
Minding Your MAC Algorithms?

Helena Handschuh, Gemplus, France
Bart Preneel, K.U.Leuven, Belgium

Abstract. In spite of the advantages of digi-
tal signatures, MAC algorithms are still widely
used to authenticate data; common uses in-
clude authorization of financial transactions,
mobile communications (GSM and 3GPP), and
authentication of Internet communications with
SSL/TLS and IPsec. While some MAC algo-
rithms are part of ‘legacy’ implementations,
the success of MAC algorithms is mainly due
to their much lower computational and storage
costs (compared to digital signatures). This ar-
ticle describes a list of common pitfalls that
the authors have encountered when evaluat-
ing MAC algorithms deployed in commercial
applications and provides some recommenda-
tions for practitioners.

1 Introduction

MAC algorithms compute a short string as a com-
plex function of a message and a secret key. In a
communications setting, the sender will append the
MAC value to the message (see also Fig. 1). The
recipient shares a secret key with the sender. On re-
ceipt of the message, he recomputes the MAC value
using the shared key and verifies that it is the same
as the MAC value sent along with the message. If
the MAC value is correct, he can be convinced that
the message originated from the particular sender
and that it has not been tampered with during the
transmission. Indeed, if an opponent modifies the
message, the MAC value will no longer be correct.
Moreover, the opponent does not know the secret
key, so he is not able to predict how the MAC value
should be modified.

? The work described in this paper has been partly sup-
ported by the European Commission under contract IST-
2002-507932 (ECRYPT). The information in this paper is
provided as is, and no warranty is given or implied that
the information is fit for any particular purpose. The user
thereof uses the information at its sole risk and liability.

The main security properties of a MAC algorithm
is that one should not be able to forge MAC values,
that is, to predict values on new messages without
knowing the secret key. A second requirement is
that it should be computationally infeasible to re-
cover the MAC key by exhaustive search, since an
exhaustive key search allows for arbitrary forgeries.

Historically the first commercial deployment of MAC
algorithms has been made by the financial sector
(wholesale and retail banking, including electronic
purses, debit and credit cards). On the Internet,
MAC algorithms are used for authenticating data
at the transport layer (TLS or Transport Layer Se-
curity, the successor of SSL) and at the network
layer (IPsec, both in the AH and the ESP trans-
forms). The GSM operators use a proprietary al-
gorithm in the smart cards (SIMs or Subscriber
Identification Modules) to authenticate the users.
For 3rd generation systems (3GPP) the Milenage
algorithm has been proposed as the example algo-
rithm for user authentication; signalling informa-
tion is also authenticated using the KASUMI block
cipher.

The most popular MAC algorithms are the variants
of CBC-MAC which are based on a block cipher; in
the past this has been mostly DES or triple-DES
and currently AES is becoming more popular. Since
the mid 1990s, constructions based on hash func-
tions such as HMAC have been introduced on the
Internet. All these algorithms have been included in
a large number of standards (IETF, FIPS, ANSI,
ISO, . . .); the most comprehensive is the 3-part
standard IS 9797 published by ISO/IEC [10].

In the following, the key length in bits of a MAC
algorithm is denoted with k and the length in bits
of the MAC result is denoted with m.

.. -

.. - = ?210262682

Where dips the rocky
highland of Sleuth
Wood in the lake,
There lies a leafy
island where flapping
herons wake the
drowsy water-rats;
there we’ve hid our
faery vats, full of

?
@@ ¡¡-

K ?
MAC

21026268

Where dips the rocky
highland of Sleuth
Wood in the lake,
There lies a leafy
island where flapping
herons wake the
drowsy water-rats;
there we’ve hid our
faery vats, full of

?
@@ ¡¡-

K ?
MAC

21026268

Fig. 1. Using a MAC Algorithm for data authentication.

2 Common Pitfalls

Throughout this paper, we analyze problems which
we encountered while evaluating MAC algorithms.
Several of these algorithms were flawed and as a
result, we present simple recommendations on con-
structions that should be avoided.

2.1 Recommendation 1: Don’t use propri-
etary algorithms without additional eval-
uation

Kerckhoffs’ principle, which dates back to the 19th
century, states that the secrecy of a cryptographic
algorithm should only rely on the secrecy of the key
(and not on that of the algorithm itself). Neverthe-
less, it is a common belief in industry that cryp-
tographic algorithms should be kept secret. While
this might be the only solution for constrained envi-
ronments in which there are insufficient resources
to deploy standard cryptographic algorithms (for
example not enough gates for hardware designs or
memory cells for embedded devices), most secret
designs are far less secure than published algorithms.
Many proprietary designs have not been subjected
to extensive cryptanalysis; when they leak out, flaws
are discovered which would have been identified im-
mediately if the algorithms would have been pub-
lished before implementation. This does not neces-
sarily mean that all proprietary designs are flawed;
numerous designs are based on sound publicly known
building blocks such as AES or SHA-1, but secu-
rity by obscurity has rarely proven successful. As an
example, we consider two algorithms which leaked

out in the last years: alleged SecureID [5] and al-
leged Comp128 [9]. The first algorithm is used for
authenticating users to their corporate VPN. It
computes a one-time password as a MAC value
computed on the current time using a secret key.
This MAC value is provided to the VPN server
along with the username and password to open a
secure session. The second algorithm is used in a
challenge-response protocol to authenticate a user
to the GSM network. It derives a MAC value from
a random challenge provided by the network and a
secret key stored in the SIM card of the user. The
MAC value is sent back to the network which ver-
ifies it before giving access to the network. Both
algorithms were cryptanalyzed immediately after
publication; they are both vulnerable to collision
attacks. It takes a few hours only to recover the se-
cret key of a SIM card and a few months to find the
key for a SecurID token. Therefore, secret designs
should not be trusted unless sufficient independent
evaluation of the algorithms has been performed
and documented.

2.2 Recommendation 2: Don’t use short MAC
lengths

The length in bits of a message authentication code
is directly related to the number of trials that an
adversary has to perform before a message (and
its associated MAC value) is accepted. For a MAC
value of bit-length m, the adversary has to perform
on average 2m−1 random on-line MAC verifications
before his strategy succeeds. Therefore MAC val-
ues of 16 bits require about 32 000 trials, which

is rather straightforward in a fully automated set-
ting (for example over the internet). Therefore, 16-
bit MAC values should not be used. The minimum
reasonable length for a MAC is 32 bits; this corre-
sponds to about 2 billion or 2 · 109 trials. For high
value applications 64 bits are more appropriate.

2.3 Recommendation 3: Don’t use single
DES or short keys

Another common pitfall is to use strong publicly
known algorithms with too short keys. For exam-
ple the use of truncated 40-bit keys or even sin-
gle DES, which has a 56-bit key, are strongly dis-
couraged. Ten years ago, these algorithms would
have given adequate protection for low-security ap-
plications. However, today they are vulnerable to
straightforward exhaustive search attacks, in which
an attacker simply tries out every possible value for
the key and compares the computation results to
the valid MACs available to him. For a key of bit-
length k, 2k−1 trials on average are required to find
the correct key. The current record for exhaustive
key search is less than a day for a single 56-bit
DES key on specialized hardware combined with
additional distributed computing. With a 1 million
US$ key search machine, a DES key could be re-
covered in about 1 minute, which means that the
cost per key is about 1 US$ [22]. It is therefore rec-
ommended that keys of at least 80-bits should be
used. An exhaustive search for an 80-bit key would
take 224 (about 16 million) times more effort, which
is in 2004 out of range for a normal attacker.

It has often been claimed that keys of MAC al-
gorithms can be shorter than keys for encryption
algorithms: in most cases authenticity is verified
immediately, while confidentiality needs to be pro-
tected for 5 to 10 years (or even more). However, it
should be pointed out that in the case of a MAC al-
gorithm, an opponent can keep searching for keys
and restart the key search machine every time a
new text-MAC pair is observed: therefore, one should
not consider the lifetime of a single MAC key, but
the lifetime of the system, which can often be close
to 10 years as well.

2.4 Recommendation 4: Don’t use unkeyed
hash functions as MAC algorithms

Hash functions are functions which transform a
variable-length message into a fixed-length scram-
bled image of it. In addition, they cannot be in-
verted (i.e., one cannot recover the message from
the hash value) and it is very hard to find two
different messages which hash to the same value
(this is called a collision). These functions are some-
times thought to have good properties for generat-
ing MACs. This may well be the case, but they
should never be used without a key: anybody can
forge a new valid MAC on a new message by sim-
ply computing the hash value on this message and
appending it.

Now let’s examine what happens when the hash
function is used in combination with a secret key.
Most popular hash functions are based on the sim-
ple iteration of a compression function f , that takes
inputs of fixed size; they are known as iterated hash
functions. These hash functions divide the message
M into blocks M = M1, M2, . . . , Mt and apply the
following recursive formula to compute h(M):

Hi = f(Hi−1, Mi) ,

where H0 represents a fixed public initial value and
the hash value h(M) = Ht. If an iterated hash
function is used and the key K is prepended to
the message M , i.e., the MAC value is given by
MAC = h(K||M) where || is the symbol for con-
catenation, then it is straightforward to compute
the MAC of a different message M ||M ′ from MAC
as follows: MAC ′ = h(K||M ||M ′) = f(MAC,M ′).
Note that one does not need to know the secret key
to perform this computation, which shows that this
method is not secure. Truncating the MAC to fewer
bits than the output length of the hash function
might help, but the security of this scheme remains
doubtful. It has been shown that even a construc-
tion which computes a MAC on message M with
key K as h(K||M ||K) may be insecure [19, 20]; the
attack does not violate the security proof of [2], but
illustrates its limitations when key recovery attacks
are considered.

The recommended constructions for MACs based
on unkeyed hash functions are HMAC [3] and MDx-
MAC [18]. The HMAC function is a generic trans-
formation that is (roughly) computed as h(K||h(K ′||M));
MDx-MAC is more complex since it modifies the
internals of the hash function.

2.5 Recommendation 5: Don’t use a public
or secret CRC

In some communication systems, a CRC (Cyclic
Redundancy Check) is appended to a message be-
fore it is sent over a noisy channel to allow for de-
tection of transmission errors. However these codes
do not protect the integrity of a message or au-
thenticate the origin of the message. They don’t
withstand malicious attacks, as they can only spot
errors which occur randomly on the channel. Let
us examine the binary case. A CRC consists of
m bits that are appended to a message such that
the resulting bit-string interpreted as a polynomial
is a multiple of the CRC polynomial g of degree
m. This shows that if one adds to a message with
CRC a multiple of this polynomial (for example
the polynomial g itself), this modification will not
be detected. A CRC is usually implemented in the
form of an LFSR (Linear Feedback Shift Register)
of length m; the feedback coefficients of the LFSR
correspond to the coefficients of the polynomial g.
Thus for a given message, every bit of the resulting
code is a linear combination of bits of the original
message. If the formula of the CRC is public, this
linear combination is known as well, because it does
not depend on the message, only on the feedback
polynomial g of the LFSR. If the CRC is secret,
this combination is not known to the attacker.

If the CRC is public, it is easy to compute the MAC
for a given message by simply computing the asso-
ciated CRC for it, as there is no secret involved
here. An example of a system which used such a
weak method for data integrity is the IEEE 802.11
WEP standard (Wireless Equivalent Privacy) to se-
cure Wireless LANs. This protocol computes a 32-
bit CRC on a 128-bit nonce before encrypting the
result with an additive stream cipher (RC4). This

is highly insecure and allows for packet spoofing as
pointed out by Borisov et al. [8].

If the CRC formula is secret, one can forge a new
MAC from two known MACs. Assume that we have
two equal-length messages M and M ′ with associ-
ated MAC values MAC and MAC ′. As every out-
put bit of the LFSR is the same linear combination
of the message input bits, it is clear that the MAC
value of the message M⊕M ′ equals MAC⊕MAC ′.
Furthermore, the feedback polynomial g may be re-
covered using only a few chosen messages for which
the corresponding MACs are obtained. Typically,
m + 1 chosen messages of length m bits are re-
quired for an m-bit MAC or LFSR. Therefore pub-
lic CRCs or even secret CRCs do not provide the
security features expected from a MAC algorithm
and should not be used for data integrity.

2.6 Recommendation 6: Don’t even use a
keyed public or secret CRC

One may believe that the weaknesses pointed out
in the previous section can be solved by using a se-
cret key, somehow prepended, exored or appended
to the message before the CRC computation. This
is not the case. Assume that the MAC value is com-
puted on a message M as CRC(K||M). Recall that
for a public CRC, each bit mi of the MAC is defined
as a known linear combination of message bits Mi

and key bits Ki. Let l be the length of the message
in bits, then

mi =
l⊕

j=1

aj ·Mj ⊕
k⊕

j=1

bj ·Kj

where all binary coefficients aj and bj are known.
Then it is easy to flip a few bits in M and to com-
pute the associated MAC for the new message: the
linear combinations of key bits have not changed,
and the linear combinations of message bits can
be computed from the previous ones. For a secret
CRC, the linear combinations are not known to the
attacker; however, they can be discovered using a
randomly chosen message M of length l bits, a care-
fully chosen message M ′ = M ||0 . . . 0 of length l+m
bits, and their respective m-bit MACs. These two

MACs can be concatenated to form a 2m-bit se-
quence from which the feedback polynomial of the
shift register can be reconstructed using a variant
of the Berlekamp-Massey algorithm (see for exam-
ple [15, pp. 200–202]. With another method, the
feedback polynomial can be recovered using about
m + 1 carefully chosen messages and their associ-
ated MACs.

2.7 Recommendation 7: Don’t use simple
CBC-MAC on variable-length inputs

CBC-MAC is an iterated MAC algorithm based on
a block cipher. The encryption and decryption with
the block cipher E using the key K will be denoted
by EK(.) and DK(.) respectively. The block length
of the block cipher is denoted with n, hence EK(.)
and DK(.) are permutations on n-bit strings. The
input M of the MAC algorithm is divided into t n-
bit blocks denoted M1,M2, . . . , Mt which are pro-
cessed as follows:

Hi = EK(Hi−1 ⊕Mi) , 1 ≤ i ≤ t .

The initial value H0 is equal to the all zero string
(see also Recommendation 9). Often one applies
an output transformation g to obtain the MAC
value, or MACK(M) = G(Ht). If no output trans-
formation is applied, one calls this scheme simple
CBC-MAC. Figure 2 with IV the all zero string
represents CBC-MAC with output transformation
G keyed by a second key K ′.

It has been proved by Bellare et al. [4] that if the
block cipher E is a secure block cipher, CBC-MAC
is a secure MAC algorithm if it is applied on input
strings of fixed length. However, if CBC-MAC is
used on variable-length inputs this proof does not
apply; even worse, it is known that simple CBC-
MAC on variable length messages is insecure. In
the following M1, M ′

1, M2, and M ′
2 denote n-bit

strings. Consider for simplicity a text consisting of
a single block M1 and m = n (the attack applies
in a more general case as well). Assume that one
knows MACK(M1); it follows immediately that

MACK(M1‖(M1 ⊕MACK(M1))) = MACK(M1) .

This implies that one can construct a new message
with the same MAC value, which is a forgery. Note
that this attack applies even if a MAC algorithm
key is used only once. If one knows MACK(M1)
and MACK(M ′

1), a similar calculation shows that

MACK(M1‖(M ′
1 ⊕MACK(M1))) = MACK(M ′

1) .

If one knows MACK(M1), MACK(M1‖M2), and
MACK(M ′

1), one knows that

MACK(M ′
1‖M ′

2) = MACK(M1‖M2)

if M ′
2 = M2 ⊕ MACK(M1) ⊕ MACK(M ′

1). Again
this allows for a forgery, as an adversary can forge
the MAC on M ′

1‖M ′
2 given knowledge of three other

text-MAC pairs.

In order to preclude these attacks, EMAC should
be used (cf. Sect. 3), in which the output of simple
CBC-MAC is encrypted using a different key, as
represented in Fig. 2 (when the block cipher E is
used as output transformation G). This variant has
a security proof which is also valid for messages
of variable-input length [17]. Another solution is
OMAC [11].

Note that a common choice for the output transfor-
mation G is the selection of the leftmost m/2 bits.
However, Knudsen has shown that for the common
parameters n = 64, m = 32 one can forge a MAC
based on only 130 000 text-MAC pairs, which is
much less than anticipated [12].

2.8 Recommendation 8: Don’t use the same
key for MAC and encryption

We consider here constructions where a MAC is
computed on a message that is also encrypted with
the same key. The main reason for using different
keys for encryption and MAC computation is that
these keys may have completely different life cycles.
As an example, the key for encryption may need to
be backed up (for later recovery), while a MAC
key may be thrown away after a message has been
received and verified.

The other reason is that this combination may re-
sult in trivial attacks on the MAC algorithm. For

example, if the attacker knows a plaintext-ciphertext
pair (X̃, Ỹ) from the encryption, he can easily ap-
pend in CBC-MAC the block MACK(X)⊕ X̃) and
he knows that the resulting MAC value will be Ỹ .
A second trivial example is if one computes CBC-
MAC on the plaintext and subsequently appends
the MAC value to the plaintext. Encrypting the
result in CBC-mode with initial value equal to 0
will result in an encrypted MAC value that is al-
ways equal to EK(0), independent of the plaintext.

As a clarification, this recommendation does not
hold when a mode for authenticated encryption
is used such as OCB [21], since such a mode is
specifically designed to protect both authenticity
and confidentiality in a transformation with a sin-
gle key.

2.9 Recommendation 9: Don’t use an IV
with CBC-MAC

In this section we address the case of CBC-MAC
used in combination with an initial value denoted
by IV in Fig 2.

E¡¢K-

- e+?
?

p

M1

IV

E¡¢K-

- e+?
?

p

M2

E¡¢K-

- e+?
?

p

M3

E¡¢K-

- e+?
?

M4

GK′-
?

MAC

Fig. 2. CBC-MAC with initialization vector

Depending on how the IV itself is transmitted and
protected in the scheme (encrypted and/or pro-
tected with a MAC, and/or synchronized with the
receiver), this solution may be extremely insecure.
Assume that the IV is sent in clear over the line and
is not itself protected by a MAC nor synchronized
with the receiver. Then the first block M0 of each
message can trivially be replaced by an active at-
tacker by any other block N0, provided that the IV
is also changed to IV⊕M0⊕N0. If this is the case,
the value which is encrypted in the first encryption

function is still equal to IV⊕M0. Therefore, the
final MAC value is still valid, and the forged mes-
sage will be accepted by the receiver. This remains
true even if the IV is generated at random by the
sender. A more subtle case is when the IV equals
the previous MAC value MAC∗. This value can-
not be tampered with. However, as the attacker
gets to collect messages M i and their associated
MACs MACi, he can forge new messages simply
by adding the value MAC ∗ ⊕MACi−1 to the first
block of any pair (M i, MACi) he keeps in his list.
All these forged messages and their original MACs
will be accepted as valid by the receiver.

2.10 Recommendation 10: Be careful when
using Triple-DES

Recommendation 3 states that CBC-MAC based
on DES (with a 56-bit key) should not be used.
One year after the publication of DES in 1977, a
strengthened version of DES was proposed called
triple-DES (with two keys or with three keys). In
1986, the ANSI retail MAC algorithm was pub-
lished, which is a CBC-MAC algorithm based on
two-key triple-DES [1]: this particular scheme uses
single DES throughout the calculation and triple-
DES for the last block only; in most applications
the output is truncated to 32 bits. The expectation
was that the security would be increased signifi-
cantly at the cost of only two additional encryp-
tions. We will now show that this expectation has
only been reached partially.

Forging a 32-bit ANSI retail MAC requires 232 at-
tempts. A more sophisticated forgery attack is known
in which the opponent is sure that the forgery will
succeed; it needs 232 known text-MAC pairs and
233 chosen text-MAC pairs; while this is not better
than CBC-MAC based on single DES, this seems
to be an acceptable security level. One the other
hand, one would expect that a key recovery attack
requires at least 280 encryptions. However, it turns
out that with 232 chosen text-MAC pairs, the effort
to recover the key can be reduced to either 257 en-
cryptions (only twice the effort of breaking single
DES) or to 248 MAC verifications.

In some applications, the strength of the ANSI re-
tail MAC is further reduced by sending the two
DES keys along with the message encrypted in ECB
mode; this opens an avenue for a subtle attack in
which the number of MAC verifications can be fur-
ther reduced to 232. This means that the security
against key search is reduced to the effort of forging
a single MAC by brute force and exhaustive search
of a single DES key.

Another example of subtle weaknesses of MAC al-
gorithms based on triple-DES is the NIST proposal
for RMAC based on three-key triple-DES [16]; it
turns out that the 168-bit triple-DES key in the
output transformation can be recovered using about
256 chosen text-MAC pairs and 257 encryptions [13].

3 Recommended MAC Algorithms

In view of the large number of well-analyzed and
standardized MAC algorithms, there should be no
reason to use insecure MAC algorithms that violate
one or more of the recommendations put forward
in this paper.

We recommend to use standardized MAC algorithms
that can be found in the International Standard
ISO/IEC 9797. This is a 2-part international stan-
dard: Part 1 describes MAC algorithms based on
block ciphers and Part 2 describes MAC algorithms
based on hash functions. Part 1 contains – in addi-
tion to some simpler CBC-MAC schemes for legacy
purposes that are not recommended – the ANSI
retail MAC as well as MacDES [14] for use with
triple-DES and EMAC [17] that is recommended
for use with AES. Recall that EMAC applies a sim-
ple CBC-MAC and encrypts its output using a dif-
ferent key. The standard contains a comparison of
the security of all the schemes that have been in-
cluded. It is likely that the next edition will also
contain OMAC [11] (see Fig. 3).

Part 2 of the standard contains HMAC, MDx-MAC
and a variant of MDx-MAC that is efficient for
short messages. HMAC is clearly the most pop-

E¡¢K-

- e+?
?

p

M1

0

E¡¢K-

- e+?
?

p

M2

E¡¢K-

- e+?
?

p

M3

E¡¢K-

- e+?
?

M4

¾K′

?
MAC

Fig. 3. The OMAC construction. The key K′ is related to
the original key K and takes one of two different values: ex-
actly which one depends on the last message block requiring
padding bits or not.

ular scheme, since it has also been standardized
by the IETF and by NIST. We recommend using
HMAC with hash functions such as RIPEMD-160
and SHA-1. They process the message in blocks of
512 bits. The resulting MAC value is computed as
follows:

MAC = h((K ⊕ opad)‖h((K ⊕ ipad)‖x))

where K is the key padded with zeroes to a full
block of 512 bits and opad and ipad are constant
512-bit strings (equal to 64 times the hexadecimal
values ‘36x’ and ‘5cx’ respectively). It is equivalent
to compute and store the partial hash value of the
two padded key blocks (K ⊕ ipad) and (K ⊕ opad)
first, and to compute the MAC value of the mes-
sage starting from these pre-computed secret initial
values.

Newer MAC algorithms such as PMAC [7] that al-
lows for parallel operation and UMAC [6], that of-
fers a very good performance for long messages are
possible alternatives; so far these schemes have not
been included in the existing standards, but their
security has been evaluated thoroughly.

References

1. ANSI X9.19 “Financial Institution Retail Message Au-
thentication,” American Bankers Association, August
13, 1986.

2. M. Bellare, R. Canetti, H. Krawczyk, “Pseudorandom
functions revisited: The cascade construction and its
concrete security,” Proceedings 37th Annual Symposium
on the Foundations of Computer Science, IEEE, 1996,

pp. 514–523. Full version http://www.cs.ucsd.edu/

users/mihir/papers/cascade.html.
3. M. Bellare, R. Canetti, H. Krawczyk, “Keying hash

functions for message authentication,” Advances
in Cryptology, Proceedings Crypto’96, LNCS 1109,
N. Koblitz, Ed., Springer-Verlag, 1996, pp. 1–15.
Full version http://www.cs.ucsd.edu/users/mihir/

papers/hmac.html.
4. M. Bellare, J. Kilian, P. Rogaway, “The security of ci-

pher block chaining,” Journal of Computer and Sys-
tem Sciences, Vol. 61, No. 3, Dec. 2000, pp. 362–399.
Earlier version in Advances in Cryptology, Proceed-
ings Crypto’94, LNCS 839, Y. Desmedt, Ed., Springer-
Verlag, 1994, pp. 341–358.

5. A. Biryukov, J. Lano, B. Preneel, “Cryptanalysis of
the Alleged SecurID Hash Function,” Selected Areas
in Cryptography, Proceedings SAC 2003, LNCS 3006,
M. Matsui, R. Zuccherato, Eds., Springer-Verlag, 2004,
pp. 130–144.

6. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Ro-
gaway, “UMAC: Fast and secure message authentica-
tion,” Advances in Cryptology, Proceedings Crypto’99,
LNCS 1666, M.J. Wiener, Ed., Springer-Verlag, 1999,
pp. 216–233.

7. J. Black, P. Rogaway, “A block-cipher mode of operation
for parallelizable message authentication,” Advances
in Cryptology, Proceedings Eurocrypt’02, LNCS 2332,
L. Knudsen, Ed., Springer-Verlag, 2002, pp. 384–397.

8. N. Borisov, I. Goldberg, D. Wagner, “Intercepting mo-
bile communications: the insecurity of 802.11,” Proceed-
ings MOBICOM 2001, pp. 180–189.

9. H. Handschuh, P. Paillier, “Reducing the collision prob-
ability of alleged Comp128,” Smart Card Research and
Applications, Proceedings CARDIS ’98, LNCS 1820, J.-
J. Quisquater, B. Schneier, Eds., Springer-Verlag, 2000,
pp. 366–371.

10. ISO/IEC 9797 “Information technology – Security tech-
niques – Message Authentication Codes (MACs). Part 1:
Mechanisms using a block cipher,” 1999, “Part 2: Mech-
anisms using a dedicated hash-function,” 2002.

11. T. Iwata, K. Kurosawa, “OMAC: One key CBC MAC,”
Fast Software Encryption, LNCS 2887, T. Johansson,
Ed., Springer-Verlag, 2003, pp. 129–153.

12. L. Knudsen, “Chosen-text attack on CBC-MAC,” Elec-
tronics Letters, Vol. 33, No. 1, 1997, pp. 48–49.

13. L. Knudsen, T. Kohno, “Analysis of RMAC,” Fast
Software Encryption, LNCS 2887, T. Johansson, Ed.,
Springer-Verlag, 2003, pp. 182–191.

14. L. Knudsen, B. Preneel, “MacDES: MAC algorithm
based on DES,” Electronics Letters, Vol. 34, No. 9, 1998,
pp. 871–873.

15. A.J. Menezes, P.C. van Oorschot, S. Vanstone, “Hand-
book of Applied Cryptography,” CRC Press, 1997.

16. NIST Special Publication 800-38B, “Draft Recommen-
dation for Block Cipher Modes of Operation: The RMAC
Authentication Mode,” October 2002.

17. E. Petrank and C. Rackoff, “CBC MAC for real-time
data sources,” Journal of Cryptology, Vol. 13, No. 3,
2000, pp. 315–338.

18. B. Preneel, P.C. van Oorschot, “MDx-MAC and build-
ing fast MACs from hash functions,” Advances in Cryp-
tology, Proceedings Crypto’95, LNCS 963, D. Copper-
smith, Ed., Springer-Verlag, 1995, pp. 1–14.

19. B. Preneel, P.C. van Oorschot, “On the security of two
MAC algorithms,” Advances in Cryptology, Proceedings
Eurocrypt’96, LNCS 1070, U. Maurer, Ed., Springer-
Verlag, 1996, pp. 19–32.

20. B. Preneel, P.C. van Oorschot, “On the security of iter-
ated Message Authentication Codes,” IEEE Trans. on
Information Theory, Vol. IT–45, No. 1, 1999, pp. 188–
199.

21. P. Rogaway, M. Bellare, J. Black, “OCB: A block-cipher
mode of operation for efficient authenticated encryp-
tion,” ACM Trans. Information and System Security
(TISSEC), Vol. 6, No. 3, Aug. 2003, pp. 365–403.

22. M.J. Wiener, “Efficient DES key search,” Presented at
the Rump Session of Crypto’93. Reprinted in “Practi-
cal Cryptography for Data Internetworks,” W. Stallings,
Ed., IEEE Computer Society, 1996, pp. 31–79.

