
MixMatch: Flow Matching for Mixnet Traffic
Lennart Oldenburg
COSIC, KU Leuven

lennart.oldenburg@esat.kuleuven.be

Marc Juarez
School of Informatics, University of Edinburgh

marc.juarez@ed.ac.uk

Enrique Argones Rúa
COSIC, KU Leuven

enrique.argonesrua@esat.kuleuven.be

Claudia Diaz
COSIC, KU Leuven, and Nym Technologies, SA

cdiaz@esat.kuleuven.be

ABSTRACT
Mixnets provide communication anonymity against network adver-
saries by routing packets independently via multiple hops, delaying
them artificially at each hop, and introducing cover traffic. We show
that these features (particularly the use of cover traffic) significantly
diminish the effectiveness of state-of-the-art flow correlation tech-
niques developed to link the two ends of a Tor connection. In this
work, we propose novel methods to determine whether a set of
endpoints exchanges packets via a mixnet and demonstrate their
effectiveness by applying them to the Nym mixnet. We consider
Nym in both an idealized lab setup and the official live network, and
propose and compare three classifiers to conduct flow matching on
it. Our statistical classifier tests whether egress packet timestamps
are consistent with ingress timestamps and the (known) routing
delay characteristic of the mixnet. In contrast, our two deep learning
(DL) classifiers learn to distinguish matched from unmatched flow
pairs from collected datasets directly, rather than relying on priors
that describe the delay distribution. All three classifiers use our
flow merging technique, which enables testing a match for sets of
communicating endpoints of any cardinality. Considering a use
case where two observed endpoints communicate exclusively to
exchange a file through Nym, we find that flow matching is fast and
accurate in the idealized lab setup. If flow pairs are aligned using all
network observations in a download, we achieve a TPR of circa 0.6
(DL) and 0.47 (statistical) at an FPR of 10−2 after only processing
100 observations. We evaluate classifier performance under key
variations of this setup: the absence of loop cover traffic, an in-
creased or decreased average per-mix delay, larger communicating
sets (three endpoints) with faster responders, and the presence of
realistic network effects (live network). The classifiers’ matching
performance diminishes on the live network where packet losses
and variable propagation delays exist, reducing DL TPR to circa
0.26 and statistical TPR to circa 0.28 at an FPR of 10−2. Informed
by the insights of our analyses, we outline countermeasures that
can be deployed in mixnets such as Nym to mitigate flow matching
threats.

KEYWORDS
mixnets, anonymity, flow correlation, flow matching, deep learning

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(2), 276–294
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0050

1 INTRODUCTION
With every packet we send or receive over the Internet, we generate
metadata—data about the packets, such as timestamp, size, and di-
rection. If left unprotected, an adversary able to collect and analyze
these metadata can determine who is talking to whom, enabling
privacy-invasive insights into our increasingly online lives. Anony-
mous communication networks such as mixnets [6] aim to protect
metadata even against adversaries observing all network links, e.g.,
by artificially delaying packets and shaping traffic to be of constant
bandwidth. Mixnets provide strong protection to individual packets,
which are hard to trace as they are routed through the network.
Once two endpoints exchange a large number of packets in a short
period of time, however, an adversary may be able to match the
flows of packets entering and leaving the network. While this issue
has long been researched in the context of onion routing networks
such as Tor, the extent to which mixnets may be vulnerable to this
threat remains an open question.

Two recent developments bring renewed urgency to this ques-
tion. First, the recent deployment ofNym [10, 22], amixnet that aims
to provide a general-purpose anonymous routing layer. The Nym
mixnet is based on Loopix [25] and as such relies on source routing,
continuous-time mixes, and a packet sending schedule following
a Poisson process and where clients send “loop” cover packets to
themselves in addition to the payload packets transmitted to others.
Second, researchers have recently shown that adversaries employ-
ing deep learning methods are effective at linking the endpoints
engaged in packet exchanges through Tor [11], the longest-running
and most popular anonymity network. DeepCoFFEA [23] and its
predecessor DeepCorr [19] strikingly demonstrate how well super-
vised learning methods are able to correlate network flows despite
obfuscation from having been routed through Tor. While Tor is
not designed to prevent the correlation of flows by an adversary
observing both ends of a connection [35], this attack is squarely
within the threat model of mixnets. Additionally, when mixnets like
Nym use fixed packet sizes that enable general-purpose use, mod-
ern application workloads (e.g., email, messaging, web browsing),
their data-intensive protocol parts (e.g., authentication, encryption),
and interactivity can quickly produce large flows—prompting us to
revisit the threat of matching flows on mixnets.

In this work, we develop novel methods for evaluating flow
matching in mixnets and empirically investigate their effectiveness
on the deployed Nym mixnet. Flow matching is a special case of
flow correlation where sets of endpoints communicate exclusively
among themselves (endpoints closed set condition), such that any
packet sent by an endpoint to the mixnet is received by itself or
another endpoint from its set. We design three classifiers for this

276

https://orcid.org/0000-0003-4100-182X
https://orcid.org/0000-0001-7657-9934
https://orcid.org/0000-0002-4241-0134
https://orcid.org/0000-0003-2336-7123
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0050


Proceedings on Privacy Enhancing Technologies 2024(2)

flow matching setting that consider an adversary who observes
communications between the endpoints and the mixnet (in the case
of Nym, this can be achieved by running gateways). Through our
flow merging operation (Section 3.3), we accommodate Nym’s loop
cover traffic in our model. Our statistical classifier (Section 4) uses
the fact that the drift between ingress and egress timestamps fol-
lows a stationary distribution only for matched flows (but deviates
for unmatched flows). We also propose two deep learning classi-
fiers (Section 5), called drift and shape, that automatically extract
the relevant information from the training data. Our drift network
exploits the temporal drift between egress and ingress packets sim-
ilar to how our statistical classifier does, while the shape network
follows DeepCoFFEA’s approach in learning embeddings where
matched inter-arrival sequences are located closer to each other
than unmatched sequences.

We evaluate our classifiers’ performance on six datasets that
represent distinct setups (Section 6). This allows us to identify and
assess key factors in the effectiveness of Nym’s metadata protection
(Section 7). Dataset baseline captures file download trace pairs
across default Nym over an idealized network (near-instant and
loss-free transmissions). After aligning using all observations of
a completed download and processing the first 100 observations
per flow, our statistical and our drift classifier are fast and accu-
rate in matching flows here (circa 0.47 and 0.6 TPR at 10−2 FPR,
respectively), while our shape model lags behind at about 0.26 TPR.
We examine flow matching in the absence of loop cover traffic
(dataset no-cover, idealized network) and find that the effective-
ness increases further to an FPR slightly higher than 10−6 for the
same TPR. Reducing the average delay 𝜇 that packets stay at a mix
for (low-delay, idealized network) increases TPR to 1.0 at 10−2
FPR, while increasing 𝜇 (high-delay, idealized network) leads TPR
to fall to circa 0.13. Our simulated dataset two-to-one (idealized
network) shows that our classifiers retain utility even when posi-
tive and negative samples share endpoints in larger sets. The sixth
dataset (live-nym, real-world network) evaluates the threat in the
deployed mainnet Nym in default configuration. Network effects
like packet losses violate our classifiers’ assumptions and cause
performance to degrade significantly: roughly 0.28 (statistical), 0.26
(drift), and 0.03 (shape) TPR at 10−2 FPR. We outline countermea-
sures to our attacks and highlight our approach’s shortcomings
(Section 8). We summarize our main contributions as follows:

• We propose a flowmerging technique that enables evaluating
flow matching in mixnets, given a pair (or closed set) of
endpoints communicating exclusively with each other.

• We empirically assess flow matching in different settings of
state-of-the-art mixnet Nym. We examine three classifiers
(statistical, drift, shape) that can be used after applying our
flow merging technique. We find that all three classifiers
perform well in a variety of evaluated Nym configurations,
but degrade once communication is not loss-free or exclu-
sive. We propose countermeasures to mitigate flowmatching
threats based on the insights derived from the analysis.

• We develop a method to collect metadata on Nym in an
ethical way as well as six datasets of the same file download
scenario in different Nym and network configurations. We
make this work’s source code and datasets available [1].

2 BACKGROUND AND RELATEDWORK
2.1 Flow Correlation Against Tor
Fixed-sized data packets and per-hop cryptographic transforma-
tions prevent adversaries observing both ends of a packet exchange
over connection-based anonymity systems like Tor (we give a brief
overview of relevant aspects of Tor in Appendix A) from trivially
deanonymizing it based on packet content or size. There remain,
however, observable features of traffic flows that can be exploited:
the number, direction, and timings of transmitted packets. Flow
correlation attacks consider a passive adversary that observes traffic
in the links between the endpoints and the anonymity network,
without having visibility of traffic between network intermediaries.
The adversary records traffic features observed in the available
flows and tries to determine which endpoints are communicating
with each other by analyzing correlations between flows. The sus-
ceptibility of connection-based anonymity systems to this type of
attack has long been known [4, 12, 26, 27, 32] and, in fact, Tor is
explicitly not designed to withstand such an attack [11]. Nonethe-
less, flow correlation represents a relevant threat to users of these
systems and has thus been studied extensively.

We review early flow correlation attacks that rely on traditional
statistical methods to identify correlated flows in Appendix B. State-
of-the-art methods rely on deep learning techniques, first intro-
duced by DeepCorr [19]. In contrast to other approaches, deep
learning methods do not require feature engineering by human
experts, but instead extract the dataset’s features on their own.
This allows to identify useful features potentially indiscernible to
humans. DeepCorr processes packet timestamps (as inter-packet de-
lays) and packet sizes from both connection ends in a convolutional
neural network (CNN) architecture. Impressively, for a false positive
rate (FPR) of 10−2, DeepCorr achieves a true positive rate (TPR) of
roughly 0.9 compared to circa 0.3 of RAPTOR [31], the previous
state-of-the-art attack based on traditional statistical methods.

Oh et al. [23] introduced flow pair correlator DeepCoFFEA,
which surpasses DeepCorr’s performance and practicality by way
of two main improvements. First, DeepCoFFEA transforms both
traces of a candidate pair into a low-dimensional space where cor-
related traces are located closer together (according to a distance
metric) than uncorrelated traces, and comparison is fast. This is
learned by minimizing a triplet loss [15] between embeddings of an
initiator trace (anchor), a correlated responder trace (positive), and
an uncorrelated responder trace (negative). Second, DeepCoFFEA
partitions each trace of a candidate pair into windows and arrives at
the pair’s correlation decision by aggregating window-by-window
embedding distances in order to lower the FPR. As a result, Deep-
CoFFEA outperforms DeepCorr significantly, with a TPR of roughly
0.98 compared to DeepCorr’s circa 0.3 at an FPR close to 10−3.

2.2 Mixnets and Nym
In contrast to onion routing networks like Tor, mixnets [6] aim to
provide anonymity against a global passive adversary who observes
all network links, including both ends of a communication, and is
thus capable of conducting flow correlation attacks. Mixnets differ
in two key ways from onion routing networks. First, mixnets route
each packet independently, using fresh cryptographic key material
and a randomly chosen path of intermediaries through the network

277



Proceedings on Privacy Enhancing Technologies 2024(2) Lennart Oldenburg, Marc Juarez, Enrique Argones Rúa, and Claudia Diaz

each time. They are thus packet-oriented rather than connection-
oriented (where packets are explicitly associated to a circuit for all
intermediaries in the path), meaning that an adversarial intermedi-
ary cannot tell whether or not two packets belong to the same flow.
Second, packets are artificially delayed at each intermediary (called
mix node) before being passed on. The delays alter the flow of pack-
ets routed by mix nodes so that their inputs and outputs cannot be
linked based on packet order, and may also cause packets within a
flow to be received out of order. Per-node packet reordering can be
achieved in different ways. Many mixnet designs have nodes assem-
ble incoming packets into batches before shuffling and forwarding
them [5, 6, 8, 14, 18, 36]. On the other hand, continuous-time mixes
delay packets individually, typically by a duration randomly drawn
from an exponential distribution [16, 25], to achieve a similar effect.
The Nym Network. Nym [10, 22] is a recently deployed system
based on continuous-time mixnet Loopix [25] intended for general-
purpose traffic relaying (e.g., messaging, cryptocurrency access).We
use Nym as the reference mixnet for this work as it is a state-of-the-
art design and a deployed system with available source code [21].
We analyze Nym in git repository versions nym-binaries-1.0.2
and nym-binaries-v1.1.13, with all described Nym behavior in
this work as of the latter version unless otherwise noted. Endpoints
communicating via Nym are associated to gateways that act as
interfaces with the mixnet. Application data sent through Nym is
fragmented and padded into one or more Sphinx [9] packets of
fixed size (2413 bytes). Packet paths start at the sender’s gateway,
traverse three randomly selected mixes, and end in the receiver’s
gateway. For each intermediate mix, the sending endpoint samples
a delay from an exponential distribution with mean 𝜇 = 50ms and
encodes the value in the packet header, such that the mix will retain
the packet for that amount of time before forwarding it along the
path. Data packets contain an acknowledgment packet (386 bytes
in size) that is extracted by the receiving gateway and sent to the
mixnet, which routes it back to the sender via a dedicated fresh
path independent of its data packet’s path. Acknowledgments are
delayed at each intermediate mix also following an exponential
distribution with mean 𝜇 (i.e., 50ms). Given that the sender selects
all the per-mix delays for the packet and the acknowledgment, it can
estimate when the acknowledgment should be received. If either
the packet or the acknowledgment is lost in transit, the sending
endpoint retransmits the data after a timeout.

With the goal of achieving unobservability [24], Nym endpoints
regulate the times at which they send packets to their gateways. The
emission schedule is modeled as a Poisson process that on average
sends 50 packets per second, with inter-packet delay drawn from
an exponential distribution with average 𝜆R = 20ms. Each time the
emission schedule indicates that a packet should be sent, the end-
point checks if an application-level packet is available for sending,
and if so, sends it out. If no application-level packet is ready, the
endpoint instead generates a loop cover packet with throwaway pay-
load addressed to itself. Loop cover packets are routed like regular
packets and are indistinguishable for all entities except the sender.
This way, an adversary monitoring the link between endpoint and
gateway is unable to tell whether the endpoint is sending any “real”,
application-level packets or not. In addition to these “gap-filling”
loop cover packets, endpoints also send loop cover packets at all

Figure 1: Traces recorded by an adversary that controls gate-
ways 𝐺I and 𝐺R and wants to determine whether endpoints I
and R are communicating.

times (independent of application traffic), according to a second
Poisson process with average inter-packet delay 𝜆C = 200ms.

2.3 Flow Correlation Against Mixnets
Danezis [7] presents an attack on the anonymity provided by a
simulated network of continuous-time mixes with exponential de-
lay, assuming that packets are associated to flows as they traverse
the mixnet. The problem tackled in this work considers a more
general and harder attack setting where all packets are indepen-
dently routed and not associated to flows. We discuss how our
results extend prior work in Section 4. Zhu et al. [38] evaluate flow
correlation for batching mix strategies considering a single mix,
four endpoints, and no cover traffic—a very simplistic setup com-
pared to deployed systems such as Nym. Thus, while prior work
on flow correlation against connection-based anonymity systems
is plentiful, we currently lack methods to evaluate this threat in
realistic mixnet setups that are packet-oriented.

3 FLOWMATCHING ON MIXNETS
3.1 System Model
We consider a set of endpoints (clients or network services) that
communicate through the Nymmixnet via a gateway of their choice.
We focus on pairwise communications between two endpoints, but
note that our methods apply to closed communication groups that
involve any number of endpoints (Section 3.3). As convention to
distinguish the two endpoints, we denote the sender of the first
packet in the exchange as initiator I, while the receiver of that first
packet is responder R. The packets from I to R are considered to
flow upstream, while the packets from R to I travel downstream.
Figure 1 illustrates our abstract system model, where endpoints I
and R communicate with each other via their respective gateways
𝐺I and 𝐺R. We call ingress the traffic sent from a gateway to the
mixnet and egress the traffic received by a gateway from the mixnet.
We assume that I and R are communicating exclusively with each
other and that the same gateways (𝐺I and𝐺R) are used during their
entire communication session.

In practice, endpoints in Nym connect to gateways via Web-
Socket, a bidirectional, ordered, message-oriented protocol. We call
the bidirectional packet exchange of theWebSocket session between

278



Proceedings on Privacy Enhancing Technologies 2024(2)

endpoint 𝐸 ∈ {I, R} and its gateway 𝐺𝐸 a trace 𝑇𝐸 = (𝑇 In
𝐸
,𝑇Out

𝐸
),

where 𝑇 In
𝐸

and 𝑇Out
𝐸

denote the sequences of ingress and egress
Sphinx packets, respectively. For each packet in these directional se-
quences, the trace records its timestamp and size (normal packet or
acknowledgment). The entire trace𝑇𝐸 observable by𝐺𝐸 as the result
of acting as network interface for 𝐸 is split into four flows. For end-
point 𝐸, packet type𝑀 ∈ {P,A}, and packet direction𝐷 ∈ {In,Out},
let flow 𝐹

𝐷,𝑀
𝐸

denote the sequence of packet timings in 𝑇𝐸 of type
𝑀 and direction 𝐷 .

3.2 Threat Model

Adversarial Capabilities. We consider an adversary that runs one
or more Nym gateways. An adversarial gateway logs the observed
traces𝑇𝐸 for all of the endpoints 𝐸 it interacts with and makes these
traces available for adversarial analysis. The attack is passive, i.e.,
malicious gateways do not delay, modify, inject, or drop packets.
They follow the packet transmission protocols perfectly and only
deviate from honest behavior by logging packet information. We
assume the mixnet nodes and endpoints to be honest, i.e., they
follow the protocols and do not collude with the adversary.

Depending on how endpoints select gateways, it may be eas-
ier or harder for the adversary to become the gateway of target
endpoints of interest. The adversary may have to gain a target’s
trust if the gateway selection is manual, wait until it “gets lucky”
if gateways are regularly reassigned in a randomized way, or op-
timize its parameters in case of automated selection that follows
criteria such as proximity to the target, uptime, or server capacity.
Regardless of the ease or difficulty of targeting specific endpoints,
we consider that the adversarial gateways are used by at least two
endpoints, allowing the adversary to assess whether any pair of
observable endpoints are communicating with each other. Note
that we require the adversary to simultaneously observe the traces
of both candidate endpoints I and R to deploy the attack. There is,
however, no requirement for the adversary to observe the traces of
other endpoints that may also be communicating with each other
through the mixnet at the same time as I and R.

Compared to an alternative adversary that records packet meta-
data at the communication link level, our gateway adversary obtains
packet metadata at the Sphinx layer with much less noise and thus
less necessary processing before analysis. This and the fact that
becoming a Nym gateway is relatively accessible to a wide range
of actors, leads us to focus on this type of adversary for this work.
Flow Correlation Versus Flow Matching. In Tor, a malicious
guard and exit (first and last intermediaries) colluding to determine
if they are part of the same circuit can check whether the observed
flow of packets 𝐹 InI matches the received flow 𝐹OutR , as every packet
in the input flow must appear in the output after a small delay. As
circuits are bidirectional, the adversary similarly checks whether
𝐹 InR matches 𝐹OutI . The timing of circuit establishment and destruc-
tion at both ends is an additional feature to determine that the
flows correspond to the same circuit. Furthermore, if an endpoint
is simultaneously engaged in multiple connections routed through
multiple circuits, the traffic sent or received via other circuits does
not obfuscate the observed flows 𝐹𝐷

𝐸
with spurious packets that

may hinder flow correlation. Thus, a pair of traces 𝑇I = (𝐹 InI , 𝐹OutI )

and𝑇R = (𝐹 InR , 𝐹OutR ) are either a match or not a match, and there is
no such thing as a “partial” match in this setting and threat model.

In mixnets, on the other hand, the traffic flows observed by
gateways aggregate independently routed packets that may belong
to different connections and it is not possible to distinguish which
packet belongs to which end-to-end connection. In Nym, even if
endpoints I and R are communicating exclusively with each other,
the loops of cover traffic sent by clients ensure that some of the
packets seen in input flow 𝐹 InI will appear in the same endpoint’s
output flow 𝐹OutI and not be received at the other endpoint as part
of 𝐹OutR . Attempting to match 𝐹 InI to 𝐹OutR and 𝐹 InR to 𝐹OutI —the
approach to evaluate this attack in Tor—is thus not adequate for
the Nym mixnet.

When considering endpoints that are communicating exclusively
with each other, all the packets in their ingress flows will appear in
one of their egress flows (unless they are lost in transit), either to
themselves in the case of loop cover packets or the counter-party
in the case of data transmissions. We call this problem—where all
ingress packets are represented as egress packets—flow matching.
We leave the more complex problem of partial flow correlation for
future work, where some fraction of packets in the observed ingress
flows has no corresponding output in any of the observed egress
flows and vice versa, as some packets received in egress flows were
sent by endpoints that are not under observation by the adversary.
With this more complex problem in mind, flow matching can also
be understood as complete flow correlation.

3.3 Endpoints Closed Sets and Flow Merging
As shown in Figure 1, the adversary collects a bidirectional trace
𝑇𝐸 =

{
𝑇 In
𝐸
,𝑇Out

𝐸

}
for each endpoint 𝐸 ∈ {I, R}. Each directional

trace (In,Out) is a sequence of packets characterized by their times-
tamp and size, which depends on whether it is a payload (P) or an
acknowledgment (A) packet. The egress flows 𝐹Out,P

𝐸
and 𝐹Out,A

𝐸
are

obtained by splitting𝑇Out
𝐸

into two vectors according to packet type
{P,A}. The adversarial gateway obtains the ingress payload flow
𝐹
In,P
𝐸

from 𝑇 In
𝐸
, which contains all the packets sent by 𝐸. Ingress

acknowledgments are sent by the gateway itself immediately upon
receiving and processing a payload packet, rather than received
from endpoint 𝐸. Thus, the ingress acknowledgment flow is simply
a copy of the egress payload flow, i.e., 𝐹 In,A

𝐸
= 𝐹

Out,P
𝐸

.
In flowmatching, the goal is to determinewhether a set of ingress

flows matches a set of egress flows. Considering a single endpoint
𝐸, a match between {𝐹 In,P

𝐸
, 𝐹

In,A
𝐸

} and {𝐹Out,P
𝐸

, 𝐹
Out,A
𝐸

} would reveal
that 𝐸 is not communicating with anyone, but just sending loop
cover traffic to itself, which we call a loner. Given a pair of endpoints
I and R, let 𝐹 In{I,R} be the combination of the ingress flows for both
parties (separately for each type P and A, which we omit in the
following for convenience) and 𝐹Out{I,R} be the combination of the
egress flows. A positive match between 𝐹 In{I,R} and 𝐹Out{I,R} indicates
that I and R are communicating with each other.

Generalizing to any number of parties, let E= {𝐸1, . . . , 𝐸𝑁 } be a
set of endpoints communicating via the mixnet. Flow matching can
be applied whenever the endpoints closed set condition is satisfied,
i.e., all endpoints 𝐸𝑖 ∈ E communicate with other endpoints in the
set (including themselves), but do not exchange (send or receive)

279



Proceedings on Privacy Enhancing Technologies 2024(2) Lennart Oldenburg, Marc Juarez, Enrique Argones Rúa, and Claudia Diaz

Figure 2: Flow merging in a closed set E= {𝐸1, 𝐸2, 𝐸3}. Then,
𝐹𝐷
E
= 𝐹𝐷1

⊎
𝐹𝐷2

⊎
𝐹𝐷3 , with 𝐷 ∈ {In,Out}.

packets with endpoints not in E. If this is the case, then the combi-
nation of egress flows must contain the same packets included in
the combination of ingress flows. We define the combined flows as:

𝐹 In
E

=
⊎

𝐸𝑖 ∈E𝐹 In
𝐸𝑖

; and 𝐹Out
E

=
⊎

𝐸𝑖 ∈E𝐹Out
𝐸𝑖

, (1)

where ⊎ stands for multiset union and reordering, which we call
merging for convenience and illustrate in Figure 2. In order to test
whether 𝐹 In

E
and 𝐹Out

E
match, the adversary needs to build a detector

that is able to distinguish matched from unmatched ingress and
egress flows. Formally, this detector can be defined as follows:

𝑑Ideal
(
𝐹Out
E

, 𝐹 In
E

)
=

{
1 if 𝐹Out

E
∥ 𝐹 In

E

0 if 𝐹Out
E
∦ 𝐹 In

E

, (2)

where ∥ stands for matches and ∦ stands for does not match.
Focusing on the concrete case where two endpoints I and R

communicate with each other, it only holds if:

𝑑Ideal
(
𝐹Out
E

, 𝐹 In
E

)
= 1, (3)

𝑑Ideal
(
𝐹OutI , 𝐹 InI

)
= 0, and (4)

𝑑Ideal
(
𝐹OutR , 𝐹 InR

)
= 0, (5)

where E = {I, R}. In other words, the adversary determines that
endpoints I and R form a closed set and are not loners.

Given multiple packet types, the endpoints closed set condition
must hold for all types. Thus, the detector is applied separately
to both payload and acknowledgment packets. The ideal detector
shown in Equation (2) provides the true answer considering that
both flows are matching. Practical detectors built by the adversary
thus must combine the evidence provided by the separate matching
of both payload and acknowledgment flows. There are different
methods an adversary may use to approximate the ideal detector
of Equation (2). In this paper, we explore three relevant ones: a
statistical classifier (Section 4), based on the adversary’s a priori
knowledge regarding the statistical nature of the delays introduced
by mixnets in matched ingress and egress flows, and two more
general deep learning classifiers (Section 5), called drift and shape,
which learn this knowledge directly from collected data.

3.4 Packet Alignment
As a practical consideration, when the adversary analyzes ingress
and egress flows, it is important to properly align them in order to
ensure that the distribution of the drift exhibited by matched pairs
is always the same. If both ingress and egress flow capture packets
starting at the same global time, the first packets in the egress flow

may correspond to packets sent before the capture process started,
hence not included in the observed ingress flow. These packets
should be discarded. In practice, the adversary can align both time
series to ensure that the average difference between same-index
egress and ingress timestamps approximates the average delay
introduced by the mixes plus other processing and transmission
delays. Once this is done, the non-overlapping parts of the aligned
flows are cropped to ensure same length. In all our experiments,
this alignment is done considering the full flows captured during
the experiment duration.

4 STATISTICAL CLASSIFIER
The anonymity of continuous-time mixes has been modeled before
by Danezis [7]. Assuming that the incoming traffic is a Poisson
process, the anonymity set size of packets traversing a continuous-
time mix is given by the differential entropy of its inverse delay
characteristic function plus the logarithm of the incoming traffic
average inter-packet delay 𝜆In, i.e.:

A= dE
{
𝑓 ′

(
𝑡 In | 𝑡Out

)}
+ log 𝜆In, (6)

wheredE{·} is the differential entropy operator, and 𝑓 ′
(
𝑡 In | 𝑡Out

)
is the inverse delay characteristic function, which is the probability
density describing the likelihood a message being ejected at time
𝑡Out was injected into the mix at time 𝑡 In. In the case of a multi-
hop mixnet, if we assume for simplicity that network propagation
delays are negligible compared to mixing delays, then the inverse
delay characteristic is the probability density function (pdf) of an
Erlang random variable with shape 𝑟 and rate𝜓 , denoted as 𝐸 (𝑟,𝜓 ),
where 𝑟 is the number of mix nodes in a packet’s route through
the mixnet and𝜓 = 𝜇−1 is the inverse of the average of the expo-
nential delay distribution introduced at each mix node. Rather than
characterizing anonymity, our goal is to build effective statistical
tests that distinguish matched from unmatched sets of ingress and
egress flows corresponding to endpoints in E, thus approximating
the ideal detector defined in Equation (2) as much as possible.

4.1 Statistical Detector
Let us denote the pdf of 𝐹Out

E
given 𝐹 In

E
and 𝐹Out

E
∥ 𝐹 In

E
as:

𝑓 +
(
𝐹Out
E

���𝐹 InE )
= 𝑓𝐹Out

E

(
𝐹Out
E

��� 𝐹 InE , 𝐹OutE
∥ 𝐹 InE

)
,

and its corresponding likelihood as:

𝐿

(
𝐹Out
E

��� 𝐹 InE , 𝐹OutE
∥ 𝐹 InE ;Θ

)
= 𝐿+

(
𝐹Out
E

��� 𝐹 InE ;Θ
)
,

where Θ is the set of parameters of 𝑓 + and packet type has been
suppressed for convenience.

The different possible scenarios for the non-matched case are
too many, so the adversary can focus on modeling 𝑓 +

𝐹Out to build its
statistical test and ignore the cases where 𝐹Out

E
∦ 𝐹 In

E
. For matched

flows, each timestamp in 𝐹Out
E

matches another timestamp in 𝐹 In
E
,

as egress packets are just ingress packets delayed by the mixnet.
Therefore, if we assume there are no propagation or processing
delays and no packet losses, in mixnets with exponential delays,
there exists a permutation of the ingress packet indexes P(𝑛In

E
) =(

𝑝1, . . . , 𝑝𝑛In
E

)
such that 𝑡Out

E,𝑝𝑘
− 𝑡 In

E,𝑘
∼ 𝐸 (𝑟,𝜓 ) ∀𝑘 .

280



Proceedings on Privacy Enhancing Technologies 2024(2)

Under these assumptions, it is possible to compute the exact
likelihood of 𝐹Out

E
given 𝐹 In

E
and 𝐹Out

E
∥ 𝐹 In

E
(i.e., the evaluation of

𝑓 +
𝐹Out for some given parameters of the mixnet) by using a recursive
procedure based on the following:

𝐿+
(
𝐹Out
E

��� 𝐹 InE ; 𝑟,𝜓
)
=∑︁

𝑙 |𝑡 In
E,𝑙

<𝑡Out
E,𝑘

𝑓𝐸 (𝑟,𝜓 )
(
𝑡Out
E,𝑘

− 𝑡 In
E,𝑙

)
𝐿+

(
𝐹Out−𝑘
E

��� 𝐹 In−𝑙E
; 𝑟,𝜓

)
, (7)

where 𝑓𝐸 (𝑟,𝜓 ) is the pdf of an 𝐸 (𝑟,𝜓 ) random variable with 𝑟 = 3
and𝜓 = 1/50ms in the case of Nym, and 𝐹𝐷−𝑞

E
is the flow resulting

from removing 𝑡𝐷
E,𝑞

from 𝐹𝐷
E
with 𝐷 ∈ {In,Out}. Although this

exact computation removes the impossible correspondences, it still
requires impractical computational power for even modest flow
lengths as it only evaluates permutations where 𝑡Out

E,𝑝𝑘
> 𝑡 In

E,𝑘
∀𝑘 .

Therefore, the adversary is forced to rely on a practical approxima-
tion. Also, this computation would differ if we introduced network
delays. Instead of evaluating all possible orders of packets, the
adversary can use a strategy robust against packet reordering by
paying attention to the drift of output and input flows. If ingress and
egress flows are aligned, the difference of egress and ingress times-
tamps with the same index follows a stationary distribution for
matched flows, but randomly drifts away from this distribution for
unmatched flows. In an idealized case without reordering between
the ingress and egress flows, i.e., 𝑝𝑘 = 𝑘 in the index permutation,
this strategy would be equivalent to the exact computation.

For convenience, let us define the logarithmic scoring function
𝑓stat

(
𝐹Out
E

, 𝐹 In
E

)
as:

𝑓stat
(
𝐹Out
E

, 𝐹 In
E

)
= ℓ+

(
𝐹Out
E

��� 𝐹 InE ; 𝑟,𝜓
)
,

where ℓ+ is the loglikelihood function of matched flows and stat
is short for statistical. The adversary can use the matched flow
stationary drift distribution to approximate this scoring function
as:

𝑓stat
(
𝐹Out
E

, 𝐹 InE

)
≈
∑︁
𝑙

log
[
𝑓Δ(Γ)

(
𝑡Out
E,𝑙

− 𝑡 In
E,𝑙

)]
, (8)

where 𝑓Δ(Γ) is the pdf of the drift (delay of packets with the same
index) in aligned matched flows and Γ is the set of parameters of
this pdf. The distribution of the drift, given that reordering happens,
differs from the 𝐸 (𝑟,𝜓 ) mixnet delay random variable regardless of
the propagation delays. This distribution has a much lighter right
tail than the Erlang delay introduced by the mixnet in individual
packets, due to packet reordering that happens in mixnets. The
adversarymust approximate the actual 𝑓Δ(Γ) from its own collection
of matched flows. In this study, we use a Gaussian approximation,
i.e., Δ(Γ) ∼ N(𝜂Δ, 𝜎Δ), where 𝜂Δ and 𝜎Δ are the sample mean and
standard deviation of the delays between packets with the same
index in matched flows measured by the adversary.

As this score (which is also a loglikelihood) yields higher values
for matched than for unmatched flows and the target value also
depends on the adversary’s objective and the flows’ length, the
adversary builds their Ingress/Egress Flow Matching hypothesis
test as follows:

Egress flow 𝐹Out
E

matches ingress flow 𝐹 In
E

if, and only if, the
logarithmic score is above a threshold that depends on the length
of the flows and the target working point Ω, i.e.:

𝐹Out
E

∥ 𝐹 In
E

⇐⇒ 𝑓stat
(
𝐹Out
E

, 𝐹 In
E

)
≥ 𝜃 (𝑛,Ω) ,

or equivalently:

𝑑stat
(
𝐹Out
E

, 𝐹 InE

)
=


1 if 𝑓stat

(
𝐹Out
E

, 𝐹 In
E

)
≥ 𝜃 (𝑛,Ω)

0 if 𝑓stat
(
𝐹Out
E

, 𝐹 In
E

)
< 𝜃 (𝑛,Ω)

(9)

4.2 Combination of Payload and
Acknowledgment Flow Scores

As a fresh mixnet route is sampled for each acknowledgment packet
attached to a payload packet (Section 2.2), the scores for payload and
acknowledgment flows obtained by the adversary are statistically
independent. Together with the fact that these scores are loglikeli-
hoods, the adversary can compute the combined score 𝑓 comb

stat as:

𝑓 comb
stat

(
𝐹Out
E

, 𝐹 InE

)
=

∑︁
𝑀 ∈{P,A}

𝑓stat
(
𝐹
Out,𝑀
E

, 𝐹
In,𝑀
E

)
, (10)

with each packet-type-specific score computed using Equation (9).

5 DEEP LEARNING CLASSIFIERS
Our machine learning approach to the mixnet flow matching prob-
lem is inspired by DeepCoFFEA, the state-of-the-art traffic correla-
tion attack on Tor [23]. Although some of the choices behind Deep-
CoFFEA’s design are also applicable to flowmatching inmixnets, we
make substantial modifications to the original design to effectively
tackle the novel setting. In this section, we describe our approach
highlighting the points where it diverges from DeepCoFFEA’s.

5.1 Deep Learning
Similar to DeepCoFFEA and in contrast to the statistical classi-
fier introduced above, this approach is based on a deep learning
(DL) classifier. Instead of explicitly modeling the mixnet’s delay
characteristic and making decisions based on how well the traffic
observations fit the hypothesis that the flowsmatch, a DL algorithm
aims to find a model 𝑓DL with parameters𝑊 able to discriminate
between matched and unmatched ingress and egress flows.

To obtain 𝑓DL, DL algorithms search for the values of𝑊 that
minimize a loss function 𝑙 , which penalizes incorrect predictions of
𝑓DL on a sample of correctly labeled data. This optimization process
is referred to as training and hence the dataset used for training is
known as the training set. The ability of DL algorithms to produce
models that generalize well (i.e., perform well on samples that were
not included in the training set) indicates good learning capability.

The resulting 𝑓DL is a possibly non-linear model that, unlike the
statistical classifier, does not assume a specific delay distribution
for ingress and egress packets with the same index. Therefore, a
DL classifier has the potential to overcome some of the limitations
of the statistical classifier—albeit at a higher demand for training
data and computational resources.

281



Proceedings on Privacy Enhancing Technologies 2024(2) Lennart Oldenburg, Marc Juarez, Enrique Argones Rúa, and Claudia Diaz

5.2 Input Representation
As discussed in previous sections, we tackle a flow matching prob-
lem that is slightly different from the one that DeepCoFFEA was
designed to address. Rather than matching a pair of ingress and
egress flows for each upstream and downstream direction, here
the problem concerns the matching of pairs of merged ingress and
egress flows for a type of packet and pair of endpoints communicat-
ing exclusively with each other. Following the notation introduced
in previous sections, for an endpoint pair E= {𝐼 , 𝑅}, we denote its
associated merged ingress and egress flow pair as 𝐹 In

E
= 𝐹 In

𝐼
⊎ 𝐹 In

𝑅

and 𝐹Out
E

= 𝐹Out
𝐼

⊎ 𝐹Out
𝑅

, omitting packet type for convenience. Just
like the statistical classifier incorporates different packet types into
the test (Section 4.2), we consider acknowledgments and payload
packets as independent samples to train the DL classifiers.

Note that our merged flow representation is especially well-
suited to account for Nym’s loop cover traffic, which does not
degradematching accuracy when the ingress and egress flows of the
various endpoints are merged. As we demonstrate, DeepCoFFEA’s
performance is severely impaired when Nym endpoints send loop
cover traffic (see Figure 15 in Appendix D). Our input representation
is robust to loops, as merging ensures that loop cover packets appear
in both the ingress and egress flows being matched by the classifier.

5.3 Window Partitioning
In line with DeepCoFFEA, we partition the flow pairs into windows
to take advantage of the augmentation effect of multiple indepen-
dent tests [23]. Our windows differ from DeepCoFFEA’s in that
they are packet-based rather than time-based. A packet-based win-
dowing approach is better suited for flow matching, as for matched
flows it is more likely that ingress and egress packets will fall in
windows with the same index. To prevent a possible misalignment
between the ingress and egress windows, it is crucial that we apply
the technique described in Section 3.4 per each window index.

We consider windows that may overlap a constant number of
packets.We denote by𝑛𝑤 the number of packets per window and by
𝛿 the fraction of packets by which each two consecutive windows
overlap. For example, the window partitioning of the flow pair 𝐹 In

E

and 𝐹Out
E

for 𝛿 = 0.5 and 𝑛𝑤 = 10, would return the packet indices
within the intervals [1, 10], [6, 15], [11, 20], etc., for each flow.

The final representation of a window comprises the inter-arrival
times of the window’s time sequence, and we treat it as an indepen-
dent data point to train the DL-based models. Thus, the number of
windows is a multiplicative factor of the size of the training set. The
large training datasets collected for our experiments allow us to
discard the last window of the flows, as it usually contains less than
𝑛𝑤 packets. We do so for convenience, but, alternatively, we could
have padded them with zeros [23]. To be able to pair every ingress
window with an egress window, we also ensure the same number
of windows across all training flows by discarding windows. Below,
we describe the two types of DL classifiers that we have designed
for flow matching: the drift network and the shape network.

5.4 Drift Network
The drift network exploits the same information as the statistical
classifier. It takes in flow pair 𝐹 In

E
, 𝐹Out

E
and computes the sequence

𝑡Out
E,𝑘

− 𝑡 In
E,𝑘

for 𝑘 = 1, . . . , 𝑛. This sequence of time differences be-
tween egress and ingress flows captures their temporal drift, which
correlates with whether the flows are matched or not.
Network Architecture. The architecture of the drift network dif-
fers significantly from the one of DeepCoFFEA: instead of learning
intermediate representations of the flows through metric learning,
it learns to classify them directly. Our tests show that such a simple
network already performs remarkably well, indicating that metric
learning and other dimensionality reduction techniques may only
provide marginal improvements.

The drift network is similar to DeepCoFFEA in that it also has
several hidden convolutional layers, but it is much smaller, as traffic
matching is a simpler learning problem than traffic correlation. In
addition, we use average pooling instead of max-pooling due to
the importance of the localization of the drift: when the flows are
unmatched, as time passes, the ingress and egress flows drift further
apart, thus providing more signal to the classifier. We expand on
the drift network’s architecture and its parameters in Appendix E.1.
Testing. After training, the resulting drift model 𝑓DL returns a score
for each ingress–egress window pair that quantifies how confident
themodel is that the windowsmatch. The adversary sets a threshold
on these scores to make a final decision. To aggregate the decisions
across all the windows in a flow, we average the window scores
and then set the threshold on the average. This is in contrast to Oh
et al.’s approach to set the threshold on each individual window
score, count the number of windows that match, and then make a
decision based on a majority-vote rule. We argue that the majority-
vote rule loses useful information at window level, as it does not
capture how far (or close) each vote was from the threshold value.
Figure 14 in Appendix D shows that DeepCoFFEA performs better
with our average aggregation rule. When acknowledgments are
available, we aggregate the averaged scores for acknowledgments
and payloads before applying the threshold, as two independent
inputs for the same test data point.

5.5 Shape Network
Instead of exploiting drift information, the shape network attempts
to match the ingress and egress inter-arrival timing sequences.
Similar to DeepCoFFEA, the shape model is obtained by training
a triplet network [15], a DL algorithm that we adapted to obtain
new representations of the traffic flows that are more efficient for
solving the flow matching problem.

Typically, triplet networks take three data points as input: a
reference point known as anchor, a matching point to the anchor
called positive, and a non-matching point called negative. We denote
them as 𝑎, 𝑥+, and 𝑥−, respectively. Given a similarity metric 𝑆 , the
training objective of the triplet network is to find the parameters
𝑊 of a model 𝑓DL such that:

𝑆 (𝑓DL (𝑎), 𝑓DL (𝑥+)) > 𝑆 (𝑓DL (𝑎), 𝑓DL (𝑥−)) + 𝛼, (11)

where the model 𝑓DL is typically a convolutional neural network
with parameters𝑊 and 𝛼 is a slack variable called margin. The
outputs of 𝑓DL are low-dimensional vectors of fixed length, also
known as embeddings. If 𝑓DL satisfies Equation (11), its embeddings
for matched flows are more similar to each other than those for
unmatched flows by at least 𝛼 , thus allowing to distinguish between

282



Proceedings on Privacy Enhancing Technologies 2024(2)

Figure 3: Adapted triplet network for the shape classifier. The
inputs are the anchor-positive, positive, anchor-negative, and
negative windows. The horizontal arrows between the 𝑓DL
boxes indicate the parameters𝑊 are shared among them.
𝑓DL’s outputs are the embeddings which are passed to the
modified 𝑙𝛼 . The sizes of the windows and the embeddings
are denoted as 𝑛𝑤 and 𝑠, respectively.

them by just comparing their similarities. In practice, it might not
be possible to always satisfy Equation (11), so we find𝑊 that mini-
mizes the hinge loss function 𝑙𝛼 , defined as:

𝑙𝛼 := max
(
𝑆 (𝑓DL (𝑎), 𝑓DL (𝑥−)) − 𝑆 (𝑓DL (𝑎), 𝑓DL (𝑥+)) + 𝛼, 0

)
.

Our novel input representation requires us to modify the objec-
tive and the loss functions above. Flows are defined relative to E,
creating a dependency in the definition of an “anchor flow” to E.
For example, for an endpoint 𝐸1, its matched pair is E+ = {𝐸1, 𝐸2},
and one of its unmatched pairs may be E− = {𝐸1, 𝐸3}, resulting in
an anchor flow for each E+ and E−. We call the anchor flow for
E+ the anchor-positive flow, defined as 𝑎+ B 𝐹 In

E+ , and its corre-
sponding positive flow is defined as 𝑥+ = 𝐹Out

E+ . Analogously, we
define the anchor-negative flow as 𝑎− B 𝐹 In

E− and its negative flow
as 𝑥− = 𝐹Out

E− . Therefore, the triplet network objective becomes:

𝑆 (𝑓DL (𝑎+), 𝑓DL (𝑥+)) > 𝑆 (𝑓DL (𝑎−), 𝑓DL (𝑥−)) + 𝛼, (12)

and 𝑙𝛼 changes accordingly. This is in contrast to DeepCoFFEA’s
triplet network, which follows the usual single-anchor approach.

In Figure 3, we show a high-level view of our modified triplet net-
work, abstracting the internal model 𝑓DL. Recall that after window
partitioning, the training data points are not flows but windows of
size 𝑛𝑤 . Note that although the input size of 𝑓DL is 𝑛𝑤 , the training
results in one single 𝑓DL model. We denote by 𝑠 the embedding size,
which is a parameter of the network. We follow DeepCoFFEA and
use cosine similarity as 𝑆 and embedding size 𝑠 = 64.
TripletMining. Traditional triplet networks improve convergence
by triplet mining, the search for negative instances that lie within
the margin [37]. These negative instances are known as semi-hard
negatives, as opposed to hard negatives, which already satisfy Equa-
tion (11). Semi-hard negatives are closer to positives and thus help
the learning algorithm to focus on differences that are more relevant
to satisfying the margin imposed by Equation (11).

For E+ in the previous example, we could could have picked
any other non-communicating endpoint to define E−, indicating

that there is room for triplet mining. Similarly to DeepCoFFEA, we
compute the pair-wise similarities for all possible negative flows
and select those that are within the margin of Equation (12). While
DeepCoFFEA trains with one semi-hard negative per batch, we
feed them all to the classifier. The computational complexity of
triplet mining increases quadratically on the number of matched
flows. Thus, in our implementation, we distribute the triplet mining
computations across batches, calculating similarities for only a
small subset of the negative flows at a time.
Network Architecture. The architecture of the network that fits
the embeddings in the triplet network and produces the model
𝑓DL is almost identical to DeepCoFFEA’s. We depict the network
architecture and its parameters in Figure 17a in Appendix E.1.
Testing. A shape model also returns a score for whether or not
two windows match. More precisely, in the case of a shape model,
this score is the cosine similarity between two window embeddings.
Unlike DeepCoFFEA, we set a global threshold instead of a local one.
For each anchor, Oh et al. take the maximum similarity score in the
𝑘-nearest negatives to the anchor as the threshold to discriminate
instances relative to that anchor. The pool of negatives from which
the final negative is picked includes all possible negatives, thus
implicitly assuming that the adversary has visibility over all the
egress links of the Tor network. In our threat model, the adversary
does not necessarily control all the Nym gateways and therefore
may not be able to observe all negative flows. Thus, we use a global
threshold in all our evaluations, even though the results of our
experiments indicate that a local threshold would provide superior
performance (see Figure 13 in Appendix D). More details on the pa-
rameters of the network architectures and hyperparameter tuning
for the learning algorithms can be found in Appendix E.

6 DATA COLLECTION
We consider a file download as application use case for our empirical
evaluation of Nym in various setups. We implement a curl process
(triggered by the initiator I) that downloads a file of 1MiB size
via HTTP over Nym from a (default) python3 HTTP server (the
responder R). By fixing variables such as file size and endpoint send
rate (except responder send rate in the case of dataset two-to-one,
see below) across experiments, we aim to assess the effect of isolated
mixnet features. For this work, we assume the adversary knows
when the HTTP request starts and ends within a trace.

We obtain six trace pair datasets to evaluate flow matching in
Nym. We collect the first four datasets (called baseline, no-cover,
low-delay, and high-delay), using a single-host experimental
setup based on Docker, with Nym in version nym-binaries-1.0.2.
We call this the isolated setup and depict it in Figure 9 in Appendix C.
We simulate a fifth dataset (called two-to-one) on the isolated setup
by crafting it from baseline. The final dataset (called live-nym),
we collect from the live Nym mainnet using instrumented Nym
components in version nym-binaries-v1.1.13. This is the live-
network setup and we show it in Figure 10 in Appendix C.
Isolated Setup. We encapsulate the components of a minimal
Nym deployment using Docker containers and orchestrate them
via Docker Compose on a single instance running at a public cloud
provider, based on a single-host Kubernetes setup shared with us by

283



Proceedings on Privacy Enhancing Technologies 2024(2) Lennart Oldenburg, Marc Juarez, Enrique Argones Rúa, and Claudia Diaz

the Nym development team. Nym in version nym-binaries-1.0.2
requires at least the following processes to be running for endpoints
(initiator, responder) to exchange packets: a gateway (gateway),
three mixes arranged in three layers with one mix per layer (mixn-
ode), a process maintaining Nym’s network state in a blockchain
(validator), a process providing a network state interface to Nym
processes (validator-api), and a process initializing Nym’s network
state (busybox). When building the Docker containers for an exper-
iment, we include patches to enable data collection and possibly
modify Nym in one aspect to evaluate this aspect’s contribution to
anonymity in isolation. In all experiments, we patch the gateway to
track Sphinx packet metadata (timestamp, size) in both directions
(ingress, egress) via the Nym address of the respective endpoint.
This models our adversary’s metadata gathering capabilities (Sec-
tion 3.2). Endpoint Nym components are compiled with Rust in
version 1.63.0 across all isolated setup experiments, while the re-
maining Nym-compiling Docker images use Rust in version 1.65.0
(baseline, no-cover) or 1.66.1 (low-delay, high-delay).

Next, we generate a random file that (appended by a fixed-width
and download-specific identifier) is of 1MiB size. Once all but the
endpoint components have started up correctly and formed a func-
tional Nym network, we collect our trace pair dataset. Until we
reach a target number of successful HTTP-based downloads of the
random file, we spawn a fresh initiator-responder pair (including
fresh Nym identities for both Nym endpoints) and connect them to
each other via Nym. Our modified gateway will track their packet
metadata via their Nym addresses and we are able to establish the
correct endpoint pairs via our experiment orchestration. Right be-
fore and right after the actual curl request on the initiator, we take
the current time to delineate start and end of the download. We
include HTTP header ‘Accept-Encoding: identity’ to avoid
compression distorting the size of the transferred file. We only
mark a download as successful (and thus increment our counter
towards reaching our target number) if the downloaded file at the
initiator is byte-by-byte equal to the served file at the responder.
baseline. As our baseline dataset, we collect trace pairs over the
isolated setup (i.e., no network effects like propagation delay or
packet loss) without any changes to how Nym endpoints send
messages. Thus, the default artificial delay introduced by the setup’s
mixes independently delaying the packets they process is the only
influence on packet timings and reorderings. Also applying to all
other isolated setup experiments, we backport a patch from the
official Nym code base that fixes a buffer reordering bug in Nym
endpoints. Additionally for these experiments, we patch the epoch
time to be three minutes instead of one hour and apply the before-
explained gateway patch to enable Sphinx-level metadata recording.
no-cover. In order to assess the contribution of cover traffic to-
wards Nym’s claimed privacy protections, we disable “gap-filling”
and regular loop cover traffic for this experiment. The only packets
in this dataset are thus “real”, application-level packets. The remain-
ing additional patches are functionally the same as for baseline.
low-delay (high-delay). Next to applying the same patches as
in baseline, we reduce (increase) the endpoints’ average per-mix
delay parameter (𝜇) for any message sent out, from 50ms to 20ms
(200ms). As we keep the packet emission rates (𝜆R, 𝜆C) the same

as before, this reduces (increases) the set of other packets that a
particular packet can be reordered with when being delayed at a
mix. These two experiments thus change the ratio 𝜇/𝜆T∈{R,C} , i.e.,
how long packets dwell at mixes on average in relation to how
quickly endpoints send them.
two-to-one. In order to evaluate how our classifiers perform once
positive and negative flows share endpoints and how flow merging
works with larger endpoints sets, we model the setting of two
initiators downloading simultaneously from a single (simulated)
responder (two-to-one). We are interested in two cases: classifier
performance when either both (positive) or exactly one (negative)
of the two initiators are matched with the responder in the set (semi-
matched) and either both (positive) or none (negative) of the two
initiators are matched with the responder in the set (unmatched).
Without collecting new data, we simulate these flow pairs by pairing
always two responders from baseline to become one merged,
logical responder and selecting initiators such that we arrive at
above specified cases. Mind that we align each initiator-responder
pair independently before merging both responders into a single
logical responder. Finally, merging the two initiators and the single
logical responder created this way, we obtain endpoints sets of
size three, and are thus able to gauge classifier performance on
larger endpoints sets that may overlap in endpoints. Note that the
merged logical responders in two-to-one send messages at twice
the default rate of Nym endpoints. This sketches a more realistic
“Nym server” deployment where endpoints that only proxy between
services and mixnet adjust their send rate linearly with the number
of connected Nym endpoints (but this deviates from default Nym).
Live-Network Setup. In order to evaluate the attack in the pres-
ence of real-world network effects like network propagation delays
and packet loss, we collect the dataset live-nym on the available
Nym mainnet. This experimental setup only requires running a
private gateway modified for capturing traces and an endpoint in-
stance for each simultaneous initiator-responder pair (we run five
endpoint pair instances in parallel). We are able to keep our gateway
private by not bonding the gateway after initializing it. Bonding
is required for any gateway intended for use by regular endpoints.
With a small patch to our experiment Nym endpoints, we hard-code
our private gateway as the only gateway in the network available
to our experiment endpoints. By following this process, we obtain
data for our own endpoints and avoid routing traffic for other Nym
endpoints. As the traffic we generate in below experiment is indis-
tinguishable from regular Nym traffic, we collect data in an ethical
way and avoid negatively impacting the anonymity of unrelated
Nym endpoints. As we collect packet timestamps at the gateway
and thus exclude the propagation delay of the last hop between the
endpoint and gateway, we run our gateway and endpoints instances
in the same location. Due to collecting with only five simultaneous
endpoint pairs, the additional load caused by our experiment on
the Nym network is limited to ten additional Nym clients.
live-nym. Similarly to the baseline dataset, Nym endpoints be-
have as specified in theNym systemwithout anymodifications. This
dataset was collected on the deployed Nym network and thus cor-
responds to a more recent Nym version (nym-binaries-v1.1.13)
than the one used in the isolated setup. A difference between both

284



Proceedings on Privacy Enhancing Technologies 2024(2)

versions is the recently introduced adjustment of the packet emis-
sion rate based on backpressure from the gateway. We disable this
feature to maintain consistency and better comparability with our
isolated setup experiments. Since the Nym version used in our iso-
lated setup, the previously separate nym-client functionality was
added to the nym-network-requester process directly, eliminat-
ing the need to run it separately. All Nym components are compiled
with Rust in version 1.68.2.
Post-Processing. Once collected, we run three post-processing
steps on each dataset. The first checks the integrity of an experi-
ment’s setup and execution. The second produces dataset versions
from the initially collected “raw” datasets that are directly usable
in either of our classifiers. In line with our assumption that the
adversary knows when the HTTP request within a trace pair starts
and ends, this step also restricts each trace pair to the duration of
the curl request (stopwatch symbol in Figure 9 in Appendix C).
We plot the duration of each successful file download (i.e., of all
collected trace pairs) across datasets in Figure 11 in Appendix C.
The third post-processing step partitions each collected dataset into
trace pair subsets to be used exclusively for training, validation,
and testing by the classifiers. Each collected dataset contains a little
more than 35,000 trace pairs. For consistency across experiments,
we first take the top-35,000 trace pairs from the sorted list of trace
pair identifiers in lexicographic order. Then, we select the first
24,500 trace pairs for training, the next 5,250 for validation, and the
final 5,250 for testing. We make all instrumentation code and all
collected datasets publicly available [1].

7 EXPERIMENTAL RESULTS

Evaluation Details and Metrics. We make the source code of
our statistical classifier (implemented in Octave) and our DL clas-
sifiers (implemented in Python using TensorFlow/Keras) publicly
available [1]. We split the datasets into training, validation, and
testing parts as explained in Section 6. The training set is used to
obtain classifier parameters, i.e., estimation of the delay probability
density function parameters as well as the actual training of our DL
classifiers. We use the validation set to tune the hyperparameters of
the DL algorithms (more details in Appendix E.2) and to track how
well the models generalize on the validation set during training.
Finally, the test set is used to assess the final performance of our
classifiers on data excluded from the training and validation sets.

We primarily use the receiver operating characteristic (ROC)
curves to represent a classifier’s performance in terms of its true
positive rate (TPR) in relation to its false positive rate (FPR). An ad-
versarial observation refers to the metadata of one payload packet
and its corresponding acknowledgment packet. Unless otherwise
specified, this section’s figures show results for the first 100 obser-
vations (i.e., the first 100 payload packets and their corresponding
acknowledgments) per flow, after flow pairs have been aligned
using all observations from the entire download. By plotting the x-
axis in log scale, we focus on the operating points of the curve with
low FPRs, as a low FPR is a requirement for the adversary to have
high confidence in positive predictions. We also fix the window size
of our deep learning classifiers to 100 observations. The classifiers
are responsible for converting traces to flows and aligning flow

Figure 4: Flow matching performance (ROC curves) based on
number of observations considered per candidate flow pair
of our statistical and our drift classifier on dataset baseline.

pairs (Section 3.4). We report time and hardware requirements for
training and evaluating each classifier in Appendix G.
Impact of Classifier Choice. For Figures 4 to 7 here and Fig-
ures 12 and 16 in the appendix, we only report the performance of
our statistical and our drift classifier. While we include the shape
network in this study as it is the most direct adaptation of Deep-
CoFFEA [23] to the setting of flow matching on mixnets, we do not
evaluate it for the abovementioned settings, as its poor performance
became clear early on (see Figure 8). At an FPR of 10−2, our shape
model performs on dataset baseline at the level that the other two
classifiers reach on the much more challenging dataset live-nym.
Thus, we focus exclusively on the results for our statistical and our
drift classifier for most of the below discussed results.
Impact of Distinguishable Packet Type. We start by evaluat-
ing the adversarial advantage derived from having two types of
packets (payload, acknowledgment) distinguishable by size. We
show in Figure 12 in Appendix D that the best results are obtained
when both packet types are taken into account, compared to using
only either payload or acknowledgment packets. This is due to ac-
knowledgments constituting independent observations of the drift,
providing additional useful information to the classifiers. Thus, we
always use both packet types going forward.
Impact of Number of Observations. Next, we consider how flow
matching performance increases when the adversary has more ob-
servations available for matching decisions on dataset baseline
(i.e., default Nym configuration and no real-world network effects).
As Figure 4 clearly shows, each increment of 100 additional observa-
tions raises performance of either of our two classifiers significantly.
Our drift model maintains a lead over the statistical classifier for
most operating points on the curves, until they reach TPRs greater
than circa 0.9, after which both classifiers either perform equally or
the statistical classifier has a slight lead. Overall, flow matching per-
formance on baseline is high, roughly 0.6 TPR (drift model) and
0.47 TPR (statistical classifier) at 10−2 FPR after 100 observations
of flow pairs aligned using the entire download.
Impact of Base Rate (Simultaneous Communications). In Fig-
ure 16 in Appendix F, we show how the required number of observa-
tions to achieve high classifier performance (TPR ≥ 0.95) with high

285



Proceedings on Privacy Enhancing Technologies 2024(2) Lennart Oldenburg, Marc Juarez, Enrique Argones Rúa, and Claudia Diaz

Figure 5: Flow matching ROC curves of our statistical and
our drift classifiers on the baseline and no-cover settings.

confidence (precision ≥ 0.95) on baseline increases approximately
logarithmically with the number of concurrent communication
pairs. This indicates that our attacks scale remarkably well: we only
need an additional 100 observations in order to maintain high classi-
fication performance at the next higher order of magnitude number
of simultaneous one-to-one communications. Both classifiers need
to process at least four windows of 100 observations each (circa
314.65 KB downloaded) to achieve the target performance level
when faced with 1,000 simultaneous one-to-one packet exchanges.
Impact of Loop Cover Traffic. Nym endpoints send packets fol-
lowing a Poisson process. If no application-level packet is waiting
to be sent at the scheduled timeout, a loop cover packet is sent
instead to fill the gap. Additionally, endpoints send loop cover pack-
ets via a separate slow-rate background Poisson process, regardless
of application-level traffic that may be ready. We assess the contri-
bution of loop cover packets to Nym’s anonymity by comparing
classifier performance on datasets baseline and no-cover, which
differ in the presence of loop cover packets, but are otherwise iden-
tical setups. The results are shown in Figure 5, where we observe
that loop cover packets contribute significantly to thwarting flow
matching attacks. As discussed above, baseline flow matching
performance is high considering the heavy countermeasures Nym
employs, but omitting cover traffic has devastating consequences
for anonymity: both classifiers reach their baseline-level perfor-
mance at FPRs close to four orders of magnitude lower (slightly
higher than 10−6 instead of at 10−2).
Impact of Average Per-Mix Delay. By changing the average
per-mix delay (𝜇) that Nym endpoints use when building pack-
ets while keeping their inter-emission delays (𝜆R, 𝜆C) fixed, we
modify the number of other packets that a packet at a mix can be
swapped with in datasets low-delay and high-delay. The curves
in Figure 6 show that both classifiers’ performances increase signif-
icantly when 𝜇 is dropped from 50ms to 20ms (reaching 1.0 TPR at
10−2 FPR), while their performance diminishes when we increase 𝜇
from 50ms to 200ms (dropping to circa 0.13 TPR at 10−2 FPR). This
demonstrates the importance of 𝜇 for the threat of flow matching.
Impact of Larger Endpoints Sets. We aim to estimate how clas-
sifier performance changes when negative flows share endpoints

Figure 6: Flow matching ROC curves of statistical and drift
classifier under 𝜇 = 50ms (baseline), 𝜇 = 20ms (low-delay),
and 𝜇 = 200ms (high-delay) average per-mix packet delay.

Figure 7: Flow matching ROC curves of the statistical clas-
sifier and drift model on two-to-one, i.e., on endpoints sets
of size three simulated from baseline, with two initiators
and one (faster) responder. Positive samples consist of two
matched initiator-responder flow pairs for both cases, while
negatives contain either one unmatched initiator (semi-
matched) or two unmatched initiators (unmatched).

with positive flows. In Figure 7, we show the performance of both
classifiers trained on baseline but evaluated on the simulated
dataset two-to-one, i.e., performing flow matching on endpoints
sets with three logical endpoints (two initiators, one merged double-
rate responder). Flow matching performance remains high in the
unmatched setting (without overlap, but larger sets), with circa 0.57
TPR (drift) and circa 0.62 TPR (statistical) at 10−2 FPR. In the semi-
matched case (where roughly half the packets in merged negative
flows overlap with a merged positive flow), both classifiers’ perfor-
mance drops to circa 0.15 TPR at 10−2 FPR. However, our classifiers
have only analyzed 100 observations at this point and outperform
random guessing by a wide margin. Thus, while reduced, utility in
this more difficult setting remains significant. We also prove our
flow merging technique to handle larger endpoints sets well.

286



Proceedings on Privacy Enhancing Technologies 2024(2)

Figure 8: Flow matching ROC curves of our statistical clas-
sifier, and our drift and shape classifiers without (baseline)
and with (live-nym) real-world network effects.

Impact of Internet-Level Network Effects. Finally, we evaluate
our flow matching attacks in the presence of real-world network
effects (e.g., propagation delays, packet losses). We do so by com-
paring results for the live-nym dataset collected on the deployed
Nym mainnet to baseline collected on the isolated setup. Given
that propagation time is not negligible anymore in live-nym, we
increase the average propagation time in our packet alignment
procedure to account for the average aggregate propagation time
of four Internet-level links (from the gateway through three mixes
back to the gateway). We estimate the mean propagation time of
one link by analyzing a 1-hour RIPE Atlas Ping dataset [28] from
January 20, 2023. We filter out incomplete measurements, exclude
outliers greater than the 99th percentile assuming a well-connected
server-to-server network, and use three round-trip time (RTT) mea-
surements per probe and destination. We obtain 3,339,429 RTT
values that we halve as an estimate for their logical link’s propaga-
tion time and average to arrive at the final value of 51.103ms.

As we can see in Figure 8, the performance of all our classifiers
is significantly degraded under real-world network effects. While
significant, this is also unsurprising, as packet losses severely inter-
fere with our classifiers’ assumption that all ingress packets must
eventually appear in the egress flow. At an FPR of 10−2, our drift
model drops from about 0.6 to circa 0.26 TPR, our statistical classi-
fier goes from roughly 0.47 down to circa 0.28 TPR, and our shape
model diminishes from circa 0.26 to close to 0.03 TPR.

8 DISCUSSION
8.1 Flow Matching Effectiveness Against Nym
Under Nym’s default configuration (baseline) and considering
idealized network conditions that exclude propagation delays and
packet losses, both our statistical and drift classifiers are able to
determine accurately and quickly whether a flow pair is matched
or unmatched. Both classifiers retain some utility even on larger
endpoints sets with endpoints overlap in positive and negative
samples (two-to-one). While these idealized network conditions
are clearly unrealistic, they enable us to evaluate the role of the
foundational anonymity techniques implemented in Nym’s mixnet.

By isolating the effects of the mixnet’s Poisson sending and per-
hop exponential mixing delays from random failures and network-
related effects (present in live-nym), we can assess the distinct
contribution that these techniques make to the overall anonymity
that Nym offers to packet flows. We disclosed an intermediate as
well as the final version of our results to the Nym team so that
possible countermeasures (e.g., modifications to the cover traffic
scheme) can begin to be considered as early as possible.

Our statistical and drift models outperform random guessing
by wide margins. On average, Nym endpoints emit more than 50
packets per second, whichmeans the adversary gathers the required
number of observations after only a few seconds. With a few more
seconds of eavesdropping on dataset baseline, at 500 observations,
flow matching performance increases to circa 0.98 TPR at 10−5
FPR for both classifiers, while ensuring high confidence in their
predictions even when there are 10,000 concurrent connections.
After 14 seconds of observation (slightly more than the baseline’s
median download duration, Figure 11 in Appendix C), our statistical
and drift models essentially exhibit perfect classification.

One of Nym’s strengths is its use of loop cover traffic. Without
it, flow matching would be much easier and quicker. The choice
of average per-mix packet delay parameter 𝜇 also impacts flow
matching performance strongly: raising it to 200ms reduces per-
formance significantly. While such level of end-to-end latency in-
creases download times only moderately (15.58 s median, Figure 11
in Appendix C), it might be prohibitive for some intended use cases
of Nym. The largest drop in classifier performance, however, is due
to real-world network effects that an adversary would encounter
when deploying the attack in the wild, rather than an idealized lab
setup. Propagation delays between nodes in Nym’s overlay network
are highly variable and of a magnitude comparable to the random-
ized mixing delays introduced for anonymity purposes. In practice,
these delays introduce a large variability in end-to-end transmis-
sion times compared to the single-machine lab setting. Moreover,
some packets are lost in transit in the real network. Packet loss is
not considered in the statistical classifier’s design, the DL classifiers’
windowing strategy, or the packet alignment phase (which may be
challenging to implement in realistic conditions).

Our statistical and drift classifiers track each other’s performance
quite closely across the evaluated configurations, with the drift
model typically performing slightly better. Both designs rely on
the same ingress to egress packet alignment and thus share the
same weakness in real-world conditions, where packet losses occur.
Our shape model—the classifier architecture closest to state-of-
the-art Tor flow correlator DeepCoFFEA [23]—lags far behind in
performance compared to our statistical and drift classifiers.

Finally, when contrasting our DL approaches with our statistical
approach, we see that the right choice of DL classifier typically
achieves slightly higher performance. Our DL approaches require
more training data and computational resources than our statistical
one, but in comparison are able to incorporate the drift distribu-
tion of unmatched flows and generalize better than the statistical
classifier. Despite better generality of the drift classifier, the sta-
tistical classifier performs slightly better in the two-to-one semi-
matched setting. This slight advantage of the statistical over the
drift classifier may indicate the former has better transferability,
i.e., robustness to a shift between the training and test distributions.

287



Proceedings on Privacy Enhancing Technologies 2024(2) Lennart Oldenburg, Marc Juarez, Enrique Argones Rúa, and Claudia Diaz

8.2 Limitations and Assumptions of our Attack
The endpoints closed set condition is the main assumption of our
attacks. It allows the adversary to simplify the attack by merging
ingress and egress flows, but it can only be applied by an adver-
sary that observes all gateways used by all endpoints in the set.
The attack may become infeasible if endpoints are concurrently
communicating with many other endpoints, some of which may be
outside the adversary’s observation. Mind, however, that our clas-
sifiers do not rely on observing other simultaneous but unrelated
packet exchanges for making matching decisions, but consider each
candidate flow pair independently. Furthermore, the efficacy of the
attack decreases if only a low number of packets are available in
the exchange, becoming essentially ineffective when the packet
exchange between endpoints is very short. From our results here,
it is clear that even modest packet loss significantly degrades the
performance of our attacks, as the classifiers are implicitly designed
for scenarios where all the packets in the flows match. While non-
trivial, it seems feasible to include these real-world network effects
in classifiers and still rely on the endpoints closed set condition.

Packet alignment also plays an important role for our results.
It improves discrimination capability by reducing the variance of
the scores of matched flow pairs. We always align flows using
all observations from their entire duration. This makes the results
shown for lower numbers of packets slightly optimistic. Also, direct
comparison between baseline and two-to-one is cumbersome,
as the influence of alignment of both flow pairs accumulates in the
latter, increasing the impact of this optimistic effect.

While some of our assumptions give an advantage to the adver-
sary, others make flow matching more difficult than it could be in
reality. Clearly, our base setting of each endpoint communicating
exclusively with one other endpoint only captures some ways in
which Nym may be used, with more sophisticated use cases pos-
ing a greater challenge to the adversary. The assumption that the
adversary knows exactly when each file download starts and ends
within a trace pair also reduces the attack’s difficulty. At the same
time, we consider a setting where equal-sized files are downloaded
at the same time, making the experiment more challenging than
in realistic use cases where endpoints transfer payloads of varying
sizes and at different times.

8.3 Countermeasures
When the endpoints closed set condition holds, our classifiers are
able to discriminate between pairs of endpoints communicating
exclusively with each other and pairs of endpoints not communi-
cating at all. As shown in Figure 15, loop cover traffic is effective in
thwarting existing approaches such as DeepCoFFEA, which assume
that all packets in a flow travel in either the upstream or the down-
stream direction—an assumption that no longer holds with loop
cover packets. Loop cover packets, however, fail to provide effective
protection against our approach, where they are accounted for by
merging the sets of ingress and egress flows of the endpoints in the
closed communication set.

An objective for an effective countermeasure is to invalidate the
endpoints closed set condition. Our live-nym results demonstrate
that even the minor deviations from this condition caused by a
small fraction of packets being lost in transit significantly decrease

flow matching accuracy. Thus, a logical countermeasure to flow
matching is non-loop cover traffic, i.e., cover packets addressed to
Nym entities other than the sender and present on the merged
ingress flows but not the merged egress flows of an endpoints set.
This can be achieved either by sending cover packets addressed to
a large set of endpoints or by having them dropped at intermediate
mixes on their way through the mixnet. Levine et al. proposed a
countermeasure in this style called defensive dropping [17].

In Nym’s current configuration, the adversary is able to tell apart
payload and acknowledgment packets based on size. Removing this
immediate traffic distinguisher bymaking acknowledgment packets
the same size as payload packets would increase protection against
flow matching attacks, at the cost of additional bandwidth. Also,
our attacks rely on knowing the average per-mix delay of packets.
Should this parameter become less certain (e.g., by adding multiple
latency classes [13]) or be entirely unknown to the adversary, flow
matching would become much harder.

9 CONCLUSIONS
In this work, we tackle the problem of flow matching in mixnets,
where an adversary observing both communication ends tries to de-
termine whether two endpoints are communicating via the anony-
mous network. We first show that existing techniques, developed
for connection-oriented networks like Tor, are not well suited for
packet-oriented mixnets that include packet reordering and cover
traffic. We thus propose novel flowmatching methods that are appli-
cable to mixnet communications. We demonstrate the effectiveness
of our techniques with an empirical analysis of the Nym mixnet.

As part of our solution, we propose and examine three classifiers
that the adversary could use for the attack: a statistical classifier
that relies on knowledge about the distribution of network delay
and two deep learning classifiers that learn to discriminate matched
from unmatched flow pairs directly by training on large amounts
of network data. We collect six datasets of a file download scenario
across different Nym configurations. In a lab setup without real-
world network effects, our statistical and drift classifiers quickly
deanonymize Nym communications. Under live network condi-
tions, our classifiers’ performances are significantly degraded due
to packet losses and more variable routing delays, indicating the
importance of flow gaps (intended or unintended) for designing
countermeasures to this threat.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful feedback that
greatly improved this work. We thank Reyhane Attarian for her
involvement in the early stages of this research project. Also thanks
to Piyush Kumar and Devashish Gosain for discussions and help
with understanding RIPE Atlas data.

Multiple people from Nym Technologies SA helped us out with
this work. Thanks to Tommy Verrall for providing a version of
Nym’s Kubernetes-based deployment framework and for answering
questions around it. Thanks to Simon Wicky and Ania Piotrowska
for meeting with us to discuss results and provide feedback. And
thanks to Mark Sinclair for meeting with us to discuss how private
Nym gateways can be realized.

288



Proceedings on Privacy Enhancing Technologies 2024(2)

Lennart Oldenburg is funded by an FWO fellowship. This re-
search is partially supported by the Research Council KU Leuven
under the grant C24/18/049, by VLAIO through the CS ICON project
"Cyber Security Artificial Intelligence" (CSAI), and by CyberSecu-
rity Research Flanders with reference number VR20192203. Some
of the resources and services used to conduct this work were pro-
vided by the Edinburgh Compute and Data Facility (ECDF) at the
University of Edinburgh, and the VSC (Flemish Supercomputer
Center), funded by the Research Foundation - Flanders (FWO) and
the Flemish Government.

REFERENCES
[1] Authors of this paper. 2023. Main repository listing this work’s source code

and datasets. Retrieved December 06, 2023 from https://github.com/mixnet-
correlation/mixmatch-flow-matching-for-mixnet-traffic_popets-2024-2

[2] Adam Back, Ulf Möller, and Anton Stiglic. 2001. Traffic Analysis Attacks and
Trade-Offs in Anonymity Providing Systems. In Information Hiding. Springer
Berlin Heidelberg, 245–257.

[3] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas
Sicker. 2007. Low-Resource Routing Attacks against Tor. In Proceedings of the
2007 ACM Workshop on Privacy in Electronic Society (WPES ’07). Association for
Computing Machinery, New York, NY, USA, 11–20.

[4] Oliver Berthold, Hannes Federrath, and Marit Köhntopp. 2000. Project
"Anonymity and Unobservability in the Internet". In Proceedings of the Tenth
Conference on Computers, Freedom and Privacy: Challenging the Assumptions (CFP
’00). Association for Computing Machinery, 57–65.

[5] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri
De Ruiter, and Alan T. Sherman. 2017. cMix: Mixing with Minimal Real-Time
Asymmetric Cryptographic Operations. In Applied Cryptography and Network
Security. Springer International Publishing, 557–578.

[6] David L. Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Commun. ACM 24, 2 (1981), 84–90.

[7] George Danezis. 2005. The Traffic Analysis of Continuous-Time Mixes. In Privacy
Enhancing Technologies, DavidMartin andAndrei Serjantov (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 35–50.

[8] G. Danezis, R. Dingledine, and N. Mathewson. 2003. Mixminion: Design of a Type
III Anonymous Remailer Protocol. In 2003 Symposium on Security and Privacy,
2003. 2–15.

[9] George Danezis and Ian Goldberg. 2009. Sphinx: A Compact and Provably Secure
Mix Format. In 2009 30th IEEE Symposium on Security and Privacy. IEEE, 269–282.

[10] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. 2021. The Nym Network.
Retrieved February 08, 2023 from https://nymtech.net/nym-whitepaper.pdf

[11] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In 13th USENIX Security Symposium. USENIX Associa-
tion.

[12] DavidM. Goldschlag, Michael G. Reed, and Paul F. Syverson. 1996. Hiding Routing
information. In Information Hiding. Springer Berlin Heidelberg, 137–150.

[13] Iness Ben Guirat, Debajyoti Das, and Claudia Diaz. 2024. Blending Different
Latency Traffic With Beta Mixing. Proceedings on Privacy Enhancing Technologies
(PoPETs) 2024 (2024), 15 pages. Issue 2.

[14] C. Gülcü and G. Tsudik. 1996. Mixing E-mail with Babel. In Proceedings of Internet
Society Symposium on Network and Distributed Systems Security. 2–16.

[15] Elad Hoffer and Nir Ailon. 2015. Deep metric learning using triplet network. In
Similarity-Based Pattern Recognition: Third International Workshop, SIMBAD 2015,
Copenhagen, Denmark, October 12-14, 2015. Proceedings 3. Springer, 84–92.

[16] Dogan Kesdogan, Jan Egner, and Roland Büschkes. 1998. Stop- and- Go-MIXes
Providing Probabilistic Anonymity in an Open System. In Information Hiding,
David Aucsmith (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 83–98.

[17] Brian N. Levine, Michael K. Reiter, Chenxi Wang, and Matthew Wright. 2004.
Timing Attacks in Low-LatencyMix Systems. In Financial Cryptography. Springer
Berlin Heidelberg, Berlin, Heidelberg, 251–265.

[18] U. Moeller, L. Cottrell, P. Palfrader, and L. Sassaman. 2004. Mixmaster Protocol
Version 2. Internet-Draft draft-sassaman-mixmaster-03. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/draft-sassaman-mixmaster/03/ Work
in Progress.

[19] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2018. DeepCorr: Strong
Flow Correlation Attacks on Tor Using Deep Learning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security (CCS ’18).
Association for Computing Machinery, New York, NY, USA, 1962–1976.

[20] Milad Nasr, Amir Houmansadr, and Arya Mazumdar. 2017. Compressive Traffic
Analysis: A New Paradigm for Scalable Traffic Analysis. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security (CCS
’17). Association for Computing Machinery, 2053–2069.

[21] Nym Technologies SA. n.d. GitHub - nymtech/nym. Retrieved May 27, 2023
from https://github.com/nymtech/nym

[22] Nym Technologies SA. n.d. Nym website. Retrieved February 08, 2023 from
https://nymtech.net/

[23] Se Eun Oh, Taiji Yang, Nate Mathews, James K Holland, Mohammad Saidur
Rahman, Nicholas Hopper, and Matthew Wright. 2022. DeepCoFFEA: Improved
Flow Correlation Attacks on Tor via Metric Learning and Amplification. In 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 1915–1932.

[24] Andreas Pfitzmann and Marit Hansen. 2010. A terminology for talking about
privacy by data minimization: Anonymity, Unlinkability, Undetectability, Unob-
servability, Pseudonymity, and Identity Management. Retrieved February 15,
2023 from https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

[25] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George
Danezis. 2017. The Loopix Anonymity System. In 26th USENIX Security Sympo-
sium (USENIX Security 17). USENIX Association, Vancouver, BC, 1199–1216.

[26] Jean-François Raymond. 2001. Traffic Analysis: Protocols, Attacks, Design Issues,
and Open Problems. Springer Berlin Heidelberg, 10–29.

[27] M.G. Reed, P.F. Syverson, and D.M. Goldschlag. 1998. Anonymous Connections
and Onion Routing. IEEE Journal on Selected Areas in Communications 16, 4
(1998), 482–494.

[28] RIPE NCC. 2023. RIPE Atlas Daily Dumps. Retrieved May 27, 2023 from
https://data-store.ripe.net/datasets/atlas-daily-dumps

[29] Andrei Serjantov and Peter Sewell. 2003. Passive Attack Analysis for Connection-
Based Anonymity Systems. In Computer Security – ESORICS 2003. Springer Berlin
Heidelberg, 116–131.

[30] Vitaly Shmatikov and Ming-Hsiu Wang. 2006. Timing Analysis in Low-Latency
Mix Networks: Attacks and Defenses. In Computer Security – ESORICS 2006.
Springer Berlin Heidelberg, 18–33.

[31] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rexford, Mung
Chiang, and Prateek Mittal. 2015. RAPTOR: Routing Attacks on Privacy in Tor.
In 24th USENIX Security Symposium (USENIX Security 15). USENIX Association,
271–286.

[32] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. 2001. Towards
an Analysis of Onion Routing Security. Springer Berlin Heidelberg, 96–114.

[33] The Tor Project. n.d. Tor Metrics. Retrieved May 16, 2023 from https://metrics.
torproject.org/

[34] The Tor Project. n.d. Tor Project website. Retrieved February 06, 2023 from
https://www.torproject.org/

[35] The Tor Project. n.d. What attacks remain against onion routing? Retrieved May
12, 2023 from https://support.torproject.org/about/attacks-on-onion-routing/

[36] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.
Vuvuzela: Scalable Private Messaging Resistant to Traffic Analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles (SOSP ’15). Association
for Computing Machinery, New York, NY, USA, 137–152.

[37] Hong Xuan, Abby Stylianou, and Robert Pless. 2020. Improved embeddings with
easy positive triplet mining. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision. 2474–2482.

[38] Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. 2005. On
Flow Correlation Attacks and Countermeasures in Mix Networks. In Privacy
Enhancing Technologies. Springer Berlin Heidelberg, 207–225.

[39] L. Øverlier and P. Syverson. 2006. Locating Hidden Servers. In 2006 IEEE Sympo-
sium on Security and Privacy (S&P’06). IEEE, 100–114.

A BRIEF INTRODUCTION TO TOR
With close to three million daily users and 7,000 servers (called
relays) [33], Tor [11, 34] is the largest and most popular anonymity
network currently available. Tor offers bidirectional low-latency
circuits for clients to anonymously connect to Internet resources us-
ing Tor relays as intermediaries. While in principle any TCP-based
traffic can be tunneled through Tor, web browsing is the network’s
primary application. Tor circuits rely on onion routing [12, 27] to
achieve their privacy properties. They traverse multiple (typically
three) Tor relays selected by the Tor client, such that each relay
only knows its immediate predecessor and successor in the circuit,
but not the full path. To complete the circuit setup, the Tor client
shares keys with each of the selected relays. Application payloads
exchanged through a Tor circuit are fragmented and padded into
fixed-length cells and then encrypted multiple times using a key
per intermediary relay. Each intermediary relay uses the shared

289

https://github.com/mixnet-correlation/mixmatch-flow-matching-for-mixnet-traffic_popets-2024-2
https://github.com/mixnet-correlation/mixmatch-flow-matching-for-mixnet-traffic_popets-2024-2
https://nymtech.net/nym-whitepaper.pdf
https://datatracker.ietf.org/doc/draft-sassaman-mixmaster/03/
https://github.com/nymtech/nym
https://nymtech.net/
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://data-store.ripe.net/datasets/atlas-daily-dumps
https://metrics.torproject.org/
https://metrics.torproject.org/
https://www.torproject.org/
https://support.torproject.org/about/attacks-on-onion-routing/


Proceedings on Privacy Enhancing Technologies 2024(2) Lennart Oldenburg, Marc Juarez, Enrique Argones Rúa, and Claudia Diaz

key associated with the circuit to strip (or add) a layer of encryp-
tion before forwarding the resulting packet along the circuit. These
per-hop cryptographic transformations ensure that cell headers
and payloads observed at different points in the network cannot be
identified as being the same packet.

B FLOW CORRELATION ATTACKS AGAINST
CONNECTION-BASED ANONYMOUS
COMMUNICATION SYSTEMS

Back, Möller, and Stiglic [2] describe generic flow correlation at-
tacks (packet counting, latency measurements) against low-latency
anonymity system Freedom. Focusing on link-level passive ad-
versaries mainly attacking hop-by-hop, Serjantov and Sewell [29]
develop two packet counting attacks against a connection-based
anonymity system model that covers many proposed systems at
that time. Levine et al. [17] partition observed flows at the two
connection ends into non-overlapping time windows for binning
packet arrivals. They design the effective countermeasure defensive
dropping, where packets are lost in the mixnet on purpose to con-
fuse such timing adversary. Shmatikov and Wang [30] also count
packets in bins on a set of entry and exit links and compute corre-
lations between bin count vectors for each possible pair. When no
defenses are used, their attack achieves an equal error rate close to
zero. When traffic is defended with their adaptive padding scheme,
the equal error rate is close to 0.5, the optimal (defended) value.

Øverlier and Syverson [39] utilize flow correlation to demon-
strate how quickly and cheaply specific Tor relays can be identified
by an adversary operating a single relay (in 2006). In response to
this threat, Tor adopted entry guards, i.e., a restricted, small set of
eligible first-hop relays for each circuit of a user. Bauer et al. [3]
reduce the observations required for flow correlation on Tor to
only the cells from circuit establishment collected on compromised
first and last circuit positions. Sun et al. [31] exploit specifics of the
BGP protocol that is used for Autonomous-System-level routing for
Tor flow correlation. They develop a suite of routing attacks called
RAPTOR, among which their asymmetric traffic analysis achieves
95% correlation accuracy (using Spearman’s rank correlation co-
efficient) after five minutes of analysis. Nasr, Houmansadr, and
Mazumdar [20] improve the scalability of previous flow correlation
attacks using techniques from compressed sensing.

C DATA COLLECTION SETUPS
We visualize the isolated setup we use to collect datasets baseline
(and thus, two-to-one), no-cover, low-delay, and high-delay
in Figure 9 and the live-network setup we use to collect dataset
live-nym in Figure 10. We depict each file download duration per
dataset collected in Figure 11 (excluding for dataset two-to-one,
as it is crafted from baseline).

D ADDITIONAL EXPERIMENTAL RESULTS
To develop our shape and drift classifiers, we conducted several
experiments to evaluate the impact of our design decisions, particu-
larly when they deviated from DeepCoFFEA’s design. We measured
the effect of incorporating acknowledgments to the test (Figure 12),
setting a global threshold (Figure 13), and averaging the scores as
an aggregation rule (Figure 14) in the evaluation. In addition, we

compare the performance of the new input representation and the
representation used by DeepCoFFEA (Figure 15) at coping with
loop cover traffic.

Figure 12 shows the ROC curves of the drift classifier trained
on dataset baseline for tests that include different combinations
of packet types. As observed in the figure, including the acknowl-
edgments into the test significantly improves the performance of
the resulting model. This result is expected as—in contrast to Tor—
acknowledgments in Nym do in fact provide useful information to
the classifiers.

Before measuring the impact of any change in DeepCoFFEA’s
original design, we reproduced the results reported by the authors
at a 0.002 loss on their dataset [23]. The ROC curve of our implemen-
tation of DeepCoFFEA, shown in Figure 13, is practically identical
to the one reported in the DeepCoFFEA paper.

In Figure 13, we also plot the ROC curve when we change the
threshold from local (default) to global. The gap between the curves
indicates a decrease in performance, which we attribute to the
fact that the local threshold is fitted to each individual decision by
considering the relative distances to all potential negative examples.
As discussed in Section 5, we opt for a global threshold because the
adversary that we consider does not have the required visibility
into the network.

Building upon these changes, in Figure 14, we again plot the
ROC curve of our implementation of DeepCoFFEA with a global
threshold that is applying a majority-vote rule. The other line in
the graph represents the ROC curve from evaluating that version of
the classifier with the average aggregate rule instead. In this case,
the performance of the classifier improved after our change, as the
average aggregation rule captures fine-grained information about
the scores that is overlooked by the majority vote rule.

We also assess the effectiveness of our new representation in
addressing the flow matching problem in the presence of loop cover
traffic and compare it to DeepCoFFEA’s representation. In Figure 15,
we show the ROC curves for the two representations, Flows (ours)
and Traces (DeepCoFFEA’s). A caveat in this comparison is that the
windows in the Traces representation are time-based, which result
in a different number of observations per window, thus not allowing
us to directly compare the two results. For a fairer comparison
between the two we take the number of observations in Flows as
the average number of observations in Traces. The average number
of observations in the first window of Traces is 500, so we consider
the first 500 observations to plot the Flows ROC curve.

E DETAILS ON THE DL CLASSIFIERS
For reproducibility, we fixed the PRNG seed and disabled all non-
deterministic behavior as much as the GPU libraries allowed.

E.1 Network Architecture
In Figure 17, we depict the architecture of the shape (Figure 17a)
and the drift (Figure 17b) networks, including the hyperparameter
values that we used for our experiments, such as the number and
size of the convolutional kernels and the activation function.
Drift Network. The architecture of the drift network is somewhat
similar to the one of DeepCoFFEA. As shown in Figure 17b, the
drift network also has multiple hidden convolutional layers with

290



Proceedings on Privacy Enhancing Technologies 2024(2)

Figure 9: Single-host setup (called isolated setup) to collect our datasets over a minimal Nym deployment. Until a target number
of succeeded downloads is reached, a freshly created initiator downloads a 1MiB-sized file via HTTP over Nym from a freshly
created responder. The remaining containers persist across all downloads. We track the packet exchange at the Sphinx packets
level on the patched gateway via the endpoints’ Nym addresses, and log start and end time of the download on the initiator.

Figure 10: Deployed Nym mainnet experiment setup (called
live-network setup). We inherit the entity spawning and file
download behavior from the isolated setup (Figure 9).

a ReLU activation function followed by a pooling layer. However,
the drift network is much smaller than DeepCoFFEA’s, as detecting
changes in drift is an easier problem than the problem DeepCoFFEA
is designed to tackle. In addition, it uses average pooling instead of
max pooling due to the importance of the localization of the drift.
Shape Network. In Figure 17a, we depict the architecture of the
shape network. It is a deep convolutional neural network with four
blocks. Each block has a double convolutional layer with the ReLU
activation function, a max pooling layer, and a dropout layer, except
for the last block that does not have a dropout layer. The output of
the last block is then flattened and densely connected to the output
of the network, which holds the embedding. The figure also details
the number and sizes of the kernels.

In the design of the shape classifier, we did not tune for the
number of kernels and kernel sizes and kept DeepCoFFEA’s values,
as the networks have similar architectures and input sizes, and
hence require similar receptive fields.

The main difference with DeepCoFFEA’s architecture is the in-
put, as we represent our input as flows instead of traces. In addi-
tion, we use a ReLU activation function throughout the network,

Figure 11: Duration of each successful 1MiB file download
as part of its respective dataset in this study. Mind that all
collected trace pairs of each respective dataset are included,
not only the first 35,000 we use for analysis in our classifiers.

whereas DeepCoFFEA uses ELU in the first block and ReLU else-
where. This change is because DeepCoFFEA may take negative
inputs—direction is encoded in the sign—while our inputs are al-
ways positive. Thus, there is no clear justification for using an
ELU only in the first block. Finally, for increased regularization,
the dropout probability increases over the layers of our network,
instead of remaining constant.

291



Proceedings on Privacy Enhancing Technologies 2024(2) Lennart Oldenburg, Marc Juarez, Enrique Argones Rúa, and Claudia Diaz

Figure 12: Flow matching performance (ROC curves) of our
drift model on dataset baseline depending on which packet
type is used: only payload packets, only acknowledgment
packets, or both.

Figure 13: ROC curves of our implementation of DeepCoF-
FEA for a local and a global threshold. Themodel was trained
and evaluated on DeepCoFFEA’s dataset. To reproduce the
results in DeepCoFFEA’s paper, we trained the models until
reaching a loss value of 0.002.

E.2 Hyperparameter Tuning
We use Bayesian optimization to search the space of hyperparam-
eters and find the ones that provide the best results. Bayesian op-
timization is often used for tuning the hyperparameters of deep
learning algorithms as they can find minimum points of the loss
function faster than grid-search techniques. In Table 1, we list all
the hyperparameters of the learning algorithms and the search
spaces that we have considered during hyperparameter tuning.

By comparing the learning curves on the training and validation
sets, we evaluated the convergence rates for a set of hyperparame-
ters and detected cases of under- and overfitting. In this evaluation
of the hyperparameters, we did not always consider all the hyper-
parameters together, but also conducted a more in-depth analysis
for some important hyperparameters, such as window size and
overlap.

Figure 14: ROC curves of our implementation of DeepCoF-
FEA for different aggregation rules (average vs. maximum
hit count) on DeepCoFFEA’s dataset.

Figure 15: ROC curves of the baseline shape model for two
different input representations: Traces and Flows. The Flows
representation is the packet-based window representation
of flows that we used in the rest of the paper. The Traces
representation is the time-based window representation of
traffic traces used by DeepCoFFEA. For a fair comparison, we
take the first 500 packets for the Flows representation, as the
first window of the Traces representation has approximately
500 packets on average.

The last column of Table 1 lists the best values of the hyperparam-
eters in our evaluation.We found that many of the hyperparameters
did not significantly contribute to improving the convergence of the
learning algorithms. For example, for a fixed window size, a 𝛿 > 0
overlap does not significantly improve convergence. For a fixed
overlap value, smaller window sizes increase the computational
demand, but do not seem to either improve the performance—at
least for the window sizes that we tested.

The last two rows of the table show hyperparameters that are
exclusive for the shape network. We observe that different margins
have an impact on convergence: looser margins relax the condition
in Equation (12) allowing to find more semi-hard negatives, but the
semi-hard negatives provide less information and the convergence

292



Proceedings on Privacy Enhancing Technologies 2024(2)

Table 1: Deep learning algorithm hyperparameters, the
search space for tuning, and the final value that we chose to
present the results in Section 7.

Hyperparameter Search space Chosen value

Batch size {8, 16, 32} 16
Training epochs {10, 50, 100} 100
Learning rate {10−1, 10−2, 10−3} 10−3
Optimizer SGD, NAdam -

Window size (𝑛𝑤 ) {100, 200, 250, 300, 500} 100
Window overlap (𝛿) {0.00, 0.25, 0.5, 0.75} 0.00

Margin (𝛼) {0.05, 0.10, 0.15} 0.10
Embedding size (𝑠) 64 64

Figure 16: Number of baseline observations needed for a
TPR of over 0.95 with at least 0.95 precision and a given
number of simultaneous one-to-one communications (base
rate).

is slower, and vice versa. Like with DeepCoFFEA, the best value in
our tests was 𝛼 = 0.1.

Finally, we observed that the NAdam optimizer would converge
faster than SGD in most experiments. However, for the same set of
hyperparameters, NAdam would result in vanishing gradients in
the experiments conducted on the Nym live network, so we used
the SGD optimizer when training on the live-nym dataset.

F IMPACT OF BASE RATE (SIMULTANEOUS
COMMUNICATIONS)

In Figure 16, we show how the required number of observations to
achieve high classifier performance (TPR ≥ 0.95) with high confi-
dence (precision ≥ 0.95) on baseline evolves when the number of
simultaneous communications increases.

G HARDWARE SPECIFICATIONS
Computing time is proportional to the number of packets in the
traces and inversely proportional to the number of employed CPUs.
Thus, it is approximately the same for all experiments, though
slightly shorter for the no-cover experiment due to the absence of
loop cover packets in its traces.

We describe the hardware specifications that we used for evalu-
ating each classifier below.

Statistical Classifier. We ran the evaluation of the statistical clas-
sifier in parallel by dividing the score matrix into a grid and process-
ing each submatrix using Octave scripts. As an illustrative figure,
the experiment on the live-nym dataset took approximately three
days on a machine with 48 CPUs and 192GB of RAM.
DL Classifiers. For the training and evaluation of the neural-
network-based classifiers we used a machine with 64 CPUs (two
sockets with 16 cores per sockets and two threads per core) and
192GB of RAM. In particular, most of the training was performed
on an NVIDIA GeForce RTX 3080 with 10GB of memory.

Training a model on the baseline dataset for 100 epochs takes
approximately five days for the shape and two days for the drift
classifier. The evaluation is divided into batches and takes approxi-
mately five hours for each model.

293



Proceedings on Privacy Enhancing Technologies 2024(2) Lennart Oldenburg, Marc Juarez, Enrique Argones Rúa, and Claudia Diaz

(a) Shape network.

(b) Drift network.

Figure 17: Network architectures of our DL classifiers.

294


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Flow Correlation Against Tor
	2.2 Mixnets and Nym
	2.3 Flow Correlation Against Mixnets

	3 Flow Matching on Mixnets
	3.1 System Model
	3.2 Threat Model
	3.3 Endpoints Closed Sets and Flow Merging
	3.4 Packet Alignment

	4 Statistical Classifier
	4.1 Statistical Detector
	4.2 Combination of Payload and Acknowledgment Flow Scores

	5 Deep Learning Classifiers
	5.1 Deep Learning
	5.2 Input Representation
	5.3 Window Partitioning
	5.4 Drift Network
	5.5 Shape Network

	6 Data Collection
	7 Experimental Results
	8 Discussion
	8.1 Flow Matching Effectiveness Against Nym
	8.2 Limitations and Assumptions of our Attack
	8.3 Countermeasures

	9 Conclusions
	Acknowledgments
	References
	A Brief Introduction to Tor
	B Flow Correlation Attacks Against Connection-Based Anonymous Communication Systems
	C Data Collection Setups
	D Additional Experimental Results
	E Details on the DL Classifiers
	E.1 Network Architecture
	E.2 Hyperparameter Tuning

	F Impact of Base Rate (Simultaneous Communications)
	G Hardware Specifications

