
1

Low-Cost First-Order Secure Boolean Masking
in Glitchy Hardware - full version*

Dilip Kumar S.V., Josep Balasch, Benedikt Gierlichs, Ingrid Verbauwhede Fellow, IEEE,

Abstract—We describe how to securely implement the masked
logical AND of two bits in hardware in the presence of glitches
without the need for fresh randomness, and we provide guidelines
for the composition of circuits. As a case study, we design,
implement, and evaluate masked DES cores. We focus on first-
order secure Boolean masking and do not aim for provable
security. Our goal is a practically relevant trade-off between
area, latency, randomness cost, and security. We provide two
low-cost solutions. Our first solution focuses on strong security
while simultaneously aiming for low implementation costs. The
resulting DES engine shows no evidence of first-order leakage in
a non-specific leakage assessment with 50M traces. Our second
solution follows the opposite approach: we focus on lowering
implementation costs, latency to be specific, while not sacrificing
much on security. Our low-latency DES engine exhibits signs of
first-order leakage only after approximately 15M traces.

Index Terms—Side-channel analysis, Masking, Glitches.

I. INTRODUCTION

Over the last few decades, much attention has been dedi-
cated to researching and developing fast and efficient crypto-
graphic implementations that are secure against power analysis
attacks [2]. Masking [3], [4] is a well-known technique that
can be used to protect both hardware and software implemen-
tations. Its core idea is to split the data being processed by an
implementation into random shares, effectively eliminating its
correlation with the device’s power consumption.

In this work, we focus on first-order Boolean masking,
where each sensitive (intermediate) value x is randomly split
into two shares x0 and x1 such that x = x0 ⊕ x1. First-
order masked implementations can, in theory, be broken with
higher-order attacks, which combine leakage of multiple (or
all) shares to derive sensitive values. We nevertheless focus on
first-order masking because performing a successful higher-
order attack can be made very difficult by adding noise (the
number of traces needed increases exponentially in the attack
order, with the noise factor in the basis) [3].

In hardware, masking is commonly applied at the gate
level. As logic gates are used as a fundamental building
block in gate-level masking, any cost reduction in building
a masked logic gate significantly benefits the overall cost of
a masked circuit. A significant hurdle in hardware masking
is to overcome the effect of glitches, i.e. undesired signal
transitions in the circuit, as they are known to temporarily
reveal unmasked sensitive values [5].

A methodology for implementing a masked circuit in hard-
ware requires at least a masked AND gadget, a masked XOR
gadget and rules for the composition of gadgets to build a

* Full version of an extended abstract published at DATE 2023 [1].

masked circuit. A masked XOR is easy because one can
simply apply the XOR to each share separately. A masked
AND is more difficult as the computation needs to involve
all shares of all variables at some point. One needs to be
very careful not to reveal any unmasked sensitive intermediate
values, as demonstrated in many previous works. Composition
is also difficult because circuit effects, uniformity of inputs
and outputs, and their dependencies need to be tracked and
corrected as necessary.

Modern hardware masking techniques, such as Thresh-
old Implementation (TI) [6] and Domain-oriented Masking
(DOM) [7], have been designed to address the problem caused
by glitches. In contrast to classical Boolean masking, they
control the propagation of glitches through register layers
and maintain the uniformity of the intermediate values by
injecting fresh randomness. As a result, they achieve provable
security against first-order attacks. Threshold Implementation
is shown to be provable secure [8] under the glitch-robust
probing model [9]. Although DOM does not enjoy a security
proof, it has shown many times to be secure in practice. Some
of them further generalize to higher-orders. However provable
security comes with higher costs. Protected implementations
using modern masking schemes require a lot more resources in
terms of area, latency, and randomness than classical Boolean
masking [10].

In this work, we develop a low-cost Boolean masked AND
gate to build masked circuits that provide practical security in
the presence of glitches. Our contributions are as follows:

• Starting from the software-oriented masked AND con-
struction by Biryukov et al. [11], we derive a low-
cost AND gadget suitable for hardware implementations
which requires no fresh randomness. We propose two
solutions to prevent glitches by controlling the arrival
time of input operands.

• We provide guidelines for composition and exemplary
circuits for securely computing the logical AND of more
than two terms and circuits with AND and XOR gadgets.
We pay particular attention to the need to remask and
explain when and how to do it.

• We design and implement two masked DES encryption
engines building on the proposed low-cost AND gadget
and guidelines for composition. We add security measures
only where needed for practical security.

• We evaluate the performance of our designs both in terms
of cost (area, latency, randomness) and first-order side-
channel leakage on an FPGA platform.

2

II. LOW-COST MASKED AND2 GADGET

If a regular AND2 computes z = x · y, a straightforward
masked AND2 could for instance compute z0 = x0 ·y0⊕x0 ·y1
and z1 = x1 · y0 ⊕ x1 · y1 such that z = z0 ⊕ z1. This would,
however, not be secure because z0 = x0 · (y0 ⊕ y1) = x0 · y
depends on unmasked y, and similar for z1. A simple solution
to this problem, as first proposed by Trichina [10] consists in
the introduction of a fresh random bit r in the equations:

z0 = r ⊕ (x0 · y0)⊕ (x0 · y1)⊕ (x1 · y1)⊕ (x1 · y0)
z1 = r

(1)

This construction is secure only if the order of evaluation
is from left to right. A well-known problem arises when
implementing such a gadget in hardware, because the order of
evaluation is unknown and glitches in the combinational circuit
can happen. Previous work, such as TI and DOM, provide
solutions for this problem. They require fresh random bits, too.
The cost in terms of the number of random bits is an important
criterion when comparing masked implementations. Gross et
al. [12] propose an AND2 gadget and rules for composition
which allow implementing, e.g. an entire masked AES-128
using only two bits of randomness. The security of their
approach was proven in the t-probing model [13]. However,
in hardware, this approach leads to a significant penalty in
latency. The software implementation provided by Gross et
al. was found to be insecure [14]. Like Gross et al. [12] we
start our work from the masked AND2 gadget proposed by
Biryukov et al. [11] for software implementations:

z0 = (x0 · y0)⊕ (x0 + y1)

z1 = (x1 · y0)⊕ (x1 + y1)
(2)

·,⊕,+ denote AND, XOR and OR, respectively. We refer to
this gadget as secAND2 from now on. A remarkable property
of this gadget is that it does not require fresh randomness to be
secure. Yet, due to the lack of a fresh mask, the output is not
independent of the input, which needs to be considered during
composition. Another advantage of the secAND2 gadget over
the one by Trichina is that it requires fewer elementary logic
operations (AND, XOR, etc.) and will thus lead to a faster
implementation in software or a smaller implementation in
hardware. While Gross et al. aimed for provable security in the
presence of glitches with minimal randomness requirements,
we strive for an overall practically relevant tradeoff between
area, latency, randomness cost and security.

A. Secure Hardware Implementation of secAND2

A straightforward ASIC implementation of secAND2 using
a common standard cell library, i.e. using AND2, XOR2, OR2
and INV gates, will be insecure due to glitches in the circuit. A
similar problem occurs when implementing the logic equations
on FPGAs using Look Up Tables (LUT). We have verified this
by performing leakage assessment tests on a Spartan6 FPGA.
Our results clearly show that programming the equations for
the outputs of secAND2 (z0 and z1) directly into LUTs leaks,
which we attribute to glitches.

Glitches on the output of a logic gate are created by different
arrival times of its input signals. Predicting the order in which

z1

z0

x0

y0

x1

y1
x1 & y0

x0 & y0

x1 + y1

x0 + y1

Fig. 1: secAND2 gate schematic.

the inputs arrive in a large circuit is impossible. But if we have
control over the order of and the delay between the arrival of
input signals, it might be possible to send the inputs in a safe
sequence such that there are no glitches and thus no leakage
of any information about the sensitive inputs or intermediate
values. In the next subsection, we investigate the existence of
such safe sequences for secAND2.

B. Identifying Safe Input Sequences

We experiment with the issue of glitches on the same
Spartan6 FPGA by forcibly sending the inputs of secAND2
(x0, x1, y0, y1) at different time instances. Sending one
input after another can be executed in a controlled manner
with the help of registers by connecting them directly to the
inputs of secAND2. First, we reset all four registers to 0.
Then, we update one register at a time over four consecutive
clock cycles with the desired input sequence. We exhaust all
4! = 24 possible input sequences and observe any potential
leakage using TVLA methodology [15] for each sequence
across the four clock cycles by collecting half a million traces.
To improve the signal-to-noise ratio (SNR), we replicated
multiple parallel instances of secAND2 on the FPGA, each
receiving identical inputs. Inputs x and y are independently
shared with uniformly distributed random bits.

Clock Cycle 1 2 3 4
Input * * * x1 or x0 → Sequence leaks
Input * * * y1 or y0 → Sequence does not leak

TABLE I: Leakage behaviour of secAND2 for different input
sequences. ’*’ denotes any of the remaining input shares.

The results of this experiment are summarized in Table I.
In short, we observe leakage in sequences where either x0 or
x1 arrive in the last clock cycle, but not in sequences where
either y0 or y1 arrive last. These results can be explained from
the secAND2 equations in (2). Our secAND2 gadget is not
non-complete with respect to y (refer to the non-completeness
property of TI), as the equations involve both shares y0 and
y1. The equation for z0 depends on x0, y0 and y1 whereas
z1 depends on x1, y0 and y1. Assume x0 arrives in the last
cycle, as all input registers are initially reset, if the input x0

is 1, then the XOR gate outputting z0(highlighted in red in
Figure 1) toggles from y1 to y0 ⊕ 1, a hamming distance of
y0 ⊕ y1. Therefore, if a glitch occurs, the late arrival of x0

can reveal information about the unshared input y(= y0 ⊕

3

x0

x1 z1

z0

FF

y0

y1

Fig. 2: secAND2 gate with internal FF or secAND2-FF.

y1) and similar for x1. By forcing y0 or y1 to arrive last,
we essentially make x0 and x1 arrive early. We observe no
leakage in sequences where y0 or y1 arrive last because x0

and x1 do not evaluate on the combined value of y0 and y1,
which would leak the unshared input y(= y0 ⊕ y1). Looking
at the secAND2 circuit in Figure 1, in the first three clock
cycles, no signal or gate has enough information to be able to
leak anything about either sensitive unshared inputs, x and y.
And as a result, we can achieve a temporary non-completeness
property for both output bits during the evaluation in the first
three clock cycles. In the fourth clock cycle, only a single input
bit arrives straight from a register. Any signal in the secAND2
circuit, see Figure 1, will toggle at most once. In other words,
glitches cannot occur in the last clock cycle. Thus, no sensitive
information can be leaked even though secAND2 is no longer
non-complete. The Hamming Distance of the outputs, z0 and
z1, before and after the fourth clock cycle does not depend on
either sensitive inputs, x or y. Therefore, the final cycle does
not leak either sensitive input, and any sequence that ends
with y0 or y1 can securely compute a product of two shared
variables.

Although we have identified safe sequences, we have to
address a few issues related to our initial assumption and
proposed solution. We began with the assumption that the four
registers connected to secAND2 to provide inputs are reset
to 0. But this is hardly the case in practice. Our secAND2
gadgets are typically expected to be reused for computation as
part of a cryptographic circuit. It might not always be feasible
to reset the input registers between computations, for example,
if the circuit is pipelined. Additionally, this approach would
significantly increase latency as each secAND2 evaluation
would take four clock cycles to compute instead of one. Lastly,
a masked cryptographic circuit typically contains several AND
gates connected to one another; sending the inputs in four
clock cycles for every multiplication would require extra
registers to temporarily buffer the intermediate values, which
also increases the area cost. In what follows, we propose two
solutions to tackle these problems.

C. Solution 1: secAND2 with a flip-flop (secAND2-FF)

To create a secure low-cost masked AND gate, any circuit
in which one of the two shares of y, i.e. y0 or y1, arrives last
will guarantee no leakage. This can be achieved by delaying

the processing of either of the two inputs, for example, y1.
Our secAND2 could hence be constructed as illustrated in
Figure 2, using an internal delay flip flop (FF). The flip-
flop delays the input y1 and ensures secure computation. This
optimization reduces the number of clock cycles to calculate
a multiplication from four to two. We shall refer to this faster
two-cycle secAND2 as secAND2-FF from now on. We also
verified its security with leakage assessment experiments.

In subsection II-B, we explained that the order in which
inputs arrive could determine whether the computation is
secure or not and that late arrival of x0 (or x1) has the potential
to reveal information about the unshared input y(= y0 ⊕ y1).
Suppose we compute two multiplications consecutively on
the same secAND2-FF gadget: let the inputs for the first
multiplication be (m0,m1, n0, n1) and the inputs for the
second multiplication (a0, a1, b0, b1). If we did not reset the
inputs between the multiplications and a0 arrives before b0
and b1, the existing inputs of the secAND2-FF, n0 and n1

would remain unchanged when a0 arrives. If m0 = 0 and
a0 = 1, then the output z0(in Figure 2) toggles from n1 to
n0 ⊕ 1, or if m0 = 1 and a0 = 0, then the output z0 toggles
from n0 ⊕ 1 to n1. Hence, a0 would leak information about
the previous computation, n(= n0 ⊕ n1). Our first solution,
secAND2-FF, reduces latency, but it must be reset between
successive computations.

D. Solution 2: secAND2 with path delay (secAND2-PD)

We propose our second solution to address the issues
of secAND2. We eliminate the need for resetting between
consecutive multiplications while also reducing the latency.
Using a flip-flop as a delay element in our previous solution
guarantees that one of the inputs arrives late. Instead of using
a flip-flop, we now propose using path delay to achieve the
same result, for instance, by making one of the input signals
travel through a longer path so it arrives late. This solution
follows a more practical approach and comes with certain
constraints, such as placement and routing, which might not be
as straightforward to implement. We shall later explain in more
detail in Section V that this solution can indeed be achieved
in practice. Using path delay as a delay element, instead of
a flip-flop, eliminates the critical need to reduce the number
of cycles required to send the inputs. Unlike our previous
solution, we could send our inputs one after another, each
input with a different amount of delay, while not increasing the
cycle count of our implementation. In fact, we could compute
secAND2 in a single clock cycle. This may of course increase
the critical path delay and thus reduce the circuit’s maximum
clock frequency.

Consequently, this approach of sending each input with a
different amount of delay would help us compute consecutive
multiplications without the need to reset the inputs between
computations. We propose such a cost-efficient delayed se-
quence in Figure 3, which we shall call secAND2-PD. Each
input is either delayed by zero, one, or two DelayUnits.
We refer to a replicable amount of delay as a DelayUnit,
and we shall later, in Section V, explain how this can be
realized in practice. Input y0 is not delayed and arrives first in

4

x0

x1

y0

z0

z1

y1

Delay Unit

Fig. 3: secAND2 gate with path delay or secAND2-PD.

a0
a1

b0
b1

z0

z1

2

2

c0
c1

d0
d1

2

2

FF

secAND2-FF

 FF1

secAND2-FF

 FF2

secAND2-FF

 FF3

enable

enable

enable

Fig. 4: Product of four masked variables using secAND2-FF.

order to protect against information leakage about the previous
computation. It is followed by the delayed x0 and x1. And
finally, y1 arrives as the last input as explained above.

Referring to our previous example, in Section II-C, b0
arrives before a0 (or a1) does. Therefore a0 (or a1) cannot
leak information about n(= n0 ⊕ n1) from the previous
computation, as n0 is replaced by b0. And the final input b1
arrives after a0 and a1, thereby protecting information leakage
about the current computation, i.e. a0 (or a1) cannot leak
information about b(= b0⊕ b1). In conclusion, secAND2-PD
does not require an input reset and also decreases the latency
of our secAND2 gadget to a single cycle.

III. COMPOSING SECURE MASKED CIRCUITS

secAND2-FF and secAND2-PD gadgets can be used
as a building block to securely implement more complex
masked circuits. In this section, we provide guidelines on two
important steps which are generally required to build circuits.
We first show how to compute products of more than two
variables securely. And then, we explain how to add dependent
variables securely.

A. Computing Product Terms using secAND2-FF

As we start building a circuit, it is common to have
situations where we need to compute a product of more than
two variables. To illustrate, we compute a product of four
variables, z = a · b · c · d, which we assume here to be

z0

z1

2

2

secAND2

secAND2enable

 FF

 FF

 FF

 FF

a0
a1

b0
b1

 FF

 FF

c0
c1

enable

Fig. 5: secAND2 with input registers.

independently shared. Implementing this expression securely
can be done with the circuit in Figure 4, which evaluates z =
secAND2-FF(secAND2-FF(a, b),secAND2-FF(c, d)) us-
ing three secAND2-FF gadgets and has a latency of three
clock cycles.

By carefully controlling when we sample the internal
FFs, we can achieve a secure construction with no ad-
ditional (i.e. external) FFs, which also helps us keep the
area footprint low. All the inputs arrive in the first clock
cycle, and in the second clock cycle, the enable signal
corresponding to flip-flops FF1 and FF2 is set to high.
The enable signal controls when the FF samples the in-
put. FF1 and FF2 sample b1 and d1 respectively, therefore
secAND2-FF(a, b) and secAND2-FF(c, d) are computed
securely. The enable signal of FF3 remains disabled during
the second clock cycle, so the secAND2-FF computing z =
secAND2-FF(secAND2-FF(a, b),secAND2-FF(c, d)) is
inactive. And in the third and final clock cycle, the enable
signal of FF3 is toggled to high, thereby securely completing
the computation of output (z0, z1) in three clock cycles.

In the general case, implementing a product of n indepen-
dent variables requires n− 1 secAND2-FF gadgets arranged
into log2(n) layers, such that all different sub-products are
cascaded. The latency of the circuit becomes log2(n) + 1
cycles.

In specific cases, it might be advantageous to take the
internal FFs out of the secAND2-FF gadgets and instead
place them at the beginning. For instance, when we compute
low-degree products. The flip-flop inside secAND2-FF serves
the purpose of delaying one of the input signals. Equivalently,
we can replace secAND2-FF with a secAND2 and place
registers before the gate to buffer the input shares, as shown
in Figure 5. We can then use a Finite State Machine (FSM) to
control when the FFs sample, thus guaranteeing a safe arrival
sequence of the input operands to the secAND2 gadgets.
Unlike internal FFs inside secAND2-FF gadgets, which
solely belong to that gadget, the input registers we now use
can be commonly shared by multiple secAND2 gadgets. For
instance, consider the two multiplications a∗b∗c and a∗b∗d.
The input registers used to store a0, a1, b0, b1, can be shared
for the two multiplications. This is usually the case when we
are computing polynomials. We would have to compute several
different products with common inputs. The resulting circuit
can have a slightly larger area due to extra input FFs, but
it can be beneficial for evaluation purposes. It allows us, for
instance, to test and compare different input sequences or to

5

a0
a1

b0
b1

2

2

secAND2-PD

Gate 1

c0
c1

secAND2-PD

Gate 2

z0

z1

Fig. 6: Product of three masked variables using secAND2-PD.

Product of 3 variables
z = a · b · c c0 → b0 → a0, a1 → b1 → c1

Product of 4 variables
z = a · b · c · d d0 → c0 → b0 → a0, a1 → b1 → c1 → d1

TABLE II: Delay sequence for a product 3 or 4 variables

reset the FFs at any given time.

B. Computing Product Terms using secAND2-PD

Our construction for computing a product of more than two
variables using secAND2-PD resembles a chain-like structure
in contrast to the tree structure we illustrated in the previous
subsection. This decision was made for practical reasons, as it
helped implement hardware delays easier. In our experience, it
is relatively easy to enforce delays on inputs of secAND2-PD
that arrive directly from registers. But in a typical tree structure
which is organized in layers, the outputs of secAND2-PD
gadgets of one layer are fed as inputs to the next layer of
secAND2-PD gadgets. Based on our experience, it was not as
easy to enforce delays on outputs of secAND2-PD gadgets. A
construction for a product of three variables, z = a·b·c, which
we assume here to be independently shared, is shown in Figure
6. An appropriately delayed input sequence, as shown in Table
II, can be used to compute the product of three variables
in a single clock cycle. To create the delayed sequence, we
use a DelayUnit, like the one we used in Section II-D.
c0 is not delayed, b0 is delayed by one DelayUnit, a0
and a1 are delayed by two DelayUnits, b1 is delayed by
three DelayUnits and c1 is delayed by four DelayUnits.
The reasoning behind the input sequence remains the same
as before, a0 (and a1) not only has the potential to leak
information about values b(= b0⊕b1) in Gate 1, see Figure 6,
but also c(= c0⊕c1) in Gate 2. Hence, c0 is sent first to protect
against information leakage about the value of c(= c0 ⊕ c1)
from any previous computation and c1 arrives last to protect
against leakage about the current computation. The rest of
the sequence, between c0 and c1, is identical to what was
discussed in subsection II-D. Similarly, we can construct an
input sequence for a product of four variables, see Table II.

To generalize, implementing a product of n independent
variables requires n− 1 secAND2-PD gadgets arranged into
n − 1 layers. In theory, with a proper input sequence, a
product of any number of variables can be computed in a
single clock cycle. It is up to the designer to realise such
a sequence in practice. In this work, we successfully and
securely computed a product of three variables in a single

clock cycle. We have not explored computing the product of
more than three variables in a single cycle, as it was not needed
for our secure DES implementation.

C. Addition of Product Terms

Masked AND and XOR gates are fundamental to building
a masked circuit. So far, we concentrated on masking AND
gates. But it is also essential to ensure no loss of security
during XOR. Both our secAND2-FF and secAND2-PD gad-
gets do not consume fresh randomness. Instead, the uniformity
of the output is achieved by reusing the randomness of the
inputs. This characteristic becomes critical when implementing
circuits that combine several terms, for instance, through
addition. It can lead to decreased security if the added terms
are not independent.

Consider the function f = x⊕ y⊕ x · y, where the product
term z = x · y is computed with either a secAND2-FF or
secAND2-PD gadget. In this situation, the masked output z
is not independent of x and y, leading to a data-dependent
distribution of the masked inputs of the XOR plane. Securing
this function, as well as any other which combines depen-
dent shares, requires selectively refreshing the (intermediate)
dependent variables. Figure 7 depicts a circuit to compute f
securely. It requires 1 bit of randomness m to refresh the shares
of z and guarantee a uniform output distribution.

secAND-FF
or

secAND-PD

x0, x1
y0, y1

z1

2

2

z0, z1

2

x1
y1

z0

x0
y0 XOR

XOR

m

x0 ⊕ y0 ⊕ z0

x1 ⊕ y1 ⊕ z1

m

Fig. 7: f = x⊕ y ⊕ x · y (secure).

IV. CASE STUDY: DES

In this section, we use both secAND2-FF and
secAND2-PD gadgets as fundamental building blocks
to build a secure cryptographic circuit, following the rules
for composition defined in Section III. We choose the Data
Encryption Standard (DES) as our target algorithm because
it is the main building block of Triple-DES(TDES), which is
still widely used today.

A. Deconstructing DES

We begin with the (unprotected) design, which is a classical
round-based DES architecture including key schedule. The
main difficulty in protecting the DES implementation lies in
the S-Boxes, which are the only non-linear components. The
DES cipher has 8 different S-boxes in the substitution layer,
each taking six input bits (x0, x1, x2, x3, x4, x5) and returning
four output bits (y1, y2, y3, y4). A hardware-friendly way to
implement them is to represent them as four 4-bit permutations

6

(the so-called mini S-boxes) and a multiplexer (MUX). As
we follow a bottom-up approach, we represent each mini S-
box through equations in Algebraic Normal Form (ANF) that
consist only of AND and XOR terms. Equation 3 shows the
representation of a mini S-box.

y1 = 1⊕ x1 ⊕ x2 ⊕ x1x2 ⊕ x2x3 ⊕ x1x2x3 ⊕ x4 ⊕ x2x3x4

y2 = 1⊕ x1 ⊕ x2 ⊕ x1x3 ⊕ x2x4 ⊕ x3x4 ⊕ x1x3x4

y3 = 1⊕ x1x2 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3 ⊕ x4 ⊕ x1x4

⊕ x2x4 ⊕ x1x2x4 ⊕ x3x4

y4 = x1 ⊕ x3 ⊕ x1x4 ⊕ x2x4 ⊕ x1x3x4

(3)

As visible in the equations, there are at most six distinct
terms of degree 2 and four terms of degree 3. Additionally, all
four mini S-boxes of an S-box share common inputs, which
means it is sufficient to compute the ten possible product
terms only once. The equations in ANF form can be split into
two stages: AND stage and XOR stage. The AND stage can
be implemented with 10 AND gates. In the XOR stage, the
product terms from the AND stage are XORed together with
the inputs to form the outputs of the mini S-boxes, as shown
in Equation 3. Since the outputs of the AND stage are not
independent of the inputs, it is necessary to add a refresh layer
in front of the XOR layer, as motivated in Section III-C. The
outputs of the 10 AND gates in the AND stage are refreshed
with 10 bits of fresh randomness before the XOR layer. It
is possible to further optimize the refresh step by selectively
refreshing only some of the ten terms instead of refreshing
all of them while maintaining uniformity, but we leave this
optimization for future work.

The purpose of the MUX is to select which one of the
four mini S-boxes to output. Similar to the mini S-boxes,
computations can also be split into three stages. Equation 4 is
in ANF and shows how each output bit of the 4×1 MUXes is
computed. First, we calculate the four multiplications of the
select bits, x0 and x5, that is: x0x5, x0x5, x0x5, x0 x5. Second,
each of these products is multiplied with the respective output
of the mini S-boxes. Since the MUX receives 16 inputs from
the four mini S-boxes, there are 16 multiplications in the
second stage. Lastly, in the third stage, the outputs of the
second stage are XORed together to produce the four S-Box
output bits.

y1 = (x0x5)y
(1)
1 ⊕ (x0x5)y

(2)
1 ⊕ (x0x5)y

(3)
1 ⊕ (x0 x5)y

(4)
1

y2 = (x0x5)y
(1)
2 ⊕ (x0x5)y

(2)
2 ⊕ (x0x5)y

(3)
2 ⊕ (x0 x5)y

(4)
2

y3 = (x0x5)y
(1)
3 ⊕ (x0x5)y

(2)
3 ⊕ (x0x5)y

(3)
3 ⊕ (x0 x5)y

(4)
3

y4 = (x0x5)y
(1)
4 ⊕ (x0x5)y

(2)
4 ⊕ (x0x5)y

(3)
4 ⊕ (x0 x5)y

(4)
4

(4)

Finally, we add the MUX and the four mini S-box circuits
to construct the DES S-box. Our final DES implementation
is constructed by adapting the round-based architecture to
incorporate first-order Boolean masking. All original variables
(plaintext, key, round state) are split into two shares and
operations are performed in the masked domain. Datapaths for
linear operations are simply duplicated to operate on individual
shares. Our design also includes a masked key schedule that
runs parallel to the DES operation. The substitution layer is
adapted to incorporate our protected S-Boxes.

Mini
S-Box

AND Stage

Mini
S-Box

XOR Stage

Input of
Mini S-Box :
x1, x2 ,x3, x4

MUX
Stage 1
(AND)

MUX
Stage 2
(AND)

Inputs of
MUX :
x0, x5

MUX
Stage 3
(XOR)

R
eg

is
te

r

10 random bits
for refresh

4 random bits
for refresh

Cycle 1 and 2

R
ef

re
sh

R
ef

re
sh

S-Box
Output

In
pu

t
R

eg
is

te
r

In
pu

t
R

eg
is

te
r

R
eg

is
te

r
R

eg
is

te
r

Cycle 4 and 5

Cycle 1 to 3 Cycle 4

Updated in
Cycle 5

(a) S-box architecture

Expansion

RL

Masked
Round Key

32 x 2

48 x 2

6 x 24 x 2

Perm
utation

32 x 2

DES S-Box
MUX MUX

32 x 2
Input Permutation

PT

32 x 264 x 2

IP-1

CT

32 x 2

Input R
eg

O
utput R

eg

S-Box 1

S-Box 2

S-Box 8

32 x 264 x 2

32 x 2

32 x 2

32 x 2

6 x 2

6 x 2

4 x 2

4 x 2

(b) High-level DES architecture (protected)

Fig. 8: Building DES using secAND2-FF.

B. Building DES with secAND2-FF

Figure 8a visually represents all stages of the S-Box using
secAND2-FF. The AND stage of the mini S-boxes has
product terms with a maximum degree of 3. Hence this stage
can be computed in 3 clock cycles using ten secAND2-FF
gadgets. As the mini S-boxes are composed of low-degree
polynomials, we follow the approach we suggested in sec-
tion III-A. We remove the internal FFs from secAND2-FF
and place an input register layer. The calculation of the mini
S-box outputs takes four clock cycles, three for the AND
stage and one for the XOR stage. The calculation of the
MUX AND Stage 1 (variables of the form (x0x5)) is done
in parallel and takes two cycles. Both outputs are then sent
to the MUX AND Stage 2. As the inputs for the MUX AND
Stage 2 come from two parts of the S-Box, they must be
synchronized to guarantee a safe multiplication sequence. This
is why a register is placed after the MUX AND Stage 1. Recall
that we explained the need to refresh dependent variables in
Section III-C. Therefore, we need to refresh the output of
the MUX AND Stage 2 to maintain uniformity before going
through the MUX XOR Stage 3. To save costs, we move the
refresh stage inside the MUX and safely apply it directly after
the MUX AND Stage 1. By doing so, we save one clock
cycle in the overall S-box computation while also reducing the

7

Mini
S-Box

AND Stage

Mini
S-Box

XOR Stage

Input of
Mini S-Box :
x1, x2 ,x3, x4

MUX
Stage 1
(AND)

MUX
Stage 2
(AND)

Inputs of
MUX :
x0, x5

MUX
Stage 3
(XOR)

R
eg

is
te

r

Cycle 1

10 random bits
for refresh

4 random bits
for refresh

Cycle 1

R
ef

re
sh

R
ef

re
sh

S-Box
Output

R
eg

is
te

r
R

eg
is

te
r

Cycle 2

(a) S-box architecture

Expansion

RL

Masked
Round Key

32 x 2

48 x 2

6 x 24 x 2

Perm
utation

32 x 2

DES S-Box
MUX

MUX

32 x 2

Input Permutation

PT

32 x 264 x 2

IP-1

CT

32 x 2

Input R
eg

S-Box 1

S-Box 2

S-Box 8

32 x 264 x 2

32 x 2

32 x 2

32 x 2

6 x 2

6 x 2

4 x 2

4 x 2

(b) High-level DES architecture (protected)

Fig. 9: Building DES using secAND2-PD.

randomness requirements, as fewer terms need to be refreshed.
Given that a register is already placed after the MUX AND
Stage 1 (to ensure a safe sequence for the MUX AND Stage 2),
this optimization also saves some flip-flops. The final S-box
architecture using secAND2 with input register layer has a
latency of 5 clock cycles, and it is the one we use in our
evaluation and experiments.

The final DES architecture is shown in Figure 8b. After
adding an S-box output register and a state register (L and R)
between successive rounds, the design yields a final latency of
7 cycles per round. Whether the S-box output register can be
removed and reduce the latency to 6 cycles, without affecting
the security of the implementation, is a question we leave for
future work.

C. Building DES with secAND2-PD

Using secAND2-PD, every AND stage in the circuit can
be executed in a single cycle. The S-box architecture for
the design using secAND2-PD is shown in Figure 9a. We
already discussed how to compute a product of up to three
inputs in Section III-B. Hence the mini S-box AND stage can
be implemented with 10 secAND2-PD instances and with a
reduced latency of one clock cycle. For the Mini S-box AND
Stage and the MUX Stage 1, the path delays are applied to

the inputs (x0, x1, x2, x3, x4, x5). For the MUX Stage 2, the
delays are applied to the refreshed outputs of MUX Stage 1
and the linear Mini S-box XOR Stage outputs. The result is
an S-box architecture with a latency of 2 clock cycles.

Our focus for DES design using secAND2-PD is to reduce
implementation costs, latency to be specific. Therefore, we
decided not to increase latency by adding any additional
register stages outside the S-box. For the previous design using
secAND2-FF, the input register is crucial for security as it is
used to control the order of the input sequence. Because of this,
the state register (R), see Figure 8b, is updated first and then
the state register (R) is used to update the input register over
the next few clock cycles, to compute the S-Box safely. But
for secAND2-PD, the inherent path delay takes care of the
input sequence. And for that reason, the output of the S-box is
directly connected to the input register, see Figure 9b, instead
of going through the state register, which saves a clock cycle.
The state register is updated in parallel, and the S-box output
register is also removed. Hence, the latency of our design with
path delay is reduced to 2 clock cycles per round.

V. IMPLEMENTING PATH DELAYS IN HARDWARE

Glitches are a well-known characteristic of CMOS circuits
that make it difficult to implement masking securely in hard-
ware. Glitches are unintended transitions at the output of gates
in a circuit due to the delayed arrival of some input signals. To
solve this, in Section II-D, we proposed using path delay to
control the order in which inputs arrive. This section explains
the steps we took to realize path delay in hardware. We use

(x,y)

(x+1,y)

(x+2,y)

(x+3,y)

(x+(n-1),y)

(x+(n),y)

Delay UnitInput

(x,y+1)

(x+(n),y+1)

Delayed Input

Delay Unit

LUT LUT LUT LUT LUT LUT

LUT LUTLUT LUT LUT LUT

Fig. 10: An input is delayed by two DelayUnits.
Each DelayUnit is of size n LUTs.

a SAKURA-G board with a Xilinx SPARTAN-6 FPGA to
implement our protected DES implementation, using Xilinx
ISE software. We use Look Up Tables (LUT) as a basic delay
element, by connecting the input of the LUT directly to its
output. The LUT acts as a buffer for the input and provides
the path delay we need. Several LUTs are chained together
to form a basic unit, which we refer to as a DelayUnit.
For path delay to be an effective countermeasure, it needs to
be replicable. If we were to let ISE design tools perform the
placement and routing of our basic delay elements (LUT), the
amount of delay would vary depending on where the LUTs
are placed on the FPGA. This would result in an inconsistent
outcome, and the amount of delay would be hard to quantify.

8

Delay Unit of size 10 LUTs

Fig. 11: DelayUnits for an S-box.

For that reason, we manually perform the placement of our
delay elements by defining constraints. FPGA resources such
as LUTs, flip-flops and multiplexers are grouped together in
SLICEs to create configurable logic blocks. Every SLICE of
a SPARTAN-6 FPGA contains four LUTs, and by manually
choosing the location of the SLICE, we can control the
placement of our delay elements. To create a DelayUnit,
we place the delay elements horizontally by incrementing the
x coordinate of the SLICE, as shown in Figure 10. If a signal
has to be delayed by more than one DelayUnit, multiple
DelayUnits are stacked vertically using location constraints
on the FPGA. As a result, we obtain a deterministic layout
with a delay amount that can be controlled and quantified.

Our next step is to investigate the optimal size for a
DelayUnit, i.e. the number of LUTs chained together, to
achieve practical security. As a general rule, the more the
delay, the better it is for security. A large amount of delay
would guarantee that the arrival of inputs is well separated
in time. But it is also important to note that there is a
trade-off between cost and security. Creating a large delay
chain increases the utilization cost of our implementation
and also limits the maximum operating frequency of our
implementation. As the focus of our work is to find a trade-off
between low-cost and practical security, we gradually increase
the size of our delay chain until we find a good balance.

We tested several sizes of the DelayUnit through leakage
assessment experiments and found a DelayUnit of size
10 LUTs to be optimal. Please refer to Section VII where
we validate this claim with detailed leakage test results for
different sizes of the DelayUnit. Figure 11 shows the
placement and routing of the DelayUnits that correspond
to one of the S-boxes of the protected DES design using
secAND2-PD on a SPARTAN-6 FPGA. The placement and
routing were performed by Xilinx ISE software with the
location constraints we assigned to individual delay elements.
Figure 12 shows a zoomed-out view covering all the S-boxes
of DES. Each red rectangle represents one S-box, hence 8 in
total.

VI. IMPLEMENTATION RESULTS

The results of our full DES implementations are summa-
rized in Table III. We include area reports from both ASIC
and FPGA synthesis. The ASIC design results are gathered

Fig. 12: All DelayUnits for DES using secAND2-PD.

using NanGate 45nm Open Cell Library [16] and synthesized
with Synopsys DC Compiler 2017.09. We put elementary
secAND2 and XOR gates in modules and compile with
-exact_map option to prevent the modules from being
optimized. The FPGA design results are obtained from im-
plementing the design on a Spartan-6 FPGA, the same model
as used in the evaluation in Section VII, using the Xilinx ISE
software. Note that to prevent optimization of modules and
interaction between shares, we synthesize with ”Keep Hierar-
chy” constraint set to on. Lastly, we provide in the table also
the numbers from the work in [17], reporting a TDES imple-
mentation protected with DOM. Note that the number of cycles
as reported in [17] is scaled down to compare with a DES
implementation (the original cycle count for TDES is 5*48+4).

TABLE III: Utilization results of full DES implementations
including the masked key schedule.

Version
ASIC
[GEs]

FPGA
[FF/ LUT]

Rand§ Cycle§ Max Freq.∥

[MHz]

secAND2-FF 14488 819/ 2129 14 7 183

secAND2-PD 52273 678/ 7122 14 2 21

[17]# DOM-indep 13800† - 176 5 -

DOM-dep 22400† - 528 5 -
† Calculated using a 28 nm RVT standard cell library from Global Foundries.
Both versions from [17] do not mask the key schedule.
§ per round
∥ Obtained from Xilinx ISE timing report

A. Utilization for secAND2-FF version

From the area results, we can see that our design using
secAND2-FF is more compact than the DOM-dep version
in [17] but slightly larger than the DOM-indep version. Our
design uses 30 secAND2 gates per DES S-Box, compared to
22 DOM-indep gates in [17]. While secAND2 gates are by de-
sign smaller than the DOM-indep gates, the additional modules

9

in our implementation (e.g. refreshing gadgets, input/output S-
box registers, etc.) compensate for the gain to some extent. A
non-negligible difference here is, however, that our GE results
include the masked key schedule which adds around 900 GEs
to the total area cost. This is not the case in [17], in which the
numbers include the cost of an unmasked key schedule. The
overhead caused by this module further explains the difference
between both designs.

In terms of randomness usage, our design involves fewer
bits, 14 bits per round, as we opt to reuse randomness across
the eight different S-boxes. We note this decision does not
have an impact on the first-order security (see Section VII),
and hence we opt to use it in our reference implementation. In
case our design would not recycle randomness, or in case the
work in [17] did, then our numbers, 14*8 = 112 bits per round,
would still be lower than both DOM-dep and DOM-indep.
Additionally, we only expect a slight increase in area due to
additional FFs required to store the 112 bits of randomness.
We also note that in [17] there is no evaluation of the security
of the DOM-indep version, but rather of the DOM-dep version
which consumes 3 random bits per AND gate.

Lastly, our implementation takes 2 more cycles per round
compared to [17]. While all designs feature a protected S-box
with a latency of 5 cycles, the two additional input/output S-
box registers in our design increase the overall round latency
to 7 cycles. The input S-box register is a design choice, which
facilitates control over the sequence of the input operands to
the mini S-box stage and allows us flexible resetting of the
flip-flops. Whether the output S-box register can be removed
without affecting the security of the implementation is a
question we leave for future work.

B. Utilization for secAND2-PD version

The latency for our design using secAND2-PD is two
cycles per round, much less than compared to [17]. Our
randomness usage remains the same, 14 bits per round, for
both versions using secAND2-FF and secAND2-PD.

The usage of DelayUnit in our design using
secAND2-PD complicates the area comparisons between
designs. We use LUTs as delay elements in our FPGA
implementation. In Section V, we explained that we find
the optimal size for DelayUnit through multiple iterations
and by using leakage results as feedback. However, this
process of tweaking the implementation to find the optimal
size would be very expensive and also impractical for ASIC
implementations. Therefore, it is a challenging task to provide
accurate ASIC implementation costs for our design using
secAND2-PD. Instead, we follow a different approach to
provide a reasonable area estimate. For our ASIC design, we
use inverters (NOT gates) as our delay elements to buffer
signals and measure the size of DelayUnit by the number
of inverters they are composed of. We first synthesize a
circuit without any delay elements, which is equivalent to a
protected DES implementation using secAND2-PD but with
DelayUnit of size 0 LUTs. And then estimate the path
delay of the critical path of the circuit. We set the size of the
DelayUnit as the number of inverters required to achieve

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

100

200

Fig. 13: Power trace for protected DES design using
secAND2-FF (seven cycles per round).

a delay of the critical path multiplied by a factor of 3, to
accommodate a safety margin. From further synthesis runs,
we estimated the size of DelayUnit for the desired amount
of delay to be 120 inverters. Table III shows the total area
including all DelayUnits, each of size 120 inverters. If we
exclude the DelayUnits, the area of the remaining circuit
only adds up to 12592 GEs. Having a generous amount of
120 inverters per DelayUnit contributes to the rest of the
area utilization. Whether the size of DelayUnit can be
reduced without affecting the security is hard to predict.

We would like to emphasize that the purpose of utilization
results for our design using secAND2-PD is only to provide
a realistic estimate and not a new state-of-the-art DES im-
plementation. As it is difficult to provide an accurate number
that would guarantee the security of an ASIC implementation
without testing it.

VII. SECURITY EVALUATION

We use a SAKURA-G board to evaluate the side-channel
security of our protected DES implementations on the target
SPARTAN-6 FPGA. We measure the (onboard amplified)
power consumption of the target FPGA on SMA connector
J3 with a Tektronix DPO7254C oscilloscope sampling at
500MS/s and operating at 3 MHz. The power measurements
cover the entire DES operation. We use the non-specific
Test Vector Leakage Assessment (TVLA) methodology as
explained in [18] and originally described in [15]. We focus
on univariate analysis since our protected DES core processes
both shares in parallel. We perform fixed vs. random tests
where we provide either a fixed or a random plaintext to the
masked DES core, in a random sequence. The DES key is fixed
for all experiments but masked before every DES operation.
We use only 14 random bits per round, thus recycling them
for all 8 S-boxes in parallel.

A. Leakage assessment of protected DES design using
secAND2-FF

Figure 13 shows the power trace (raw oscilloscope
ADC output) covering the entire DES operation. Fig-
ures 14b, 14c, 14d display the results we obtained in three
tests using three different fixed plaintexts for the design using
secAND2-FF. We measured and analyzed 50 million traces
for each of these tests. Each Figure shows from top to bottom:
first-order univariate t-test result, second-order univariate t-test
result and third-order univariate t-test result. Red lines indicate
the commonly applied threshold at ±4.5. As we can see, there
is no evidence of first-order leakage. There are very few and
minor crossings of the ±4.5 threshold in the first-order t-test
values, but they are not consistent across the three different

10

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-50

0

50
t-test with number of traces 12000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-5

0

5

10

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-50

0

50

(a) PRNG off (12 thousand traces)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-5

0

5
t-test with number of traces 50000000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-50

0

50

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-10

-5

0

5

(b) Fixed Plaintext 1 (50 Million traces)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-5

0

5
t-test with number of traces 50000000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-50

0

50

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-5

0

5

(c) Fixed Plaintext 2 (50 Million traces)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-5

0

5
t-test with number of traces 50000000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-50

0

50

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-5

0

5

(d) Fixed Plaintext 3 (50 Million traces)

Fig. 14: Leakage assessment results for protected DES design using secAND2-FF.

plaintexts, i.e. the threshold is not exceeded at the same time
indexes, as is required by the TVLA methodology in order to
deem an implementation leaking. More importantly, we have
clear evidence of second-order leakage, with the second-order
t-test reaching values as large as 60. Therefore an adversary
would likely be better off using a second-order attack against
our protected DES implementation, as similarly argued in [19],
which require exponentially more traces by adding noise, as
discussed earlier. Alternatively, one can simply prevent an
attacker from acquiring the required number of traces with
protocol-level countermeasures such as re-keying.

For completeness, we provide a result of the same leakage
assessment performed with the PRNG switched off, which
means all random bits used for the initial masking and used
by the masked DES core are zero. Figure 14a shows that with
as little as 12 000 traces we obtain very significant peaks in
the first-order t-test, which confirms that our setup works well.

B. Finding the optimal DelayUnit size for secAND2-PD
In Section V, we explained that in practice, the size of a

DelayUnit is important for security. In this subsection, we
provide evidence to support our claim. We implement several
different versions of our protected DES using secAND2-PD,
which we explained in Section IV-C. The only difference
between the versions is the size of DelayUnit. We can con-
fidently say that any difference in leakage assessment results

we might observe is directly attributed to the change in the
DelayUnit size, as all other aspects of the implementation
remain the same. For our first version, we start with the
smallest possible size of a DelayUnit consisting of a single
LUT. And for successive versions, we gradually increase the
size of DelayUnit. We perform fixed vs. random tests for
all versions. To make a fair comparison of the test results, we
use the same fixed plaintext and collect the same number of
traces for all versions.

Figure 16 shows the power trace covering the entire pro-
tected DES using secAND2-PD. Figure 15 shows the leakage
assessment results for all versions. We collect half a million
traces for all versions with the same fixed plaintext. Each
subfigure shows from top to bottom: first-order univariate t-
test result, second-order univariate t-test result and third-order
univariate t-test result. We see pronounced leakage for the
design using the smallest DelayUnit size, see Figure 15a. A
simple explanation would be that a DelayUnit consisting of
just a single LUT is not enough to have any significant impact
on the path delay. Therefore it cannot guarantee the delayed
sequence required for secure computation of secAND2-PD,
hence the leakage. From the rest of the figures, we can notice
that there is a pattern with the first-order leakage as we
increase DelayUnit size. We can see a decrease in first-
order leakage as we increase the size. And for a DelayUnit
of size 7 LUTs, see Figure 15e, we can no longer see any first-

11

0 1000 2000 3000 4000 5000 6000 7000
-40

-20

0

20

t-test with number of traces 495000

0 1000 2000 3000 4000 5000 6000 7000
-10

0

10

20

0 1000 2000 3000 4000 5000 6000 7000

-20

0

20

(a) Size: 1 LUT (Half a million traces)

0 1000 2000 3000 4000 5000 6000 7000
-20

0

20
t-test with number of traces 495000

0 1000 2000 3000 4000 5000 6000 7000
-20

0

20

0 1000 2000 3000 4000 5000 6000 7000
-10

0

10

20

(b) Size: 3 LUT (Half a million traces)

0 1000 2000 3000 4000 5000 6000 7000
-10

0

10

t-test with number of traces 495000

0 1000 2000 3000 4000 5000 6000 7000
-20

0

20

0 1000 2000 3000 4000 5000 6000 7000
-10

0

10

(c) Size: 5 LUT (Half a million traces)

0 1000 2000 3000 4000 5000 6000 7000
-10

0

10
t-test with number of traces 495000

0 1000 2000 3000 4000 5000 6000 7000
-20

0

20

0 1000 2000 3000 4000 5000 6000 7000
-5

0

5

(d) Size: 6 LUT (Half a million traces)

0 1000 2000 3000 4000 5000 6000 7000
-5

0

5
t-test with number of traces 495000

0 1000 2000 3000 4000 5000 6000 7000
-20

0

20

0 1000 2000 3000 4000 5000 6000 7000
-5

0

5

(e) Size: 7 LUT (Half a million traces)

0 1000 2000 3000 4000 5000 6000 7000
-5

0

5

t-test with number of traces 4950000

0 1000 2000 3000 4000 5000 6000 7000
-50

0

50

0 1000 2000 3000 4000 5000 6000 7000

-10

0

10

(f) Size: 7 LUT (Five million traces)

Fig. 15: Leakage assessment results to find the optimal DelayUnit size for secAND2-PD.

0 1000 2000 3000 4000 5000 6000 7000
0

100

200

Fig. 16: Power trace for protected DES design using
secAND2-PD (two cycles per round).

order leakage with half a million traces. But upon collecting
more traces, we eventually started noticing first-order leakage,
which indicates that a size of 7 LUTs is still not the optimal
size. Figure 15f shows the leakage assessment results with 5
million traces. So we increased the size further and found the
DelayUnit size of 10 LUTs to be optimal. And from our
experiments, sizes of more than 10 LUTs do not contribute
to any significant improvement in first-order leakage and only
result in increased utilization costs. The critical path for our
protected DES using secAND2-PD lies in the mini S-Box
AND stage, see Figure 9a. The mini S-Box AND stage has
product terms with a maximum degree of 3 and the critical
path of secAND2-PD is determined by the input share which
is delayed the most. To compute a product of three variables,
the input share c1 is delayed by 4 DelayUnits, see Table II.
From the Xilinx ISE timing report, with a DelayUnit size of
10 LUTs, the FPGA implementation of our protected DES de-
sign with secAND2-PD has a maximum operating frequency
of 21 MHz. In comparison, the FPGA implementation of our
protected DES using secAND2-FF results in a maximum
frequency of 183 MHz.

In the next subsection, we present the leakage assessment
results of our final version of protected DES with DelayUnit
size of 10 LUTs.

C. Leakage assessment of protected DES design using
secAND2-PD

Figure 17 shows the leakage test results with the same three
fixed plaintexts we used to evaluate the protected DES with
secAND2-FF. The sanity check with PRNG off in Figure 17d
shows that with 33,000 traces we obtain very significant peaks
in the first-order t-test. Comparing the t-test results with PRNG
on to our previous results using secAND2-FF, we can see
that the first-order t-statistic does indeed exceed the threshold
of ±4.5. We think there are two possible explanations for this
observation. The first explanation is that the DelayUnit size
of 10 LUTs does not provide enough delay. The security of
secAND2-PD relies on the input sequence. We demonstrated
in Section VII-B that increasing the amount of delay will
separate the arrival time of the inputs, which is necessary
for a safe computation. Therefore, a DelayUnit size of
more than 10 LUTs should be more secure. But we conducted
further experiments, and we did not notice much improvement
from increasing the DelayUnit size, which leads us to our
second explanation. For d+1-implementations with d=1, i.e. 2-
share implementations, multiple prior works, [20], have noted
first-order leakage even if the implementations are first-order
probing secure [21]. Provable secure implementations do not
always translate to secure masked implementations due to
the presence of physical effects such as coupling [22]. These
effects are particularly relevant to our design because of the
long path delays we create in our circuit for secAND2-PD,
which in turn creates a lot of opportunity for coupling.

VIII. CONCLUSION

We describe two approaches to designing and implementing
a low-cost first-order secure Boolean masked DES encryption

12

0 1000 2000 3000 4000 5000 6000 7000
-100

0

100

200
t-test with number of traces 33000

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

0 1000 2000 3000 4000 5000 6000 7000
-50

0

50

100

(a) PRNG off (33 thousand traces)

0 1000 2000 3000 4000 5000 6000 7000
-10

-5

0

5

t-test with number of traces 50000000

0 1000 2000 3000 4000 5000 6000 7000
-200

0

200

0 1000 2000 3000 4000 5000 6000 7000

-50

0

50

(b) Fixed Plaintext 1 (50 Million traces)

0 1000 2000 3000 4000 5000 6000 7000
-10

0

10
t-test with number of traces 50000000

0 1000 2000 3000 4000 5000 6000 7000
-200

0

200

0 1000 2000 3000 4000 5000 6000 7000
-50

0

50

(c) Fixed Plaintext 2 (50 Million traces)

0 1000 2000 3000 4000 5000 6000 7000
-10

0

10
t-test with number of traces 50000000

0 1000 2000 3000 4000 5000 6000 7000
-200

0

200

0 1000 2000 3000 4000 5000 6000 7000

-20

0

20

(d) Fixed Plaintext 3 (50 Million traces)

Fig. 17: Leakage assessment results for protected DES design using secAND2-PD.

engine in hardware in the presence of glitches. While provable
security is certainly important and informative in this domain,
it can but does not always lead to implementations that are
secure in practice. This is typical because the model that
was used to prove security does not entirely capture physical
reality. We therefore do not aim for provable security but for
practical security by requiring no first-order leakage up to a
number of measurements where we see strong evidence of
higher-order leakage. Admittedly our design and implemen-
tation ideas are strongly inspired by approaches like TI and
DOM. But we add security measures only where practical
leakage assessment pointed out an issue, and not to make the
theory work. We construct two first-order Boolean masked
DES cores with our two AND gates, secAND2-FF and
secAND2-PD.

Using secAND2-FF, our design shows no evidence of
first-order leakage with 50M traces. The only related work
we found is by Sasdrich and Hutter [17]. Taking the dif-
ference in the key schedule into account, our area number
is comparable to their DOM-indep result and we need less
randomness per S-box than their cheapest variant, DOM-indep.
They perform leakage assessment only for the significantly
more costly (area and randomness) DOM-dep implementation.
Our implementation is moderately slower, 115 clock cycles
compared to 84 clock cycles, which is our trade-off choice.

Using secAND2-PD, we substantially reduce the number of
clock cycles compared to DOM-indep and DOM-dep imple-
mentations, while the randomness cost remains the same. Our
secAND2-PD gadget, uses LookUpTables (LUTs), which is
an FPGA component, to create path delays. Hence, a fair
comparison of our area with the reported ASIC numbers
of [17] is hardly possible. However, we emphasize that the
purpose of our secAND2-PD design is to provide a hardware-
oriented solution for masking. Recently, there has been an
increasing interest in low-latency masking techniques. Some
of the latest approaches focus on preventing glitch propagation
by substituting registers with dual-rail encodings and asyn-
chronous logic. However, while achieving low latency, these
methods often face limitations in lower maximum frequencies.
Our secAND2-PD gadget provides an alternative solution
tailored for applications such as smart cards or RFID, which
do not require fast clock frequencies. Considering there is not
much research on practical solutions for masking on hardware,
we demonstrate the effectiveness of using LUT-based path
delay as an interesting new research direction.

ACKNOWLEDGMENTS

This work was supported in part by the Flemish Government
through the Cybersecurity Research Program with grant num-
ber VOEWICS02, by the European Commission through the

13

Horizon 2020 research and innovation program under grant
agreement Belfort ERC Advanced Grant 101020005 695305,
and through the Horizon Europe research and innovation
program under grant agreement HORIZON-CL3-2021-CS-01-
02 101070008 ORSHIN.

REFERENCES

[1] S. V. D. Kumar, J. Balasch, B. Gierlichs, and I. Verbauwhede, “Low-
cost first-order secure boolean masking in glitchy hardware,” in 2023
Design, Automation Test in Europe Conference Exhibition (DATE),
2023, pp. 1–2.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology - CRYPTO ’99, ser. LNCS, M. J. Wiener, Ed.,
vol. 1666. Springer, 1999, pp. 388–397.

[3] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound
approaches to counteract power-analysis attacks,” in Advances in Cryp-
tology - CRYPTO ’99, ser. LNCS, M. J. Wiener, Ed., vol. 1666.
Springer, 1999, pp. 398–412.

[4] L. Goubin and J. Patarin, “DES and differential power analysis (the
”duplication” method),” in Cryptographic Hardware and Embedded
Systems - CHES’99, ser. LNCS, Ç. K. Koç and C. Paar, Eds., vol. 1717.
Springer, 1999, pp. 158–172.

[5] S. Mangard, T. Popp, and B. M. Gammel, “Side-channel leakage of
masked CMOS gates,” in Topics in Cryptology - CT-RSA 2005, ser.
LNCS, A. Menezes, Ed., vol. 3376. Springer, 2005, pp. 351–365.

[6] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold implementations
against side-channel attacks and glitches,” in Information and Commu-
nications Security - ICICS 2006, ser. LNCS, P. Ning, S. Qing, and N. Li,
Eds., vol. 4307. Springer, 2006, pp. 529–545.

[7] H. Groß, S. Mangard, and T. Korak, “Domain-oriented masking: Com-
pact masked hardware implementations with arbitrary protection order,”
in Theory of Implementation Security - TIS@CCS 2016, B. Bilgin,
S. Nikova, and V. Rijmen, Eds. ACM, 2016, p. 3.

[8] S. Dhooghe, S. Nikova, and V. Rijmen, “Threshold implementations
in the robust probing model,” in Proceedings of ACM Workshop
on Theory of Implementation Security, TIS@CCS 2019, London,
UK, November 11, 2019, B. Bilgin, S. Petkova-Nikova, and
V. Rijmen, Eds. ACM, 2019, pp. 30–37. [Online]. Available:
https://doi.org/10.1145/3338467.3358949

[9] S. Faust, V. Grosso, S. M. D. Pozo, C. Paglialonga, and F. Standaert,
“Composable masking schemes in the presence of physical defaults
& the robust probing model,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2018, no. 3, pp. 89–120, 2018. [Online]. Available:
https://doi.org/10.13154/tches.v2018.i3.89-120

[10] E. Trichina, “Combinational Logic Design for AES SubByte Transfor-
mation on Masked Data,” http://eprint.iacr.org/2003/236, 2003.

[11] A. Biryukov, D. Dinu, Y. L. Corre, and A. Udovenko, “Optimal first-
order boolean masking for embedded iot devices,” in Smart Card
Research and Advanced Applications - CARDIS 2017, ser. LNCS,
T. Eisenbarth and Y. Teglia, Eds., vol. 10728. Springer, 2017, pp.
22–41.

[12] H. Groß, K. Stoffelen, L. D. Meyer, M. Krenn, and S. Mangard, “First-
order masking with only two random bits,” in Theory of Implementation
Security - TIS@CCS 2019, B. Bilgin, S. Petkova-Nikova, and V. Rijmen,
Eds. ACM, 2019, pp. 10–23.

[13] Y. Ishai, A. Sahai, and D. A. Wagner, “Private circuits: Securing
hardware against probing attacks,” in Advances in Cryptology - CRYPTO
2003, ser. LNCS, D. Boneh, Ed., vol. 2729. Springer, 2003, pp. 463–
481.

[14] A. Beckers, L. Wouters, B. Gierlichs, B. Preneel, and I. Verbauwhede,
“Provable secure software masking in the real-world,” in Constructive
Side-Channel Analysis and Secure Design - COSADE 2022, ser. LNCS,
J. Balasch and C. O’Flynn, Eds., vol. 13211. Springer, 2022, pp. 215–
235.

[15] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology
for side channel resistance validation,” http://csrc.nist.gov/newsevents/
non-invasive-attack-testing-workshop/08Goodwill.pdf, 2011.

[16] NANGATE, “The nangate 45nm open cell library,” https://www.nangate.
com.

[17] P. Sasdrich and M. Hutter, “Protecting triple-des against DPA - A
practical application of domain-oriented masking,” in Constructive Side-
Channel Analysis and Secure Design - COSADE 2018, ser. LNCS, J. Fan
and B. Gierlichs, Eds., vol. 10815. Springer, 2018, pp. 207–226.

[18] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, “Higher-
order threshold implementations,” in Advances in Cryptology - ASI-
ACRYPT 2014, ser. LNCS, P. Sarkar and T. Iwata, Eds., vol. 8874.
Springer, 2014, pp. 326–343.

[19] ——, “A more efficient AES threshold implementation,” in Progress
in Cryptology - AFRICACRYPT 2014, ser. LNCS, D. Pointcheval and
D. Vergnaud, Eds., vol. 8469. Springer, 2014, pp. 267–284.

[20] N. Müller, T. Moos, and A. Moradi, “Low-latency hardware
masking of PRINCE,” in Constructive Side-Channel Analysis and
Secure Design - 12th International Workshop, COSADE 2021,
Lugano, Switzerland, October 25-27, 2021, Proceedings, ser. Lecture
Notes in Computer Science, S. Bhasin and F. D. Santis, Eds.,
vol. 12910. Springer, 2021, pp. 148–167. [Online]. Available:
https://doi.org/10.1007/978-3-030-89915-8 7

[21] T. D. Cnudde, M. Ender, and A. Moradi, “Hardware masking,
revisited,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2018,
no. 2, pp. 123–148, 2018. [Online]. Available: https://doi.org/10.13154/
tches.v2018.i2.123-148

[22] T. D. Cnudde, B. Bilgin, B. Gierlichs, V. Nikov, S. Nikova,
and V. Rijmen, “Does coupling affect the security of masked
implementations?” in Constructive Side-Channel Analysis and Secure
Design - 8th International Workshop, COSADE 2017, Paris, France,
April 13-14, 2017, Revised Selected Papers, ser. Lecture Notes in
Computer Science, S. Guilley, Ed., vol. 10348. Springer, 2017, pp.
1–18. [Online]. Available: https://doi.org/10.1007/978-3-319-64647-3 1

https://doi.org/10.1145/3338467.3358949
https://doi.org/10.13154/tches.v2018.i3.89-120
http://eprint.iacr.org/2003/236
http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/ 08 Goodwill.pdf
http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/ 08 Goodwill.pdf
https://www.nangate.com
https://www.nangate.com
https://doi.org/10.1007/978-3-030-89915-8_7
https://doi.org/10.13154/tches.v2018.i2.123-148
https://doi.org/10.13154/tches.v2018.i2.123-148
https://doi.org/10.1007/978-3-319-64647-3_1

	Introduction
	Low-Cost Masked AND2 Gadget
	Secure Hardware Implementation of secAND2
	Identifying Safe Input Sequences
	Solution 1: secAND2 with a flip-flop (secAND2-FF)
	Solution 2: secAND2 with path delay (secAND2-PD)

	Composing Secure Masked Circuits
	Computing Product Terms using secAND2-FF
	Computing Product Terms using secAND2-PD
	Addition of Product Terms

	Case Study: DES
	Deconstructing DES
	Building DES with secAND2-FF
	Building DES with secAND2-PD

	Implementing path delays in hardware
	Implementation Results
	Utilization for secAND2-FF version
	Utilization for secAND2-PD version

	Security Evaluation
	Leakage assessment of protected DES design using secAND2-FF
	Finding the optimal DelayUnit size for secAND2-PD
	Leakage assessment of protected DES design using secAND2-PD

	Conclusion
	References

