ciphertext to degree 1
- Given $ct = [c_0, c_1, c_2]$, we want $ct' = [c'_0, c'_1]$ such that

$$\left[\mathbf{c}_0 + \mathbf{c}_1 \cdot \mathbf{s} + \mathbf{c}_2 \cdot \mathbf{s}^2\right]_q = \left[\mathbf{c}'_0 + \mathbf{c}'_1 \cdot \mathbf{s} + \mathbf{r}
ight]_q$$

where $||\mathbf{r}||$ is small.

<ロ> (四) (四) (三) (三) (三)

Homomorphic Operation: Multiplication

- Problem: ciphertext grows with each multiplication.
- Relinearisation: from degree 2 ciphertext to degree 1
- Given $ct = [\mathbf{c}_0, \mathbf{c}_1, \mathbf{c}_2]$, we want $ct' = [\mathbf{c}'_0, \mathbf{c}'_1]$ such that

$$\left[\mathbf{c}_0 + \mathbf{c}_1 \cdot \mathbf{s} + \mathbf{c}_2 \cdot \mathbf{s}^2\right]_q = \left[\mathbf{c}_0' + \mathbf{c}_1' \cdot \mathbf{s} + \mathbf{r}\right]_q,$$

where ||r|| is small.

 Requires to give out encryptions of Tⁱ · s², so extra assumption

イロン 不得 とくほ とくほ とうほ

Homomorphic Encryption: Summary

- Secret key: sample $\mathbf{s} \leftarrow \chi$
- Public key:
 - ▶ sample $\mathbf{a} \leftarrow R_q$, $\mathbf{e} \leftarrow \chi$ and output

$$pk = ([(-\mathbf{a} \cdot \mathbf{s} + \mathbf{e})]_q, \mathbf{a}).$$

イロト イポト イヨト イヨト 三日

Valid ciphertext = polynomial ct(x) such that

$$[\mathtt{ct}(\mathbf{s})]_q = \Delta \cdot m + \mathbf{v}$$

with $\mathbf{v} < \Delta/2$.

Homomorphic Encryption: Summary

- Homomorphic addition: polynomial addition
- Homomorphic multiplication:
 - polynomial multiplication
 - scaling down by Δ and rounding
 - relinearisation from degree 2 to degree 1
- Requires rlk containing masked versions of Tⁱs²

$$\texttt{rlk} = \left[\left(\left[-(\mathbf{a}_i \cdot \mathbf{s} + \mathbf{e}_i) + T^i \cdot \mathbf{s}^2 \right]_q, \mathbf{a}_i \right) : i \in [0..\ell] \right].$$

ヘロト ヘアト ヘビト ヘビト

Homomorphic Capability

- Assume original errors are bounded by B
- Can evaluate all circuits of multiplicative depth L where

$$C_R^L \cdot 2^{L-1} < q/B$$

Multiplicative depth L: can evaluate terms of the form

$$\prod_{i=1}^{2^L} \mathbf{c}_i$$

where \mathbf{c}_i are "clean" ciphertexts

ヘロン ヘアン ヘビン ヘビン

From Somewhat To Fully Homomorphic ...

Enc is **bootstrappable** if it can homomorphically evaluate its own Dec function

イロト イポト イヨト イヨト 三日

From Somewhat To Fully Homomorphic ...

Enc is **bootstrappable** if it can homomorphically evaluate its own Dec function

イロン 不良 とくほう 不良 とうほ

Fully Homomorphic Scheme

- Homomorphically decrypting is called Recrypt
- Noise level after Recrypt is constant r_{Rec}
- If addition/multiplication of two Recrypts can be decrypted, the scheme is fully homomorphic

ヘロト ヘアト ヘビト ヘビト

Fully Homomorphic Scheme

- Homomorphically decrypting is called Recrypt
- Noise level after Recrypt is constant r_{Rec}
- If addition/multiplication of two Recrypts can be decrypted, the scheme is fully homomorphic

Fully Homomorphic Scheme: Implementation

S. Halevi, V. Shoup: HElib

- Polynomials of degree 16384
- ► Can encrypt 1024 elements in 𝔽₂₁₆
- Security level 76 bits
- Boostrapping: 320s and 3.4GB memory

ヘロト 人間 ト くほ ト くほ トー

æ

Conclusions

- Fully homomorphic encryption is possible
 - BUT: at the moment not very practical
 - Have been major advancements in efficiency: SIMD, bootstrapping, ...
- Many applications: fixed number of multiplications only
- Other constructions are possible
 - approx GCD, NTRU, LWE, ...
- Can we get a scheme without noise?

イロト イポト イヨト イヨト 三日