
Multi-User BBB Security of Public Permutations
Based MAC

Yu Long Chen1 and Avijit Dutta2 and Mridul Nandi3

KU Leuven, Belgium
Institute for Advancing Intelligence, TCG-CREST, India

Indian Statistical Institute, Kolkata
yulong.chen@kuleuven.be,avirocks.dutta13@gmail.com,mridul.nandi@gmail.com

Abstract. At CRYPTO 2019, Chen et al. have shown a beyond the birthday bound
secure n-bit to n-bit PRF based on public random permutations. Followed by the
work, Dutta and Nandi have proposed a beyond the birthday bound secure nonce
based MAC nEHtMp based on public random permutation. In particular, the authors
have shown that nEHtMp achieves tight 2n/3-bit security (with respect to the state
size of the permutation) in the single-user setting, and their proven bound gracefully
degrades with the repetition of the nonces. However, we have pointed out that their
security proof is not complete (albeit it does not invalidate their security claim). In
this paper, we propose a minor variant of nEHtMp construction, called nEHtM∗p and
show that it achieves a tight 2n/3 bit security in the multi-user setting. Moreover,
the security bound of our construction also degrades gracefully with the repetition of
nonces. Finally, we have instantiated our construction with the PolyHash function to
realize a concrete beyond the birthday bound secure public permutation-based MAC,
nEHtM+

p in the multi-user setting.
Keywords: Faulty Nonce, Mirror Theory, Public Permutation, Expectation Method

1 Introduction
The purpose of analyzing a cryptographic construction is not only to model the real-
world settings, but also to accurately capture the practical limits imposed by the real-
world environments, the desired security properties, and should also precisely assess the
degradation of its security with its use. When a cryptographic algorithm is deployed in
real-time protocols, then based on the requirement, the key size, the block size, and other
various parameters of the construction are set to some fixed values. Therefore, to estimate
the security of the construction, one needs to evaluate the adversarial success probability in
breaking the system in terms of the adversary’s resource. For example, the model that we
rely on for analyzing the security of a block cipher is that the adversary is given access to
an encryption and decryption oracle, keyed with a secret value chosen uniformly at random.
The job of the adversary is to distinguish it from a random instance of a permutation.
This is formally called the indistinguishability setting. For many practical purposes, the
indistinguishability of a block cipher from a random instance of a permutation suffices for
establishing its security. However, we estimate the adversarial success by analyzing the
best-known attacks against the block cipher with respect to the adversary’s computational
complexity, which measures the cost of running the attack in terms of time, memory, and
also the data complexity. The data complexity measures the amount of data the adversary
transmitted during the interaction with the oracle. For example, the best-known attacks
on full round AES-128 have computational complexity improving over the naive brute-force

mailto:yulong.chen@kuleuven.be, avirocks.dutta13@gmail.com, mridul.nandi@gmail.com

Yu Long Chen and Avijit Dutta and Mridul Nandi 1

search by a factor 2 to 4, whereas increasing the data complexity does not help much to
reduce computational complexity.

On the other extreme, assessing the adversarial success probability is different for modes
of operations. These are cryptographic algorithms that repeatedly use block cipher calls
to achieve some specific security properties beyond what a block cipher is supposed to
provide on its own.
Message Authentication Code (MAC) is a symmetric key cryptographic algorithm used
to provide both authenticity and integrity for any digital message transmitted over an
insecure communication channel. When a sender wants to send a message m, it computes
the tag t corresponding to message m by evaluating a secret keyed function F that takes
as input m, the shared secret key k, and possibly an auxiliary input variable ν (called
nonce). Then it sends (ν,m, t) to the receiver. Upon receiving, the receiver verifies the
authenticity of (ν,m, t) by computing the function F with the received tuple (ν,m, t) and
checks whether the computed tag t′ matches with t.
One of the popular MAC algorithms is PMAC [12]. It uses the block cipher repeatedly
to provide integrity and authenticity for a message. Its security property is formalized
in a setting where the adversaries are given access to a keyed signing oracle and a
verification oracle. The security of the construction is proved by reducing the advantage
of the MAC adversary against the mode to the advantage of an adversary against the
pseudo-randomness of the underlying block cipher. Therefore, assuming AES is a secure
pseudorandom permutation (PRP), we prove that AES-PMAC is a secure MAC. However,
the quality of this reduction from AES to AES-PMAC deteriorates with use. In fact,
following the concrete security bound [4], this degradation has been quantified to be
roughly O(`q2/2128) [44], where ` denotes the maximum number of message blocks and
q denotes the number of queries. Therefore, the MAC security of AES-PMAC relies not
only on the security of the underlying block cipher (e.g., AES) but also on the degradation
of the security as a mode. Note that the security of AES degrades as we increase the
computational resources of the adversary. Still, increased data complexity does not seem
to affect the advantage of the attack. In contrast, the security of AES-PMAC degrades as
data complexity increases, but increased computational complexity does not seem to have
a role in its security.

1.1 Nonce Based MAC and Resilience to Faulty Nonce
Wegman-Carter MAC [47] is the first example of a nonce-based MAC that masks the
hash value of the message with an encrypted nonce to generate the tag. Although it gives
optimal security when the nonce is unique for every authenticated message, its security
is compromised if the nonce repeats even once. Therefore, from the usability point of
view, one needs to ensure the nonce’s uniqueness for every authenticated message, which is
challenging in practical contexts. For example, it is difficult to maintain the uniqueness of
the nonce while implementing the cipher in a stateless device or in cases where the nonce
is chosen randomly from a small set. The nonce may also accidentally repeat due to a
faulty implementation of the cipher or due to the fault that occurred by resetting of the
nonce itself [13]. Therefore, the guard from the nonce repetition attack is much desired
from a nonce-based MAC.
To get rid of the nonce repetition problem, an immediate solution is to encrypt the output
of the Wegman Carter MAC, resulted in Encrypted Wegman-Carter Shoup, or in short
EWCS [22] MAC. Even though EWCS guarantees security even when the nonce repeats,
its security drops to the birthday bound even when the nonce is unique. To facilitate both
the features, EWCDM [22], DWCDM [26], and 1K-DWCDM [28] have been proposed that
gives beyond the birthday bound security when the nonce is unique and birthday bound

2 Multi-User BBB Security of Public Permutations Based MAC

security when the nonce repeats. However, the disadvantage of both constructions is that
their security falls to the birthday bound if the nonce ever repeats.
To mitigate the above problem, Dutta et al. [31] have proposed a nonce-based variant of
EHtM [39] MAC, called nEHtM MAC. Similar to EWCDM and DWCDM, nEHtM gives
beyond the birthday bound (resp. birthday bound) security when the nonce is unique
(resp. the nonce repeats). But, unlike these two constructions, the security of nEHtM
degrades gracefully with the repetition of the nonce. In other words, one can get adequate
security from nEHtM if the repetition of the nonce occurs in a controlled way, a feature
which is not present in EWCDM or DWCDM. This phenomenon is formally known as faulty
nonce model. This notion was introduced in [31], which informally says that a nonce is
faulty if it appears in a previous signing query. 1 The authors of [31] have shown that
nEHtM gives 2n/3-bit security under faulty nonce model, which is recently improved to
3n/4-bit by Choi et al. [21]. However, the tightness of its security bound is still open.

1.2 Public Permutation Based MAC
The underlying primitive of all the MACs as mentioned above is a block cipher that is
evaluated only in the forward direction (except DWCDM and 1K-DWCDM, which require
the inverse call to the underlying block cipher). However, as most block ciphers are designed
to be efficient in both the forward and the inverse direction, they seem to be an over-
engineered primitive for such purpose [20]. In contrast to the block cipher, cryptographic
permutations are mainly designed with the motive to be fast in the forward direction,
but not necessarily in the inverse direction, e.g., Keccak [7], Gimli [6], SPONGENT [14].
Moreover, as permutations do not employ any round key, evaluating them is faster than
evaluating a keyed block cipher due to the complexity of the underlying key scheduling
algorithm.

In this regard, it would be apt to quote the statement of Bertoni et al. from their paper [8]
regarding the efficiency of permutations over block ciphers.

“ . . . the inverse mapping of block ciphers imposes a separation of the processing of the
n+ k bits of the input. The key is processed in a key schedule and the data in the data
path, and there can be no diffusion from the data path to the key schedule, which strongly
limits the potential diffusion . . . Such a restriction is not present in the design of
cryptographic permutations as they do not make a distinction between the processing of key
and data input as there is no specific key input.”

In this line of work, Dutta and Nandi [30] have shown a public permutation-based beyond
the birthday bound secure nonce based MAC, which they refer to as nEHtMp MAC. It
is a permutation-based variant of nEHtM MAC and the first instance of a nonce based
beyond the birthday bound secure permutation-based MAC whose security bound degrades
gracefully with the repetition of the nonce.

nEHtMp(ν,m) = π(0‖ν ⊕ k)⊕ π(1‖ν ⊕ Hkh(m)). (1)

Authors have shown that the construction is secure roughly up to 22n/3 signing queries.
Independent to this work, Chakraborti et al. have also proposed a few other public
permutation-based beyond the birthday bound secure nonce based MACs, which they refer
to as PDM MAC and its related single keyed construction PDM∗ MAC and 1K-PDM∗
MAC. Both these constructions, i.e., nEHtMp and PDM∗ MAC require two invocations of
the permutation. But, PDM∗ MAC requires the invertibility of the permutation, whereas
nEHtMp is free from that constraint. We note here that nonce-based MACs using public

1It has been stated [31] that faulty nonce model is a weaker notion than multi-collision of nonces – a
natural and a popular metric to measure the misuse of the nonce.

Yu Long Chen and Avijit Dutta and Mridul Nandi 3

permutations are usually designed in sponge mode. But the drawback of such designs are
twofold: (i) they do not use the full size of the permutation for guaranteeing security and
(ii) most of them attain only the birthday bound security in the size of its capacity c, i.e.,
c/2 bit security (exceptions are Bettle [16], [24] whose security bound is roughly the size
of its capacity). Although security bound of 2c/2 is usually good in practice when they are
instantiated with large size permutations (e.g., Keccak [7] of state size is 1600 bits), but
they are not suitable for use in a resource-constrained environment. In such a scenario,
one often prefers to use lightweight permutations such as SPONGENT [14] of state size
88 bits and PHOTON [34] of state size 100 bits. However, in such circumstances, using
them as underlying primitives in birthday bound secure sponge type constructions renders
them inadequate security. Therefore, it is preferable to design a public permutation-based
nonce-based MAC whose security depends on the full size of the underlying permutation
and gives adequate security when instantiated with light-weight permutation. In this
regard, nEHtMp and PDM offers good practical security when instantiated with small
size permutation, and their security bound exploits the entire state size of the underlying
permutation.

1.3 Public Permutation Based PRF
Designing PRFs out of public permutations was initiated by Chen et al. in [20], where
they proposed two fixed-input and fixed-output length beyond birthday bound secure
PRFs based on public permutations - one is in the parallel mode and the other is in
the sequential mode. (i) For the parallel mode, they have shown that the sum of two
independent instances of Even-Mansour [33] cipher, which they refer to as SoEM22,

SoEM22π1,π2
k1,k2

(x) ∆= π1(x⊕ k1)⊕ π2(x⊕ k2)⊕ k1 ⊕ k2,

provides a tight 2n/3-bit security. This construction was later extended by Bhattacharjee
et al. [9], where they showed the beyond birthday bound security of the domain separated
variant of SoEM22. They have also proved that one cannot reduce the number of keys of
SoEM22 without degrading the security bound to the birthday limit. (ii) For the sequential
mode, Chen et al. proposed two constructions SoKAC1 and SoKAC21, where

SoKAC1πk1,k2
(x) ∆= π(π(x⊕ k1)⊕ k2)⊕ π(x⊕ k1)⊕ k2 ⊕ k1

SoKAC21π1,π2
k (x) ∆= π2(π1(x⊕ k)⊕ k)⊕ π1(x⊕ k)⊕ k.

Chen et al. have shown an n/2 bit attack on SoKAC1 construction whereas SoKAC21 has
been proven to have a tight 2n/3-bit security. However, later in [17], Chakraborti et al.
claimed that the attack on SoKAC1 is possibly wrong and shown a 2n/3-bit attack on it.
They also conjectured that this attack bound is indeed tight. On the other hand, Nandi [43]
exhibited a birthday bound attack on SoKAC21 and hence falsifying the security claim of
the construction. In [17], Chakraborti et al. have proposed PDM MAC, a beyond birthday
bound secure single permutation based fixed input and fixed output length PRF that
opearates in sequential mode. The design of PDM MAC is motivated from the Decrypted
Davis-Meyer (DDM) construction,

DDMk(x) ∆= π−1(π(x)⊕ x).

PDM MAC requires an n-bit key k and an n-bit public permutation π to generate the
output as follows:

PDMπ
k (x) ∆= π−1(π(x⊕ k)⊕ (x⊕ 3k))⊕ 2k.

Although, minimally structured, PDM MAC requires the invertiblity of the permutation
P (similar to the design of DWCDM [26]), which somewhat brings down one of the

4 Multi-User BBB Security of Public Permutations Based MAC

advantages of using cryptographic permutations in a mode, i.e, the efficiency of evaluating
the permutation in forward direction. Recently, Dutta et al. [32] proposed another beyond
birthday bound secure PRF, called pEDM, built from of public permutations and it does
not require the inverse call like PDM MAC.

1.4 Comparison with Keyed Sponge Construction
The sponge construction consists of a sequential application of a permutation to a state of
n-bits, which is splitted up into an r-bit rate (called the outer part) and a c-bit capacity
(called the inner part). In the absorption phase, message blocks of size r-bits are absorbed
by the outer part and the state is transformed using the permutation, while in the squeezing
phase, r-bit digests are extracted from the outer part at a time. While sponge mode has
essentially been used for designing lightweight hash functions, its keyed variants have
become very popular modes of operation to build message authentication codes. Although
the state size of a keyed sponge-based design is only n-bits, allowing them to achieve a
smaller hardware footprint, the security bound of almost all such designs falls within the
birthday bound of the capacity part of the state size of the permutation (except Bettle [16]).
Hence, the full state size of the permutation is not used in the security bound of the
construction, which is one of the major shortcomings of using these modes with smaller
state permutations. On the other hand, although the state size of our construction is
2n-bits compared to the n-bit state size for keyed sponge based mode, our construction
achieves a comparitively better security bound (i.e., 2n/3-bits) over the security bound of
keyed sponge based constructions which roughly falls within c/2-bits, where c < n is the
capacity part of the construction.

1.5 Single-User vs Multi-user Security
Until now, we have discussed the security models for block ciphers, and mode of operations
in which adversaries are given access to some keyed oracles for a single unknown randomly
sampled key. Such model is known as the single-user security model, i.e., when the adversary
interacts with a specific machine in which the cryptographic algorithm is deployed and
tries to compromise its security. However, in practice, cryptographic algorithms are usually
deployed in more than one machine. For example, AES-GCM is now widely used in the
TLS protocol to protect web traffic and is currently used by billions of users daily. Thus,
it is natural to ask that

To what extent the number of users will affect the security bound of MAC constructions?

In other words, it is paramount to investigate the security of the cryptographic algorithms
in the multi-key setting, where adversaries are successful if they compromise the security
of one out of many users. That means the adversary’s winning condition is a disjunction
of single key winning conditions. The notion of multi-user (mu) security is introduced
by Biham [10] in symmetric cryptanalysis and by Bellare, Boldyreva, and Micali [3] in
the context of public-key encryption. In the multi-user setting, attackers have access
to multiple machines such that a particular cryptographic algorithm F is deployed in
each machine with independent secret keys. An attacker can adaptively distribute its
queries across multiple machines with independent keys. Multi-user security considers
such attackers that succeed in compromising the security of at least one machine, among
others.
Multi-user security for block ciphers is different than the multi-user security for modes. In
the single-key setting, the best attacks against block cipher such as AES do not improve
with increased data complexity. However, in the multi-key environment, they do, as first
observed Biham [10] and later refined as a time-memory-data trade-off by Biryukov et

Yu Long Chen and Avijit Dutta and Mridul Nandi 5

al. [11]. These results say that one can take advantage of the fact that recovering a block
cipher key out of a large group of keys is much easier than targeting a specific key. The
same observation can be applied to any deterministic symmetric-key algorithm, as done
for MACs by Chatterjee et al.[19]. A more general result guarantees that the multi-user
advantage of an adversary for a cryptographic algorithm is at most µ times its single user
advantage. Therefore, for any cryptographic algorithm, multi-user security bound involving
a factor µ is easily established using a hybrid argument that shows the upper bound of the
adversarial success probability roughly µ times its single user security advantage. Bellare
and Tackmann [5] first formalized a multi-user secure authenticated encryption scheme
and also analyzed countermeasures against multi-key attacks in the context of TLS 1.3.
However, they derived a security bound that also contains the µ factor. Such a bound
implies a significant security drop of the construction when the number of users is large,
and in fact, this is precisely the situation faced in large-scale deployments of AES-GCM
such as TLS.
As evident from [2, 5, 15, 35, 36, 37, 42], it is a challenging problem to study the security
degradation of cryptographic primitives with the number of users, even when its security
is known in the single-user setting. The study of the multi-user security of MACs are
somewhat scarce in the literature except for the work of Chatterjee et al. [19], and very
recently the work of Andrew et al. [41], and Bellare et al. [2]. The first two consider a
generic reduction for MACs in which the security of the primitive in the multi-user setting
is derived by multiplying the number of users u with the single-user security. Recently,
Shen et al. [48] have shown that the multi-user security of DbHtS [25] MAC is at most
22n/3. This bound is non-trivial and improved over the usual birthday bound, which would
have been obtained from the generic multi-user to single-user reduction [48]. Although the
multi-user security is analyzed over a block cipher based MAC, there are no known results
that analyze the security of permutation-based MAC in the multi-user setting.

1.6 Our Contribution
Given the practical importance of analyzing the security of a construction in multi-user
setting, in this paper, for the first time we analyze the multi-user security of a permutation
based MAC under faulty nonce model 2. In particular, we propose a nonce based MAC
out of public permutations called nEHtM∗p

nEHtM∗p(ν,m) = π(0‖ν ⊕ k)⊕ π(1‖ν ⊕ k ⊕ Hkh(m)) (2)

and shown that it is secured roughly up to 22n/3 queries in the multi-user setting. Moreover,
the bound degrades gracefully under the faulty nonce model. Following the definition
of Dutta et al. [31], a signing query is said to be a faulty query in single-user setting
if there exists a previous MAC query such that their corresponding nonces match. The
nonce in a faulty query is called a faulty nonce. In the multi-user set up, we consider
the total number of faulty queries over all users. We show the unforgeability of this
construction through an extended distinguishing game and apply the expectation method
to bound its distinguishing advantage. Moreover, we also instantiate the underlying hash
function of the construction with Polyhash [40] function to realize a concrete instance of a
permutation-based MAC nEtHtM+

p , whose security bound degrades gracefully under the
faulty nonce model.

1.6.1 Why nEHtM∗
p over nEHtMp

At AFRICACRYPT’20, Dutta and Nandi [30] have shown that their proposed construction
nEHtMp achieves beyond birthday bound security under the faulty nonce model in the

2We would like to emphasize that repetition of nonce between two different users will not be considered
as a faulty nonce

6 Multi-User BBB Security of Public Permutations Based MAC

single-user setting. However, we have identified that their security analysis is not complete.
The authors of [30] had used the tool of “Expectation Method” [35] to derive the security
bound of their construction. As a part of the derivation process, they identified and
bounded some bad events, followed by showing that the probability of realizing a transcript
that does not satisfy the bad events is almost same in both the real and the ideal world.

We found that the authors did not consider all possible bad events. In particular,
we found that some bad events related to the MAC and the verification queries are not
present in the existing set of bad events of nEHtMp. As a result, the analysis for the good
transcript of the construction is also not complete. We would like to mention here that
the analysis for the good transcript is highly dependent on the result of “Extended Mirror
Theory” [31], where the authors estimated a lower bound on the number of solutions for
a given set of bivariate affine equations and non-equations over the set {0, 1}n. Due to
the requirement of the additional bad events to complete the proof, we also found out
that the extended mirror theory used in [30] only contains bivariate affine equations and
non-equations, which is not sufficient for the good transcript analysis of nEHtMp. We also
need to consider univariate affine non-equations, which were not considered in [30].
When we collected all the missing pieces, we started to fix the proof of nEHtMp, we got
stuck to bound one of the additional bad events for nEHtMp, which is mentioned below:

νi ⊕ Hkh(Mi) = x, νj ⊕ Hkh(Mj) = x′, ti ⊕ y = tj ⊕ y′,

where (νi, ti), (νj , tj) are the nonces and tags respectively for i-th and j-th query. Note
that when Mi 6= Mj , then their hash value will also likely be distinct and in that case, the
left hand side of the first two equations of the above event are not supposed to be identical.
Hence the difficulty comes in bounding this event. To mitigate this problem and simplify
the analysis, we make a small modification to the design of nEHtMp, including the key k as
an input to the second permutation call. This small change allows us to treat the modified
hash function H′kh(M) ∆= Hkh(M)⊕ k as a pairwise independent hash function, which in
turn enables us to bound the above bad event easily. Using this modified hash function, we
not only provide a complete security proof of the construction nEHtM∗p, but also extend its
proof in the multi-user setting. The difference between nEHtMp and nEHtM∗p is depicted
in Fig. 1.1.

ν

π

0 ⊕

m

π

1

Hk′
n− 1

⊕ k

n− 1

⊕

t

ν

π

0 ⊕

m

π

1

Hk′
n− 1

⊕k

n− 1

⊕

t

Figure 1.1: Left side of the figure is nEHtMp MAC and the right side of the figure is
nEHtM∗p MAC. Difference between the two constructions is depicted by red colored edge.

We would like to note here that although it seems nEHtM∗p is just an incremental update
of nEHtMP , we currently do not know how to bound the above event without having the
troubleshooting that we adopted here. In fact, it is an open problem to see that whether
the proof of nEHtMp can be completed or not. In the following table (tab. 1), we compare

Yu Long Chen and Avijit Dutta and Mridul Nandi 7

the several public permutation-based PRFs and MACs in terms of various parameters.

Table 1: Comparison table for 2n/3 bit secure permutation-based PRFs and MACs. n
denotes the state size of the permutation and the output size of PRFs or MACs. Inv
denotes whether the construction requires an inverse call of the permutation. mu denotes
whether the construction is secure in the multi-user setting. graceful denotes whether the
security of the construction degrades gracefully with repetition of the nonce. By having
a ’x’ in a column, we mean that the construction has not been proven secure under the
column description model so far. However, it does not immediately imply any attack on it
under the corresponding setting. The last four constructions require a keyed hash function
with at most ` blocks input. The number of keys for those constructions includes the hash
keys as well.

Constructions (perm, keys) mu graceful Inv i/p size
SoEM22 [20] (2, 2) x x x n
SoKAC1 [20] (1, 2) x x x n

PDMMAC [17] (1, 1) x x X n
DS-SoEM [9] (1, 2) x x x n− 1
pEDM [32] (1, 2) x x x n

nEHtMp [30] (1, 2) x X x n− 1 + `n
PDM∗MAC [17] (1, 2) x x X n+ `n

1K-PDM∗MAC [17] (1, 1) x x X n+ `n
nEHtM∗p [This Paper] (1, 2) X X x n− 1 + `n

Remark 1. We would like to mention here that in the table above we compared our
construction with various permutation based MACs and PRFs without considering keyed
sponge designs. The objective of this paper is to have a theoretical study on the beyond
birthday bound security of permutation based MACs that exploits the full state of the
permutation. While we agree that for a concrete value of the state size of the permutation
(n), 2n/3 bit security is achievable from a keyed sponge construction at the cost of a slightly
larger size permutation and a smaller state size. However, achieving beyond birthday
bound security by exploiting the full state size of the permutation always comes at the
cost of extra state size. A detail comparison of our construction with keyed sponges in
terms of implementation is out of the scope of this paper.

Organization. In Sect. 2 we set up the background. In Sect. 3, we rigorously analyze
the extended mirror theory with univariate affine non-equations for general ξmax. Sect. 4
recalls the construction nEHtM∗p and state its multi-user MAC security bound. We have
presented a complete and correct security proof of the construction in the multi-user setting
under the faulty nonce model in Sect. 5. We recover the single-user security bound of the
construction trivially from its multi-user bound by setting the value of u = 1.

2 Preliminaries
General Notations: For n ∈ N, we denote the set of all binary strings of length n and
the set of all binary strings of finite arbitrary length by {0, 1}n and {0, 1}∗ respectively.
{0, 1}+ denotes the set of all non-empty binary strings of finite arbitrary length. We
often refer the elements of {0, 1}n as block. For an n-bit binary string x = (xn−1 . . . x0),
msb(x) denotes the first bit of x in left to right ordering, i.e. msb(x) = xn−1. Moreover,
chopmsb(x) ∆= (xn−2 . . . , x0), i.e., chopmsb(x) returns the string x by dropping just its msb.

8 Multi-User BBB Security of Public Permutations Based MAC

For any element x ∈ {0, 1}∗, |x| denotes the number of bits in x and for x, y ∈ {0, 1}∗,
x‖y denotes the concatenation of x followed by y. We denote the bitwise xor operation
of x, y ∈ {0, 1}n by x ⊕ y. We parse x ∈ {0, 1}+ as x = x1‖x2‖ . . . ‖xl where for
each i = 1, . . . , l − 1, xi is a block and 1 ≤ |xl| ≤ n. For a sequence of elements
(x1, x2, . . . , xs) ∈ {0, 1}∗, xia denotes the a-th block of i-th element xi. For a value s, we
denote by t ← s the assignment of s to variable t. For any natural number j ∈ N, 〈j〉s
denotes the s bit binary representation of integer j. For i ∈ {0, 1}n, leftk(i) represents
the leftmost k bits of i. Similarly, rightk(i) represents the rightmost k bits of i. For
any finite set X , X ←$X denotes that X is sampled uniformly at random from X and
X1, . . . , Xs←$X denotes that Xi’s are sampled uniformly and independently from X .
FX (n) denotes the set of all functions from X to {0, 1}n. We often write F(n) when the
domain is clear from the context. We denote the set of all permutations over {0, 1}n by
P(n). For integers 1 ≤ b ≤ a, (a)b denotes the product a(a − 1) . . . (a − b + 1), where
(a)0 = 1 by convention and for q ∈ N, [q] refers to the set {1, . . . , q}.

2.1 Public Permutation Based MAC in Multi-User Setting
Let n, d ∈ N, let F : K ×N ×M→ T be a keyed function based on d permutations that
are independent and uniformly sampled from P(n). Here K,N ,M and T are respectively
the key space, the nonce space, the message space, and the tag space. For simplicity,
we write Fπk to denote F with uniform k and uniform π. Based on Fπk , we define the
nonce-based message authentication code I = (I.KGen, I.Sign, I.Ver) build from public
permutations. We define I as follows: for k ∈ K, the signing algorithm I.Signk takes as
input (ν,m) ∈ N ×M and outputs t← Fπk (ν,m), and the verification algorithm I.Verk,
takes as input (ν,m, t) ∈ N ×M× T and outputs 1 if Fπk (ν,m) = t and 0 otherwise.
In the multi-user setting we assume there are µ users, such that the i-th user executes
Fπki . Moreover, the i-th user key ki is independent of the keys of all other users. An
adversary A has access to all the µ users as oracles. A makes signing queries of the form
(i, ν,m) to the i-th user and obtains t← Fπki(ν,m). Similarly, A makes verification queries
of the form (i, ν,m, t) to the i-th user and obtains either > (accepts) or ⊥ (rejects). A
signing query to the i-th user (i, ν,m) by an adversary A is called a faulty query if A
has already queried to the signing algorithm of the i-th user with the same nonce but
with a different message. Note that, (i, ν,m) is not considered to be a faulty query, if the
nonce ν collides with the nonce of the j-th user for some j 6= i. A can also make queries
to the tuple of underlying permutations π and their inverses π−1 = (π−1

1 , . . . , π−1
d). Let

A be a (η, qm, qv, p, t)-adversary against the unforgeability of I with oracle access to the
signing algorithm I.Signki and the verification algorithm I.Verki for all µ users, and A
also gets access to the d-tuple of permutations π. A makes in total η faulty signing queries
out of qm signing queries distributed over its µ signing oracles, qv verification queries
distributed over its µ verification oracles, and p primitive queries with running time of A
at most t. A is said to be nonce respecting (resp. nonce misuse) if η = 0 (resp. if η ≥ 1).
However, A may repeats nonces in its verification queries. Moreover, the primitive queries
are interleaved with the signing and the verification queries. We assume that for any
i ∈ [µ] A does not make a verification query (i, ν,m, t) such that t is obtained through
any of the previous signing queries to the i-th user. A is said to forge I if for any i ∈ [µ],
and for any of its verification queries (not obtained through a previous signing query), the
verification algorithm returns 1. The forging advantage of A against the unforgeability of
the nonce-based MAC I in the multi-user seting is defined as

Advmu-nMAC
I (A) ∆= Pr

[
A(I.Signk1 ,I.Verk1),...,(I.Signkµ ,I.Verkµ),π,π−1

forges
]
,

where the randomness is defined over k1, . . . , kµ←$K, π1, . . . , πd←$ P(n) and the random-

Yu Long Chen and Avijit Dutta and Mridul Nandi 9

ness of the adversary (if any). We write

Advmu-nMAC
I (η, qm, qv, p, t)

∆= max
A

Advmu-nMAC
I (A),

where the maximum is taken over all (η, qm, qv, p, t)-adversaries A. In this paper, we skip
the time parameter of the adversary as we will assume throughout the paper that the
adversary is computationally unbounded. This will render us to assume that the adversary
is deterministic. When µ = 1, then it renders to the single user forging advantage.

Upper bound on Advmu-nMAC
I (A) ([29]). To obtain an upper bound for the forging

advantage of I in the multi-user setting with respect to the adversary A, we consider an
another adversary B that interacts either with µ pairs of oracles ((I.Signk1 , I.Verk1), . . . ,
(I.Signkµ , I.Verkµ)) or µ pair of oracles (RF1,Rej1), . . . , (RFµ,Rejµ) such that on a signing
query of the form (i, ν,m), RFi samples the tag t independently and uniformly at random
from {0, 1}n for every nonce message pair (ν,m) queried to the i-th oracle. Moreover,
for all i ∈ [µ], Reji oracle always returns ⊥ for any (i, ν,m, t). Then, Advmu-nMAC

I (A) is
upper bounded by

max
B

∣∣∣∣Pr
[
BOre,π,π

−1
⇒ 1

]
− Pr

[
BOid,π,π

−1
⇒ 1

] ∣∣∣∣, (3)

where Ore denotes the oracle ((I.Signk1 , I.Verk1), . . . , (I.Signkµ , I.Verkµ)), and Oid de-
notes ((RF1,Rej1), . . . , (RFµ,Rejµ)). Moreover, BO ⇒ 1 denotes that adversary B outputs
1 after interacting with its oracle O. When µ = 1, then Eqn. (3) represents the upper
bound of the forging advantage of the MAC in the single user setting.

2.2 Almost Xor Universal and Almost Regular Hash Function
Let Kh and X be two non-empty finite sets and H be a keyed function H : Kh×X → {0, 1}n.
Then, H is said to be an εaxu-almost xor universal (axu) hash function, if for any distinct
x, x′ ∈ X and for any ∆ ∈ {0, 1}n,

Pr [Kh←$Kh : HKh(x)⊕ HKh(x′) = ∆] ≤ εaxu.

Moreover, H is said to be an εreg-almost regular (ar) hash function, if for any x ∈ X and
for any ∆ ∈ {0, 1}n,

Pr [Kh←$Kh : HKh(x) = ∆] ≤ εreg.

2.3 Pairwise Independent Hash Function
Let Kh and X be two non-empty finite sets and H be a keyed function H : Kh×X → {0, 1}n.
Then, H is said to be an δ-pairwise independent hash function, if for any distinct x, x′ ∈ X
and for any y, y′ ∈ {0, 1}n,

Pr [Kh←$Kh : HKh(x) = y,HKh(x′) = y′] ≤ δ.

It is easy to see that, if H is an εaxu-almost-xor universal hash function, then the function
H′(kh,k)

∆= Hkh ⊕ k, where k ∈ {0, 1}n is indepedently sampled over kh, is εaxu/2n-pairwise
independent hash function. This is because for any x 6= x′ and for any y, y′ ∈ {0, 1}n,

Pr
[
Kh←$Kh,K ←$ {0, 1}n : H′(Kh,K)(x) = y,H′(Kh,K)(x′) = y′

]
= Pr [Kh←$Kh,K ←$ {0, 1}n : HKh(x)⊕K = y,HKh(x′)⊕K = y′]
= Pr [Kh←$Kh,K ←$ {0, 1}n : HKh(x)⊕K = y,HKh(x)⊕ HKh(x′) = y ⊕ y′]
≤ εaxu/2n.

10 Multi-User BBB Security of Public Permutations Based MAC

2.4 Sum-Capture Lemma
We use the sum capture lemma due to Babai [1] and Steinberger [46]. Informally, the
result states that for a random subset S of {0, 1}n of size q and for any two arbitrary
subsets A and B of {0, 1}n, the size of the set {(s, a, b) ∈ S ×A×B : s = a⊕ b} is at most
q|A||B|/2n, except with negligible probabilty. In our setting, S is the set of tag values ti,
which are sampled with replacement from {0, 1}n. In this paper, we appeal to the result
of sum-capture theorem by Cogliati and Seurin [23].

Lemma 1 (Sum-Capture Lemma). Let n, q ∈ N. Let S = {t1, . . . , tq} ⊆ {0, 1}n such
that ti’s are with replacement sample of {0, 1}n. Then, for any two subsets A and B of
{0, 1}n, we have

Pr[|{(t, a, b) ∈ S ×A× B : t = a⊕ b}| ≥ q|A||B|/2n +
√

3nq|A||B|] ≤ 2
2n , (4)

where the randomness is defined over the set S.

3 Solving a System of Affine (Non)-Equations
We prove the MAC security of nEHtM∗p using the Expectation Method, where one is
required to lower bound the probability of realizing a good transcript in the real and the
ideal world. In order to compute this probability in the real world, we require to count the
number of permutations π such that

π(0‖ν1 ⊕ k)⊕ π(1‖ν1 ⊕ H1 ⊕ k) = t1

π(0‖ν2 ⊕ k)⊕ π(1‖ν2 ⊕ H2 ⊕ k) = t2
...

π(0‖νqm ⊕ k)⊕ π(1‖νqm ⊕ Hqm ⊕ k) = tqm

π(0‖ν′1 ⊕ k)⊕ π(1‖ν′1 ⊕ H′ ⊕ k) 6= t′1
π(0‖ν′2 ⊕ k)⊕ π(1‖ν′2 ⊕ H′2 ⊕ k) 6= t′2

...
π(0‖ν′qv ⊕ k)⊕ π(1‖ν′qv ⊕ H′qv ⊕ k) 6= t′qv .

holds. Therefore, it boils down to count the number of solutions to the above system of
equations and non-equations. This result is captured by the result of Extended Mirror
Theory [31].

Consider an undirected edge-labelled graph G = (V := {P1, . . . , Pβ}, E t E ′,L) with
edge labelling function L : E t E ′ → {0, 1}n, where the edge set is partitioned into two
disjoint sets E and E ′. For an edge {Yi, Yj} ∈ E , we write L({Pi, Pj}) = λij (and so
λij = λji) and L({Pi, Pj}) = λ′ij for all {Pi, Pj} ∈ E ′. We call the edges of E as equation
edges and the edges of E ′ as non-equation edges. Let G= := (V=, E ,L|E) denotes the
subgraph of G, where V= is the set of vertices of V such that they are incident on at least
one edge of E and L|E is the function L restricted over the set E . We say G is good if it
satisfies the following three conditions:

1. G= must be acylic.

2. L(Pst) 6= 0 for all paths Pst in graph G=, where L(Pst) :=
∑
e∈Pst L(e) = Ps ⊕ Pt

and Pst is a path of G= between vertices s and t.

3. If we consider a cycle C of length at least 2 in G such that the edge set of C contains
exactly one non-equation edge e′ ∈ E ′ and the remaining edges are the equation
edges e ∈ E , then L(C) 6= 0, where L(C) :=

∑
e∈C L(e).

For such a good graph G, we denote the set of components of G= as comp(G=) =
(C1, . . . ,Ck), µi denotes the size of (i.e. the number of vertices in) the i-th compo-
nent Ci and µmax = max{µ1, . . . , µk} is the size of the largest component of G=. ρi the

Yu Long Chen and Avijit Dutta and Mridul Nandi 11

total number of vertices upto the i-th component with the convention that ρ0 = 0. We
denote the set of vertices of i-th component of G= as Vi. Now, we consider three types
of non-equation edges in E ′: (a) first type of non-equation edges are those whose both
end points belong to vertices of different components of G=. We color these edges with
blue and these connect two vertices of different components of G=. (b) The second type of
edges are those whose exactly one end point belongs to the set of vertices of G=. We color
these edges with orange. (iii) The last type of edges are those whose both end points do
not belong to the set of vertices of G=. We color these edges with red. Let V 6= ⊆ V \ V=

be set of the isolated end points of red-colored and orange-colored edges. Let qb be the
number of blue colored edges, qo be the number of orange colored edges and qr be the
number of red colored edges. We pictorially depict such graphs in Fig. 3.1.

Figure 3.1: Dashed edges denotes the verification non-equation with three types (a) blue
edges, (b) orange edges and (c) red edges.

Having such a good graph G, the induced system of equations and non-equations is defined
as:

EG =
{
Pi ⊕ Pj = λij ∀ {Pi, Pj} ∈ E ,
Pi ⊕ Pj 6= λ′ij ∀ {Pi, Pj} ∈ E ′,

Now, we define the injective solution of a system of bivariate affine equations and non-
equations as follows:
Definition 1 (Injective Solution). With respect to the system of equations and non-
equations EG (as defined above), an injective function Φ : V → {0, 1}n is said to be an
injective solution if Φ(Pi)⊕ Φ(Pj) = λij for all {Pi, Pj} ∈ E and Φ(Pi)⊕ Φ(Pj) 6= λ′ij for
all {Pi, Pj} ∈ E ′.
Theorem 1. Let U = {u1, . . . , uσ} be a non-empty finite subset of {0, 1}n for some σ ≥ 0
and let R = (r1, . . . , rq∗v) be an ordered tuple of n-bit strings. Let G = (V, E t E ′,L) be a
good graph with |V| = β, |E| = qm and |E ′| = qv with qb blue edges, qo orange edges and qr
red edges such that qv = q∗v + qb + qo + qr. Let the subgraph G= has k components, µi be
the size of the i-th component and ρi = (µ1 + · · ·+ µi). Moreover, we assume that

1. for all i ∈ [k], with |Vi| = αi ≥ 0, vj ∈ Vi cannot be assigned with a value
rα1+...+αi−1+j for j ∈ [αi] with α0 = 0.

2. there exists V∗ ⊆ V 6=, with |V∗| = α 6= := (q∗v − α1 − . . . − αk) such that vj ∈ V∗
cannot be assigned a value rα1+...+αk+j for j ∈ [α 6=].

Then the total number of injective solutions, chosen from a set Z = {0, 1}n \ U of size
2n − σ, for the induced system of equations and non-equations EG is at least:

(2n − σ)α
2nqm

(
1−

k∑
i=1

6(ρ′i−1)2(µi
2
)

22n − 2qv
2n

)
, (5)

provided ρ′kµmax ≤ 2n/4 where ρ′i = ρi + σ.
Proof. We proceed the proof by counting the number of solutions in each of the k
components. Let µ̃ij denotes the number of blue edges between i-th and j-th component
of G= and µ′i to be the number of edges incident on vi ∈ V \ G=(V). Therefore,∑

vi∈V\G=(V)

µ′i = qo + qr.

12 Multi-User BBB Security of Public Permutations Based MAC

For the first component, the number of solutions is at least exactly (2n − µ1σ − α1). We
fix such a solution and count the number of solutions for the second component. which is
(2n − µ1µ2 − µ̃1,2 − µ2σ − α2). This is because, let Yiµ1+1 be an arbitrary vertex of the
second component and let yiµ1+1 be a solution of it. This solution is valid if the following
conditions hold:

• yiµ1+1 /∈ U .

• yiµ1+1 does not take µ1 values (yi1 , . . . , yiµ1
) from the first component.

• It must discard µ1(µ2−1) values (yi1⊕L(Pj), . . . , yiµ1
⊕L(Pj)) for all possible paths

Pj from a fixed vertex to any other vertex in the second component.

• It must discard p(µ2 − 1) values as (yiµ1+1 ⊕ L(Pj)) /∈ Y for all possible paths Pj
from Yiµ1+1 to any other vertices in the second component.

• yiµ1+1 does not take µ̃12 values to compensate for the fact that the set of values is
no longer a group.

• yiµ1+1 does not take α2 values.

Summing up all the conditions, the number of solutions for the second component is at
least (2n − µ1µ2 − µ2σ − µ̃12 − α2). In general, the total number of solutions for the i-th
component is at least

k∏
i=1

(
2n − ρi−1µi − µiσ −

i−1∑
j=1

µ̃ij − αi
)
.

Suppose |V 6=| = k′, where recall that V 6= is the set of end points of red colored edges. Fix
such a vertex Yρk+i and let us assume that µ′ρk+i red dashed edges are incident on it. If
yρk+i is a valid solution to the variable Yρk+i, then we must have (a) yρk+i should be
distinct from the previous ρk assigned values, (b) yρk+i should be distinct from the (i− 1)
values assigned to the variables that do not belong to the set of vertices of the subgraph
G=(V), (c) yρk+i should be distinct from the values of U , (d) yρk+i should not take those
µ′ρk+i values and (e) yρk+i should not take α 6=i values, where∑

i∈[k′]

α 6=i = α 6=.

Therefore, the total number of solutions is at least

hα ≥
k∏
i=1

(
2n− ρi−1µi−µiσ−

i−1∑
j=1

µ̃ij −αi
)
·
∏
i∈[k′]

(2n− ρk−σ− i+ 1−µ′ρk+i−α 6=). (6)

Let χi
∆= (µ̃i1 + . . .+ µ̃i,i−1), q′′v

∆= (µ′ρk+1 + . . .+ µ′ρk+k′) and ρ′i = ρi + σ. After a simple
algebraic calculation on Eqn. (6), we obtain

hβ
2nqm

(2n − σ)β
≥

k∏
i=1

(2n − ρ′i−1µi − χi − αi)2n(µi−1)

(2n − ρ′i−1)µi︸ ︷︷ ︸
D.1

k′∏
i=1

(2n − ρ′k − i+ 1− µ′ρk+i − α 6=)
(2n − ρ′k − i+ 1)︸ ︷︷ ︸

D.2

.

By expanding (2n − ρ′i−1)µi we have (2n − ρ′i−1)µi ≤ 2nµi − 2n(µi−1)
(
ρ′i−1µi +

(
µi
2
))

+

2n(µi−2)Ai, where Ai =
((

µi
2
)
(ρ′i−1)2 +

(
µi
2
)
(µi − 1)ρ′i−1 +

(
µi
2
) (µi−2)(3µi−1)

12

)
.

Yu Long Chen and Avijit Dutta and Mridul Nandi 13

Bounding D.1. With a simplification on the expression of D.1, we have

D.1 ≥
k∏
i=1

(
1− Ai

22n − 2n(ρ′i−1µi +
(
µi
2
)
) +Ai

− 2n(χi + αi)
22n − 2n(ρ′i−1µi +

(
µi
2
)
) +Ai

)
(4)
≥

k∏
i=1

(
1− 2Ai

22n −
2χi
2n −

2αi
2n

)
(5)
≥
(

1−
k∑
i=1

6(ρ′i−1)2(µi
2
)

22n − 2qb
2n −

k∑
i=1

2αi
2n

)
,

where (4) follows from the fact that 2n(ρ′i−1µi+
(
µi
2
)
)−Ai ≤ 22n/2, which holds true when

ρ′kµmax ≤ 2n/4, (5) holds true due to the fact that Ai ≤ 3(ρ′i−1)2(µi
2
)
and (χ1 + . . .+χk) =

qb, the total number of blue edges across the components of G= and µ1 + . . .+ µk ≤ β.
Bounding D.2. For bounding D.2, we have

D.2 ≥
k′∏
i=1

(
1−

µ′ρk+i + α 6=i
(2n − ρ′k − i+ 1)

)
(6)
≥
(

1− 2qo
2n −

2qr
2n −

2α=

2n

)
,

where (6) follows due to the fact that (ρ′k + i− 1) ≤ 2n/2 and we denote (µ′ρk+1 + . . .+
µ′ρk+k′) = qo+qr, the total number of red and orange edges incident on the vertices outside
of the set V= and α 6= = α 6=1 + . . .+ α 6=k′ .

Combining D.1 and D.2. Finally, by combining the expression of D.1 and D.2, we have

hβ
2nqm

(2n − σ)β
≥

(
1−

k∑
i=1

6(ρ′i−1)2(µi
2
)

22n − 2qb
2n −

k∑
i=1

2αi
2n −

2q0

2n −
2qr
2n −

2α 6=

2n

)

≥
(

1−
k∑
i=1

6(ρ′i−1)2(µi
2
)

22n − 2qv
2n

)
,

where recall that q∗v = α1 + . . .+ αk + α 6= and qv = qb + qr + qo + q∗v , the total number of
non-equation edges in G.

4 Multi-User Security of nEHtM∗p
Dutta and Nandi [30] have proven that nEHtMp is 2n/3-bit secure in public permutaion
model and the bound is tight. Moreover, the bound degrades gracefully with the repetition
of the nonce. However, as mentioned earlier, the security proof of nEHtMp in [30], which
is based on the Expectation method [35], is not complete as the authors missed some bad
events. In this paper, we propose a slight variant of nEHtMp, called nEHtM∗p, which is
defined in Eqn. (2) and depicted in the right side of Fig. 1.1. We have shown that the
construction is secured roughly upto 22n/3 signing queries and 22n/3 verification queries.
Moreover, we have analyzed the security of this construction in the multi-user setting and
have proven similar level of security using the Expectation method. Attack on nEHtM∗p is
exactly similar to the attack of nEHtMp [30] and hence we omit it.

4.1 Security Theorem of nEHtM∗p
We prove nEHtM∗p is secure against all adversaries that make roughly 22n/3 queries in the
multi-user setting. Moreover, our proven bound degrades gracefully with the repetition
of nonces in faulty nonce model. Similar to nEHtMp, the construction posses a birthday
bound forging attack when the number of faulty nonces reaches to an order of 2n/2 [31].

14 Multi-User BBB Security of Public Permutations Based MAC

Theorem 2. LetM and Kh be two finite and non-empty sets. Let π←$ P(n) be an n-bit
public random permutation and H : Kh×M→ {0, 1}n−1 be an (n−1)-bit ε-almost xor uni-
versal and ε-almost regular hash function 3. Moreover, let K = (k1, . . . , kµ)←$ {0, 1}n−1 4

be a set of n− 1-bit random keys for u users and η, ξ be two fixed parameters. Then the
forging advantage for any (η, qm, qv, 2p)-adversary against the construction nEHtM∗p[π,H,K]
that makes at most η faulty queries out of qm signing, qv veritication and altogether 2p
primitive queries, is given by

Advmu-nMAC
nEHtM∗p (η, qm, qv, 2p) ≤

196p2qm
22n + 196pq2

m

22n + 7pq2
mε

2n + 4p2qmε

2n + 4q2
mp

2ε2

2n + 52q2
mp

2ε

22n

+ 6q2
mp

2

23n + q2
m

22n + p
√

6nqm
(
ε+ 2

2n

)
+ 2q3

mε

2n + q2
mε

2n+1 + q2
mε

2ξ

+ qm + 2qv + 5
2n + 2pqmqvε

2n + 2p2qvε

2n + qvε+ qmqvp
2ε2

2n + 2qmqvε
2n

+ 12q4
mε

22n + 48q3
m

22n + 48pq3
mε

22n + η

(
2pε+ 2

2n + 24qvp2ε

22n

)
+ η2

(
ε+ 12q2

m

22n + 48pqm
22n + 48p2

22n

)
.

We defer the proof of this theorem in Sect. 5.

Interpretation of the bound: By assuming the almost-xor-universal advantage and
the almost-regular advantage ε ≈ 2−n, the security of the construction is valid as long
as the number of primitive queries p, the number of MAC queries qm and the number
of verification queries qv is at most 22n/3 for all η � 2n/2. In other words, as long as
the overall number of faulty queries is within a birthday limit of the block size of the
permutation, the construction gives 2n/3-bit MAC security.

4.2 Instantiation of nEHtM∗p with PolyHash Function

We instantiate the underlying almost-xor-universal hash function of nEHtM∗p using the
Polyhash function to realize a permutation based multi-user secure nonce based MAC
nEHtM+

p . Let Poly : {0, 1}n × ({0, 1}n)∗ → {0, 1}n be a hash function defined as follows:
For a fixed key kh ∈ {0, 1}n and for a fixed message m, we first apply an injective
padding such as 10∗ i.e., pad 1 followed by minimum number of zeros so that the total
number of bits in the padded message becomes multiple of n. Let the padded message be
m∗ = m1‖m2‖ . . . ‖ml where for each i, |mi| = n. Then we define

Polykh(m) = ml · kh ⊕ml−1 · k2
h ⊕ . . .⊕m1 · klh, (7)

where l is the number of n-bit blocks. Then, the almost-regular (εreg) and the almost-xor
universal (εaxu) advantage of Poly is `/2n [27]. By plugging-in the regular advantage of

3For the sake of simplicity of the security bound, we choose εaxu = εreg = ε.
4K denotes the tuple of user keys; yet the construction takes only a single key.

Yu Long Chen and Avijit Dutta and Mridul Nandi 15

and the almost-xor-universal advantage of the Polyhash function in Theorem 2, we have

Advmu-nMAC
nEHtM+

p
(η, qm, qv, 2p) ≤

196p2qm
22n + 196pq2

m

22n + 7pq2
m`

22n + 4p2qm`

22n + 4q2
mp

2`2

23n + 52q2
mp

2`

23n

+ 6q2
mp

2

23n + q2
m

22n + p
√

6nqm
(
`+ 2
2n

)
+ 2q3

m`

22n + q2
m`

22n+1 + q2
m`

2n · 2ξ

+ qm + 2qv + 5
2n + 2pqmqv`

22n + 2p2qv`

22n + qv`

2n + qmqvp
2`2

22n + 2qmqv`
22n

+ 12q4
m`

23n + 48q3
m

22n + 48pq3
m`

23n + η

(
2p`
2n + 2

2n + 24qvp2`

23n

)
+ η2

(
`

2n + 12q2
m

22n + 48pqm
22n + 48p2

22n

)
.

5 Proof of Theorem 2
Due to Eqn. (3), we bound the distinguishing advantage instead of bounding the forging
advantage of nEHtM∗p. For this, we consider any information theoretic deterministic
distinghisher A that has access to the following oracles in either the real world or the ideal
world: in the real world, the distinguisher A has access to the following pair of oracles
(nEHtM∗p.Sigπ(ku,ku

h
), nEHtM∗p.Verπ(ku,ku

h
))
µ
u=1 and π±; in the ideal world, it has access to

(RFi,Reji)
µ
u=1 and π±. Here, each MAC query is made for user index ui ∈ {1, . . . , µ},

for i = 1, . . . , qm; and each verification query is made for user index u′a ∈ {1, . . . , µ},
for a = 1, . . . , qv. We summarize the interactions of the distinguisher with its oracle
in a transcript τm ∪ τv, where τm

∆= {(u1, ν1,m1, t1), . . . , (uqm , νqm ,mqm , tqm)} is the
MAC transcript, and τv

∆= {(u′1, ν′1,m′1, t′1, b′1), . . . , (u′1, ν′qv ,m
′
qv , t

′
qv , b

′
qv)} is the verification

transcript. Primitives queries to π are summarized in two disjoint lists in the form of
τ

(0)
p

∆= {(x0
1, y

0
1), . . . , (x0

p, y
0
p)} and τ

(1)
p

∆= {(x1
1, y

1
1), . . . , (x1

p, y
1
p)}, where msb(xbi) = b for

b ∈ {0, 1}. We assume that none of the transcripts contain any duplicate elements.
After the interaction, we reveal the keys k1, . . . , kµ, k1

h, . . . , k
µ
h to the distinguisher (before

it output its decision), which happens to be the keys used in the construction for the
real world, and uniformly sampled dummy keys for the ideal world. These keys are
summarized in a transcript τk

∆= {k1, . . . , kµ, k1
h, . . . , k

µ
h}. The complete view is denoted

by τ = (τm, τv, τ (0)
p , τ

(1)
p , τk).

Let Dre (resp. Did) be the random variable that takes a transcript resulting from the
interaction between A and the oracles of the real world (resp. the ideal world). A transcript
τ is said to be attainble if Pr[Did = τ] > 0. Let Θ denotes the set of all attainable transcripts.
Let Φ : Θ→ [0,∞) be a non-negative function which maps any attainable transcript to a
non-negative real value. Suppose there is a set of good transcripts GoodT ⊆ Θ such that
for any τ ∈ GoodT,

Pr [Dre = τ]
Pr [Did = τ] ≥ 1− Φ(τ). (8)

Then, the Expectation Method by Hoang and Tessaro [35] says that the statistical distance
between Dre and Did can be bounded as

∆(Dre,Did) ≤ E[Φ(Did)] + Pr[Did ∈ BadT], (9)

where BadT ∆= Θ \GoodT is the set of all bad transcripts. In other words, the advantage of
A in distinguishing Ore from Oid is bounded by E[Φ(Did)] + Pr[Did ∈ BadT]. In the rest

16 Multi-User BBB Security of Public Permutations Based MAC

of the paper, we write Θ, GoodT, and BadT to denote the set of attainable, set of good,
and set of bad transcripts, respectively. Note that the expectation method is a generic
tool over H-Coefficient technique [45] for bounding the distinguishing advantage of two
random systems as the latter can be derived as a simple corollary of the former when Φ is
taken to be a constant function.

5.1 Definition of Bad Transcripts
In this section, we define bad transcripts. For the notational simplicity, we denote
Hkui

h
(mi) = Huii , and let x̂b denotes chopmsb(xb) for b = 0, 1. We also define a multiset and

two sets as follows: (a) T ∆= {ti : (ui, νi,mi, ti) ∈ τm}, multiset of responses corresponding
to construction queries, (b) Y0

∆= {y0 : (x0, y0) ∈ τ (0)
p } and (c) Y1

∆= {y1 : (x1, y1) ∈ τ (1)
p }.

Rationale of Bad Transcripts: For a transcript τ ′ = (τm, τv, τ (0)
p , τ

(1)
p , τk) and an

n-bit permutation π, we have the following system of equations and non-equations, along
with π(x̂bi) = ybi , for b ∈ {0, 1} and i ∈ [qp]. We call the equations of block E= as
“MAC equations” and the equations of block E6= as “verification non-equations”. For the
notational simplicity, let us denote ν ⊕ k as α and ν ⊕ k ⊕ H as β

E= =

π(0‖α1)⊕ π(1‖β1) = t1

π(0‖α2)⊕ π(1‖β2) = t2
...

π(0‖αqm)⊕ π(1‖βqm) = tqm

E6= =

π(0‖α′1)⊕ π(1‖β′1) 6= t′1
π(0‖α′2)⊕ π(1‖β′2) 6= t′2

...
π(0‖αqv)⊕ π(1‖βqv) 6= t′qv .

For a good transcript, we are required to count the number of permutations π that satisfy
each of the equations in block E= and E6=. Therefore, we identify the events, we call them
bad, that do not let us to do our job. We enlist such events in two parts: in the first
part, we are concerned only with the MAC equations and in the other part, we include the
verification non-equations.
MAC Equations.

1. For any equation of block E=, let both inputs be non-fresh. An input becomes
non-fresh in either of the two ways: (a) if it collides with the input of some earlier
MAC query or (b) if it collides with the input of some primitive query. These cases
are depicted in B.1-B.4 of Fig. 5.1.

2. For any equation of block E=, let exactly one of the inputs be non-fresh and the other
be fresh. This condition actually determines the permutation output corresponding
to the fresh input. But bad event happens if the determined value becomes non-fresh
as depicted in B.5-B.8 of Fig. 5.1.

3. For any two equations of block E=, if exactly one of the inputs of each equations
collides with the input of some primitive query, then the permutation output of their
fresh-input counterparts become determined. Bad events happen when these two
determined outputs collide as depicted in B.9-B.11 of Fig. 5.1.

For the part including the verification queries, a bad event happens when the adversary
makes a valid forging attempt. Hence, we need to identify the cases where the adversary
can potentially make a valid forging attempt.
Verification Non-Equations.

Yu Long Chen and Avijit Dutta and Mridul Nandi 17

ui

x0

y0

vi

x1

y1

⊕

B.1

ui uj vi v`

⊕

B.2

ui

x

y

vi vj

⊕

B.3

ui uj vi

x1

y1

⊕

B.4

ui uj vi

⊕

B.5

ui vi vj

⊕

B.6

ui

x0

y0

vi

⊕

B.7

ui vi

x1

y1

⊕

B.8

ui uj

x0

y0
x1

y1

vi vj

⊕⊕

B.9

ui uj

x0

y0
x1

y1

vi vj

⊕⊕

B.10

ui uj

x0

y0

vi vj

x1

y1

⊕⊕

B.11

Figure 5.1: Different cases of bad events regarding the MAC and primitive queries. Red
edge denotes the input / output collides with prmitive input / output. Green edge denotes
that input collides with the input of some other construction queries or output of some
other construction queries.

4. For any non-equation of block E6=, if both inputs are non-fresh and the corresponding
tag is set to the appropriate value. This gives rise to the following subcases:

– Both inputs of the a-th non-equation of block E6= collide with the inputs of two
different primitive queries, and the corresponding tag t′a is set to the xor of the
outputs of those two primitive queries. This case is depicted in B.12 of Fig. 5.1.

– Both inputs of the a-th non-equation of block E6= collide with the corresponding
inputs of the i-th equation of block E=, and the corresponding tag t′a is set to
ti. This case is depicted in B.13 of Fig. 5.1.

– One of the inputs of the a-th non-equation of block E6= collides with the input
of some primitive query, the other input of this non-equation collides with the
corresponding input of the i-th equation of block E=, the remaining input of
the i-th equation of block E= collides with the input of some different primitive
query, and finally the xor of tags t′a ⊕ ti is set to the xor of the outputs of those
two primitive queries. These cases are depicted in B.14 and B.15 of Fig. 5.1.

18 Multi-User BBB Security of Public Permutations Based MAC

u′a

x0

y0

v′a

x1

y1

⊕

t′a = y0 ⊕ y1

B.12

u′a ui v′a vi

⊕

t′a ti

B.13

u′a

x0

y0

v′a

⊕

t′a = ti ⊕ y0 ⊕ y1

B.14

ui

x1

y1

vi

⊕

ti

u′a v′a

x0

y0

⊕

t′a = ti ⊕ y0 ⊕ y1

B.15

ui vi

x1

y1

⊕

ti

ui

x0

y0

vi

⊕

ti

B.16

u′a v′a

⊕

t′a = ti ⊕ tj ⊕ y0 ⊕ y1

uj vj

x1

y1

⊕

tj

Figure 5.2: Different cases of bad events regarding the verification queries. Red edge
denotes the input / output collides with prmitive input / output. Orange edge denotes
the input of the verification query. Green edge denotes the input of some MAC queries
and the blue dotted edge denotes the corresponding two inputs have collided.

– Nonce input of the a-th equation of block E6= collides with the nonce input of
j-th equation of block E=, and the other input of this non-equation collides
with the corresponding input of i-th equation of block E=. Moreover, the other
two inputs of i-th and j-th equation of block E= collide with the input of two
different primitive queries, and finally the xor of tags t′a ⊕ ti ⊕ tj is set to the
xor of the outputs of those two primitive queries. This case depicted in B.16 of
Fig. 5.1.

Note that in the work of Dutta and Nandi [30], they did not consider the bad events
related to point 3 and the last two cases of point 4.

Definition 2 (Bad Transcript for nEHtM∗p). Given a parameter ξ ∈ N, where ξ ≥ η, an
attainable transcript τ ′ = (τm, τv, τ (0)

p , τ
(1)
p , τk) is called a bad transcript if any one of the

following holds:

Yu Long Chen and Avijit Dutta and Mridul Nandi 19

1. Both the inputs to the permutation are non-fresh -- condn (1).

- B.1 : ∃ i ∈ [qm], (x̂0, ŷ0), (x̂1, ŷ1) such that νi ⊕ kui = x̂0, νi ⊕ kui ⊕ Huii = x̂1.
- B.2 : ∃ i, j, ` ∈ [qm], i 6= j, j 6= ` such that νi ⊕ kui = νj ⊕ kuj , νj ⊕ kuj ⊕Hujj =
ν` ⊕ ku` ⊕ Hu`` .

- B.3 : ∃ i 6= j ∈ [qm], (x̂0, ŷ0) such that νi ⊕ kui = x̂0, νi ⊕ kui ⊕ Hui
i =

νj ⊕ kuj ⊕ Hujj .

- B.4 : ∃ i 6= j ∈ [qm], (x̂1, ŷ1) such that νi ⊕ kui = νj ⊕ kuj , νi ⊕ kui ⊕ Huii = x̂1.

2. Exactly one i/p is non-fresh and the o/p of the
fresh input is non-fresh -- condn (2).

- B.5 : ∃ i 6= j ∈ [qm] such that νi ⊕ kui = νj ⊕ kuj , ti = tj .
- B.6 : ∃ i 6= j ∈ [qm] such that νi ⊕ kui ⊕ Huii = νj ⊕ kuj ⊕ Hujj , ti = tj .

- B.7 : ∃ i ∈ [qm], (x̂0, ŷ0) such that νi ⊕ kui = x̂0, ŷ0 ⊕ ti ∈ Y0 ∪ Y1.
- B.8 : ∃ i ∈ [qm], (x̂1, ŷ1) such that νi ⊕ kui ⊕ Huii = x̂1, ŷ1 ⊕ ti ∈ Y0 ∪ Y1.

3. For two construction queries, exactly one of the inputs collides
with the input of some primitive query and the permutation output
of their fresh-input counterpart collides -- condn (3).

- B.9 : ∃ i 6= j ∈ [qm], (x̂0, ŷ0), (x̂′0, ŷ′0) such that νi ⊕ kui = x̂0, νj ⊕ kuj =
x̂′0, ti ⊕ ŷ0 = tj ⊕ ŷ′0.

- B.10 : ∃ i 6= j ∈ [qm], (x̂1, ŷ1), (x̂′1, ŷ′1) such that νi⊕kui ⊕Huii = x̂1, νj⊕kuj ⊕
Hujj = x̂′1, ti ⊕ ŷ1 = tj ⊕ ŷ′1.

- B.11 : ∃ i 6= j ∈ [qm], (x̂0, ŷ0), (x̂1, ŷ1) such that νi⊕ kui = x̂0, νj ⊕ kuj ⊕Hujj =
x̂1, ti ⊕ ŷ0 = tj ⊕ ŷ1.

4. Both the inputs of the verification query are non-fresh -- condn (4).

- B.12 ∃ a ∈ [qv], (x̂0, ŷ0), (x̂1, ŷ1) such that ν′a ⊕ ku
′
a = x̂0, ν′a ⊕ ku

′
a ⊕ H′u

′
a

a =
x̂1, t′a = ŷ0 ⊕ ŷ1.

- B.13 ∃ a ∈ [qv], ∃ i ∈ [qm] such that νi ⊕ kui = ν′a ⊕ ku
′
a , νi ⊕ kui ⊕ Hui

i =
ν′a ⊕ ku

′
a ⊕ H′u

′
a

a , ti = t′a.
- B.14 ∃ a ∈ [qv], ∃ i ∈ [qm], (x̂0, ŷ0), (x̂′0, ŷ′0) such that νi⊕ kui = x̂0, ν′a⊕ ku

′
a =

x̂′0, νi ⊕ kui ⊕ Huii = ν′a ⊕ ku
′
a ⊕ H′u

′
a

a , t′a = ŷ0 ⊕ ŷ′0 ⊕ ti.

- B.15 ∃ a ∈ [qv], ∃ i ∈ [qm], (x̂1, ŷ1), (x̂′1, ŷ′1) such that νi ⊕ kui = ν′a ⊕ ku
′
a , νi ⊕

kui ⊕ Huii = x̂1, ν′a ⊕ ku
′
a ⊕ H′u

′
a

a = x̂′1, t′a = ŷ1 ⊕ ŷ′1 ⊕ ti.
- B.16 ∃ a ∈ [qv], ∃ i 6= j ∈ [qm], (x̂0, ŷ0), (x̂1, ŷ1) such that νi⊕kui = x̂0, νi⊕kui =
ν′a⊕ku

′
a , νj⊕kuj⊕Hujj = x̂1, νi⊕kui⊕Huii = ν′a⊕ku

′
a⊕H′u

′
a

a , t′a = ŷ0⊕ŷ1⊕ti⊕tj .

5. Additional Bad Events.

20 Multi-User BBB Security of Public Permutations Based MAC

- B.17 : {i1, . . . , iξ+1} ⊆ [qm] such that νi1 ⊕ ki1 ⊕ Hi1 = νi2 ⊕ ki2 ⊕ Hi2 = . . . =
νiξ+1 ⊕ kξ+1 ⊕ Hiξ+1 (the optimal value of ξ shall be determined later in the
proof).

- B.18 ∃ i ∈ [qm] such that ti = 0n.

Lemma 2. Let Did and BadT be defined as above. Then

Pr[Did ∈ BadT] ≤ 4p2qm
22n + 4pq2

m

22n + 7pq2
mε

2n + 4p2qmε

2n + 4q2
mp

2ε2

2n + 4q2
mp

2ε

22n + 6q2
mp

2

23n + q2
m

22n

+ p
√

6nqm
(
ε+ 2

2n

)
+ 2q3

mε

2n + q2
mε

2n+1 + q2
mε

2ξ + qm + 5
2n + 2pqmqvε

2n + 2p2qvε

2n

+ qvε+ qmqvp
2ε2

2n + 2qmqvε
2n + η2ε+ η

(
2pε+ 2

2n + 24qvp2ε

22n

)
.

We defer the proof of the lemma in Sect. C.

5.2 Analysis of Good Transcripts
In this section, we show that for a good transcript τ ′ = (τm, τv, τ (0)

p , τ
(1)
p , τk), realizing τ ′

is almost as likely in the real world as in the ideal world. For the simplicity of the notation,
we write Cπu to denote the construction nEHtM∗πp using keys ku and kuh .

Lemma 3 (Good Lemma). Let τ ′ = (τm, τv, τ (0)
p , τ

(1)
p , τk) be a good transcript. Then,

we have
Pr[Dre = τ ′]
Pr[Did = τ ′] ≥

(
1−

k∑
i=1

6(ρ′i−1)2(µi
2
)

22n − qv
2n

)
,

Proof. Since the ideal world always rejects the verification attempt, for a good transcript
τ ′, the ideal interpolation probability is

Pr[Did = τ ′] = 1
|Kh|µ

· 1
2µ(n−1) ·

1
2nqm ·

1
(2n)2p

. (10)

We must now lower bound the probability of getting τ ′ in the real world, i.e., we lower
bound the following:

Pr[Dre = τ ′] = 1
|Kh|µ

· 1
2µ(n−1) · Pr[π←$ P(n) : (Cπu)µu=1 7→ τm ∪ τv ∧ π 7→ τ (0)

p ∪ τ (1)
p]

= 1
|Kh|µ

· 1
2µ(n−1)(2n)2p

· Pr[π←$ P(n) : (Cπu)µu=1 7→ τm ∪ τv | π 7→ τ (0)
p ∪ τ (1)

p].

Therefore, by taking the ratio of real to ideal interpolation probability, we have

Pr[Dre = τ ′]
Pr[Did = τ ′] = 2nqm · Pr[π←$ P(n) : (Cπu)µu=1 7→ τm ∪ τv | π 7→ τ (0)

p ∪ τ (1)
p]︸ ︷︷ ︸

Z

. (11)

Now, our goal is to lower bound Z. We say that a permutation π that is fixed on 2p
input-output pairs (due to τ (0)

p ∪ τ (1)
p), is compatible with τm if

π(0‖νi ⊕ kui)⊕ π(1‖νi ⊕ kui ⊕ Huii) = ti, i ∈ {1, . . . , qm},

and it is compatible with τv if

π(0‖ν′a ⊕ ku
′
a)⊕ π(1‖ν′a ⊕ ku

′
a ⊕ H′u

′
a

a) 6= t′a, a ∈ {1, . . . , qv}.

Yu Long Chen and Avijit Dutta and Mridul Nandi 21

We say that a permutation π is compatible with τ ′ if it is compatible with both τm and τv.
We denote Comp(τm),Comp(τv) and Comp(τ ′) the set of permutations that are compatible
with τm, τv and τ ′, respectively. Then, one can easily check that

Z = Pr[π←$ P(n) : π ∈ Comp(τ ′)].

Bounding Z. We first consider the probability that a random permutation π that is
compatible with 2p input-output pairs is also compatible with the MAC and the verification
transcript τm ∪ τv. From now onwards, we write τp to denote τ (0)

p ∪ τ (1)
p . Let Ub (resp. Vb)

denotes the set of inputs (resp. outputs) of the primitive queries of τ (b)
p for b ∈ {0, 1}, i.e.,

for b ∈ {0, 1},

Ub = {x̂b : (x̂b, ŷb) ∈ τ (b)
p }, Vb = {ŷb : (x̂b, ŷb) ∈ τ (b)

p }.

We now partition the transcript τm as follows:

Q0 = {(ui, νi,mi, ti) ∈ τm : νi ⊕ k ∈ U0

∧ ∀(u′a, ν′a,m′a, t′a) ∈ τv, ν′a ⊕ ku
′
a 6= νi ⊕ kui ∧ ν′a ⊕ ku

′
a ⊕ H′u

′
a

a 6= νi ⊕ kui ⊕ Huii }
Q1 = {(ui, νi,mi, ti) ∈ τm : νi ⊕ k ⊕ Hi ∈ U1

∧ ∀(u′a, ν′a,m′a, t′a) ∈ τv, ν′a ⊕ ku
′
a 6= νi ⊕ kui ∧ ν′a ⊕ ku

′
a ⊕ H′u

′
a

a 6= νi ⊕ kui ⊕ Huii }
Q2 = τm \ (Q0 ∪Q1).

Note that, Q0 ∩ Q2 = φ = Q1 ∩ Q2 follows from the definition. Moreover, Q0 ∩ Q1 = φ
due to B.1. Let Eb denotes the event (Cπu)µu=1 7→ Qb, for b = {0, 1, 2}. Therefore, we have

Z = Pr[π←$ P(n) : E0 ∧ E1 ∧ E2 ∧ ((Cπu)µu=1 7→ τv) | π 7→ τp]
= Pr[π←$ P(n) : E0 ∧ E1 | π 7→ τp]︸ ︷︷ ︸

Z.1

·Pr[E2 ∧ ((Cπu)µu=1 7→ τv) | E0 ∧ E1 ∧ π 7→ τp]︸ ︷︷ ︸
Z.2

Bounding Z.1: Conditioned on (π 7→ τp), π is fixed on exactly 2p values. For each
(u, ν,m, t) ∈ Q0, there is a unique (x0, y0) ∈ τ (0)

p such that ν ⊕ k = x̂0, so that π(0‖ν ⊕ k)
is well defined (and equal to y0). Similarly, for each (u, ν,m, t) ∈ Q1, there is a unique
(x1, y1) ∈ τ (1)

p such that ν ⊕ k ⊕H = x̂1, so that π(1‖ν ⊕ k ⊕H) is well defined (and equal
to y1). In the following, we let

D0 = {1‖(νi ⊕ kui ⊕ Huii) : (ui, νi,mi, ti) ∈ Q0}, R0 = {π(νi ⊕ kui)⊕ ti : (ui, νi,mi, ti) ∈ Q0}
D1 = {0‖(νi ⊕ kui) : (ui, νi,mi, ti) ∈ Q1}, R1 = {π(νi ⊕ kui ⊕ Huii)⊕ ti : (ui, νi,mi, ti) ∈ Q1}.

Note that, the elements of D0 are all distinct (otherwise satisfy B.3) and they have not
collided with the input of any primitive query (otherwise satisfy B.1). Similarly, elements
of D1 are all distinct (otherwise satisfy B.4) and they have not collided with the input of
any primitive query (otherwise satisfy B.1). Also, note that the elements of R0 are all
distinct (otherwise satisfy B.9) and they have not collided with the output of any primitive
query (otherwise satisfy B.7). Similarly, elements of R1 are all distinct (otherwise satisfy
B.10) and they have not collided with the output of any primitive query (otherwise satisfy
B.8). Moreover, R0∩R1 = φ (otherwise satisfy B.11). Let |Q0| = α0 and |Q1| = α1. Then
E0 ∧ E1 is equivalent to α0 + α1 new and distinct equations on π so that

Pr[E0 ∧ E1 | π 7→ τp] = 1
(2n − 2p)α0+α1

. (12)

22 Multi-User BBB Security of Public Permutations Based MAC

5.3 Lower Bounding Z.2
Now, we are only required to lower bound Z.2. To do this, recall that we denoted ν ⊕ k as
α and ν ⊕ k ⊕ H as β. Moreover, we define τ ′ ← Q0 ∪ τv ∪ τ (0)

p ∪ τ (1)
p . Now, we consider

the following system of bivariate affine equations and non-equations associated to τ ′

E=
τ ′ =

π(0‖α1)⊕ π(1‖β1) = t1

π(0‖α2)⊕ π(1‖β2) = t2
...

π(0‖αqm)⊕ π(1‖βqm) = tqm

E6=τ ′ =

π(0‖α′1)⊕ π(1‖β′1) 6= t′1
π(0‖α′2)⊕ π(1‖β′2) 6= t′2

...
π(0‖α′qv)⊕ π(1‖β′qv) 6= t′qv .

Since τ = (τm, τv, τ (0)
p , τ

(1)
p , τk) is a good transcript, τ ′ is also a good transcript. For the

good transcript τ ′, we define a equation graph, denoted as Gτ ′ , corresponding to the system
of bivariate affine equations and non-equations E=

τ ′ ∪ E6=τ ′ as follows: the set of vertices of
Gτ ′ corresponds to the variable of E=

τ ′ ∪ E6=τ ′ , which we denote as V. Moreover, for each
equation

π(0‖αi)⊕ π(1‖βi) = ti

of E=
τ ′ , we assign a green colored edge between the corresponding vertices in G with the

label ti and we denote the set of such green colored edges as E=
τ ′ . We denote G=

τ ′ to be
the subgraph of Gτ induced by the edges of E=

τ ′ and V= ⊆ V denotes the set of vertices of
G=
τ ′ . We assume that G=

τ ′ has k components. Since, τ ′ is a good transcript, G=
τ ′ is acyclic

and each of its component is either a star component or a single-edge component as
depicted in Fig. 5.3. It easily follows from the definition of τ ′ that

1. for star component, the only vertex that can collide with the output of any primitive
query, is the centre vertex of the graph.

2. For a single-edge component, both of its vertices can collide with the output of
any primitive query.

(a) (b)

Figure 5.3: (a) Each component is a star type graph and (b) each component is a single
edge type graph.

For each non-equation
π(0‖α′a)⊕ π(1‖β′a) 6= t′a

of E6=τ ′ , we assign three types of edges:

• if ν′a⊕ ku
′
a = νi⊕ kui , ν′a⊕ ku

′
a ⊕H′u

′
a

a = νj ⊕ kuj ⊕Hujj such that νi⊕ kui 6= νj ⊕ kuj
and νi ⊕ kui ⊕ Huii 6= νj ⊕ kuj ⊕ Hujj , i.e., the non-equation connects two vertices of
different components of G=

τ ′ . In this case, we assign a blue colored edge between the
corresponding vertices with label t′a.

• if ν′a ⊕ ku
′
a = νi ⊕ kui but ν′a ⊕ ku

′
a ⊕ H′u

′
a

a is fresh, i.e., we have a non-equation of
the form π(0‖αi)⊕ π(1‖β′a) 6= t′a. Similarly, if ν′a ⊕ ku

′
a ⊕ H′u

′
a

a = νi ⊕ kui ⊕ Huii but

Yu Long Chen and Avijit Dutta and Mridul Nandi 23

ν′a⊕ku
′
a is fresh, i.e., we have a non-equation of the form π(0‖α′a)⊕π(1‖β′i) 6= t′a. For

each of the above cases, we assign a orange colored edge between the corresponding
vertices with label t′a. Note that the above cases correspond to the situation where
exactly one of the vertices of an non-equation edge coincides with the vertex of G=.

• if both ν′a ⊕ ku
′
a and ν′a ⊕ ku

′
a ⊕ H′u

′
a

a are fresh, i.e., we have a non-equation of the
form π(0‖α′a)⊕ π(1‖β′a) 6= t′a. In this case, we assign a red colored edge between the
corresponding vertices with label t′a.

Identifying univariate affine non-equation. Now, we are interested to study that
which of the above cases lead to a univarate affine non-equation of the form π(0‖α) 6= c or
π(1‖β) 6= c; or π(0‖α′) 6= c or π(1‖β′) 6= c.
Note that a univariate affine non-equation arises due to the collision of a vertex of a
non-equation edge with one of the primitive queries. We begin with blue edges that
connect two components and check when can it lead to an univariate affine non-equation.

1. We first consider that the blue edge connects two single-edge components. Note that
a univariate affine non-equation arises when exactly one vertex of one of the edges
collides with a primitive query. Such a situation can arise if one of the following four
conditions holds as depicted in Fig. 5.4:

Figure 5.4: Brown colored vertex represents that the node collides with a primitive query.
Dashed blue edge denotes the verification non-equation.

2. We consider that the blue edge connects a star component with a single-edge
component. Note that a univariate affine non-equation arises when either (a) the
center vertex of the star component collides with a primitive query or (b) one end
point of the single-edge component collides with a primitive query. Such a situation
can arise if one of the following six conditions holds as depicted in Fig. 5.5.

Figure 5.5: Brown colored vertex represents that the node collides with a primitive query.
Dahsed blue edge denotes the verification non-equation.

3. We consider that the blue edge connects two star components. Note that a univariate
affine non-equation arises when exactly one of the center vertex of the star components
collides with a primitive query. Such a situation can arise if one of the following four
conditions holds as depicted in Fig. 5.6:

We have listed out the set of univariate affine non-equations corresponding to each of the
above three cases in Supplementary Sect A.

24 Multi-User BBB Security of Public Permutations Based MAC

Figure 5.6: Brown colored vertex represents that the node collides with a primitive query.
Dashed blue edge denotes the verification non-equation.

Let there are total q∗v verification queries that leads to the above set of univariate affine
non-equations. Apart from the above cases, we have the other cases as follows:

4. ν′a ⊕ ku
′
a = νi ⊕ kui but ν′a ⊕ ku

′
a ⊕ H′u

′
a

a is fresh

5. ν′a ⊕ ku
′
a ⊕ H′a = νi ⊕ kui ⊕ Huii but ν′a ⊕ ku

′
a is fresh

6. both ν′a ⊕ ku
′
a and ν′a ⊕ ku

′
a ⊕ H′u

′
a

a are fresh

Note that case (4) and (5) can also lead to the following set of univariate affine non-
equations. Because one of the vertices of a orange edge can either coincide with a vertex
of an edge whose one of the end point collides with a primitive query or the vertex of the
orange edge can coincide with a vertex of a star component whose center vertex collides
with a primitive query as depicted in Fig. 5.7. We have listed out the set of univariate
affine non-equations corresponding to conditions (4), (5) and (6) in Supplementary Sect B.

Figure 5.7: Brown colored vertex represents that the node collides with a primitive query.
Dashed orange edge denotes the verification non-equation.

Let us assume that there are total qb blue edges, qo orange edges and qr red edges.
Therefore, qv = q∗v + qb + qo + qr. Moreover, note that the variables of E= ∪ E6= are not
supposed to be distinct, as they collide with other variables and thus E= ∪ E6= is defined
over β many distinct variables. This implies that the number of vertices in the equation
graph G has β many vertices with q′m green edges and qb blue edges, qo orange edges and
qr red edges. Moreover, there are q∗v univariate affine non-equations. Since, τm ∪ τv is a
good transcript (as τ ′ is good), G is a good graph. Now, it is evident that to lower bound
the conditional probability of the event E2∧ (Cπu)µu=1 7→ τv conditioned on E0∧E1∧π 7→ τp
is equivalent to bounding the probability of the event that E= ∪ E6= holds. Therefore, we
have

Pr[E= ∪ E6= holds] = hβ
(2n − 2p− α0 − α1)β

, (13)

where hβ denotes the number of solutions of the good equation graph G with β vertices,
q′m green edges, qb blue edges, qo orange edges and qr red edges with q∗v univariate affine

Yu Long Chen and Avijit Dutta and Mridul Nandi 25

non-equations. Since, G is good, following Theorem 1 with where k be the total number of
components of G, we have

hβ ≥
(2n − 2p− α0 − α1)β

2nq′m ·
(

1−
k∑
i=1

6(ρ′i−1)2(µi
2
)

22n − 2qv
2n

)
. (14)

Therefore, from Eqn. (13) and Eqn. (14), we have

Pr[E= ∪ E6= holds | E0 ∧ E1 ∧ π 7→ τp] ≥
1

2nq′m ·
(

1−
k∑
i=1

6(ρ′i−1)2(µi
2
)

22n − 2qv
2n

)
,

and thus, we have

Pr[E2 ∧ (Cπu)µu=1 7→ τv | E0 ∧ E1 ∧ π 7→ τp] ≥
1

2nq′m ·
(

1−
k∑
i=1

6(ρ′i−1)2(µi
2
)

22n − 2qv
2n

)
. (15)

Finally, from Eqn. (12), Eqn. (12) and Eqn. (15), we have

Z ≥ 1
(2n − 2p)α0+α1

· 1
2nq′m ·

(
1−

k∑
i=1

6(ρ′i−1)2(µi
2
)

22n − 2qv
2n

)
. (16)

Final Step. In the final step of the proof, we combine Eqn. (11) and Eqn. (16) to obtain

Pr[Dre = τ ′]
Pr[Did = τ ′] ≥ (2n)α0+α1

(2n − 2p)α0+α1︸ ︷︷ ︸
∆

·2
nq′m

2nq′m ·
(

1−
k∑
i=1

6(ρ′i−1)2(µi
2
)

22n − 2qv
2n

)

=
(

1−
k∑
i=1

6(ρ′i−1)2(µi
2
)

22n − 2qv
2n

)
, (17)

where we use the obvious inequality that ∆ ≥ 1 and qm = q′m + α0 + α1. This concludes
the proof of the good lemma.
Applying the Expectation Method. From Lemma 3, we have

Pr[Dre = τ ′]
Pr[Did = τ ′]

(1)
≥ 1−

(k∑
i=1

24(q′m + q′p)2(µi
2
)

22n + 2qv
2n︸ ︷︷ ︸

Φ(τ ′)

)
,

where the simplification for (1) follows from the fact ρ′i−1 = α + q′p ≤ 2(q′m + q′p). Now,
from Sect.6.2 of [31] we have

E

 k∑
i=1

(
µi
2

) ≤ (q′m)2ε/2 + η2/2 + 2q′m. (18)

By applying the expectation method of on Eqn. (18), we have

E[Φ(Did)] ≤
12(q′m + q′p)2

22n

(
(q′m)2ε+ η2 + 4q′m

)
+ 2qv

2n . (19)

26 Multi-User BBB Security of Public Permutations Based MAC

By doing a simple algebra on Eqn. (19) and by assuming q′m ≤ qm, q′p ≤ 4p, we have

E[Φ(Did)] ≤
(

12q4
mε

22n + 12η2q2
m

22n + 48q3
m

22n + 48pq3
mε

22n + 48η2pqm
22n + 192pq2

m

22n

+ 48p2q2
mε

22n + 48η2p2

22n + 192p2qm
22n + 2qv

2n

)
. (20)

Finalizing the proof. We have assumed that ξ ≥ η and from the condition of Theorem 1,
we have ξ ≤ 2n/(8q′m + 2q′p) ≤ 2n/8q′m. By assuming η ≤ 2n/8q′m (otherwise the bound
becomes vacuously true) we choose ξ = 2n/8q′m. Hence, the result follows by applying
Eqn. (9), Lemma 2, Eqn. (20) and ξ = 2n/8q′m.

6 Conclusion and Future Works
In this paper, we have proposed a public permutation based nonce based MAC that offers
beyond the birthday bound security in the multi-user setting. We have also instantiated
our construction with Polyhash function. In this regard, one might wonder if it is possible
to design a permutation based almost-xor-universal hash and use it as a hash instantiation
of the construction. One easy approach is to take any block cipher based hash function
(e.g., Hash function of PMAC [12] or LightMAC [38]) and replace each block cipher call with
one round Even Mansour [33] cipher. This leads to having a p`/2n almost-xor-universal
bound. By substituting the value of p = 22n/3, its axu advantage reduces to O(2n/3). Even
worse, composing this hash with nEHtM∗p makes the security of the resultant construction
to the birthday bound. Therefore, it is desired to design a permutation based hash function
with 2−n almost-xor-universal advantage. We believe that coming up with an efficient
permutation based hash function with 2−n axu advantage is a challenging problem and we
leave it open for further research. We would like to mention here that the natural hardness
of the problem comes from the fact that to achieve 2kn/k+1-axu advantage, one needs
to require k invocations of independent permutations and k independent keys. We also
believe that unlike this generic independent result of permutation based hash function, it
is possible to come up with a dedicated nonce based MAC (similar to permutation variant
of LightMAC [38]) and prove its graceful degradation of beyond birthday bound security in
faulty nonce model.

References
[1] László Babai. The fourier transform and equations over finite abelian groups (lec-

ture notes, version 1.3). 2002.

[2] Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro. Hash-function based prfs:
AMAC and its multi-user security. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in Computer Science,
pages 566–595. Springer, 2016.

[3] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a
multi-user setting: Security proofs and improvements. In Bart Preneel, editor, Ad-
vances in Cryptology - EUROCRYPT 2000, International Conference on the Theory
and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Pro-
ceeding, volume 1807 of Lecture Notes in Computer Science, pages 259–274. Springer,
2000.

Yu Long Chen and Avijit Dutta and Mridul Nandi 27

[4] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations of
Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997,
pages 394–403. IEEE Computer Society, 1997.

[5] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated en-
cryption: AES-GCM in TLS 1.3. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, volume
9814 of Lecture Notes in Computer Science, pages 247–276. Springer, 2016.

[6] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino, Florian
Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-Xavier Standaert,
Yosuke Todo, and Benoît Viguier. Gimli : A cross-platform permutation. In Crypto-
graphic Hardware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 299–320, 2017.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May
26-30, 2013. Proceedings, pages 313–314, 2013.

[8] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van
Keer. Farfalle: parallel permutation-based cryptography. IACR Cryptol. ePrint Arch.,
2016:1188, 2016.

[9] Arghya Bhattarcharjee, Avijit Dutta, Eik List, and Mridul Nandi. CENCPP - beyond-
birthday-secure encryption from public permutations. IACR Cryptol. ePrint Arch.,
2020:602, 2020.

[10] Eli Biham. How to decrypt or even substitute des-encrypted messages in 228 steps.
Inf. Process. Lett., 84(3):117–124, 2002.

[11] Alex Biryukov, Sourav Mukhopadhyay, and Palash Sarkar. Improved time-memory
trade-offs with multiple data. In Bart Preneel and Stafford E. Tavares, editors,
Selected Areas in Cryptography, 12th International Workshop, SAC 2005, Kingston,
ON, Canada, August 11-12, 2005, Revised Selected Papers, volume 3897 of Lecture
Notes in Computer Science, pages 110–127. Springer, 2005.

[12] John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable
message authentication. In Lars R. Knudsen, editor, Advances in Cryptology -
EUROCRYPT 2002, International Conference on the Theory and Applications of
Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002,
Proceedings, volume 2332 of Lecture Notes in Computer Science, pages 384–397.
Springer, 2002.

[13] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jovanovic.
Nonce-disrespecting adversaries: Practical forgery attacks on GCM in TLS. In 10th
USENIX Workshop on Offensive Technologies, WOOT 16, Austin, TX, USA, August
8-9, 2016., 2016.

[14] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici, and
Ingrid Verbauwhede. SPONGENT: the design space of lightweight cryptographic
hashing. IEEE Trans. Computers, 62(10):2041–2053, 2013.

28 Multi-User BBB Security of Public Permutations Based MAC

[15] Priyanka Bose, Viet Tung Hoang, and Stefano Tessaro. Revisiting AES-GCM-SIV:
multi-user security, faster key derivation, and better bounds. In Advances in Cryptology
- EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part I, pages 468–499, 2018.

[16] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family
of lightweight and secure authenticated encryption ciphers. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(2):218–241, 2018.

[17] Avik Chakraborti, Mridul Nandi, Suprita Talnikar, and Kan Yasuda. On the com-
position of single-keyed tweakable even-mansour for achieving BBB security. IACR
Trans. Symmetric Cryptol., 2020(2):1–39, 2020.

[18] Bishwajit Chakraborty, Ashwin Jha, and Mridul Nandi. On the security of sponge-type
authenticated encryption modes. IACR Trans. Symmetric Cryptol., 2020(2):93–119,
2020.

[19] Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another look at tightness. In Ali
Miri and Serge Vaudenay, editors, Selected Areas in Cryptography - 18th International
Workshop, SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected
Papers, volume 7118 of Lecture Notes in Computer Science, pages 293–319. Springer,
2011.

[20] Yu Long Chen, Eran Lambooij, and Bart Mennink. How to build pseudorandom
functions from public random permutations. In Advances in Cryptology - CRYPTO
2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part I, pages 266–293, 2019.

[21] Wonseok Choi, ByeongHak Lee, Yeongmin Lee, and Jooyoung Lee. Improved security
analysis for nonce-based enhanced hash-then-mask macs. In Shiho Moriai and Huax-
iong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I, volume 12491 of
Lecture Notes in Computer Science, pages 697–723. Springer, 2020.

[22] Benoît Cogliati and Yannick Seurin. EWCDM: an efficient, beyond-birthday secure,
nonce-misuse resistant MAC. In CRYPTO 2016, Proceedings, Part I, pages 121–149,
2016.

[23] Benoît Cogliati and Yannick Seurin. Analysis of the single-permutation encrypted
davies-meyer construction. Des. Codes Cryptogr., 86(12):2703–2723, 2018.

[24] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-state keyed duplex with
built-in multi-user support. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part II, volume 10625 of Lecture Notes in Computer Science,
pages 606–637. Springer, 2017.

[25] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Goutam Paul. Double-block hash-
then-sum: A paradigm for constructing bbb secure prf. IACR Transactions on
Symmetric Cryptology, 2018(3):36–92, 2018.

[26] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Kan Yasuda. Encrypt or decrypt?
to make a single-key beyond birthday secure nonce-based MAC. In Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,

Yu Long Chen and Avijit Dutta and Mridul Nandi 29

Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, pages 631–661,
2018.

[27] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Kan Yasuda. Encrypt or decrypt?
to make a single-key beyond birthday secure nonce-based mac. Cryptology ePrint
Archive, Report 2018/500, 2018.

[28] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Kan Yasuda. sfdwcdm+: A BBB
secure nonce based MAC. Adv. Math. Commun., 13(4):705–732, 2019.

[29] Avijit Dutta, Ashwin Jha, and Mridul Nandi. Tight security analysis of ehtm MAC.
IACR Trans. Symmetric Cryptol., 2017(3):130–150, 2017.

[30] Avijit Dutta and Mridul Nandi. BBB secure nonce based MAC using public permuta-
tions. In Abderrahmane Nitaj and Amr M. Youssef, editors, Progress in Cryptology -
AFRICACRYPT 2020 - 12th International Conference on Cryptology in Africa, Cairo,
Egypt, July 20-22, 2020, Proceedings, volume 12174 of Lecture Notes in Computer
Science, pages 172–191. Springer, 2020.

[31] Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Beyond birthday bound secure MAC
in faulty nonce model. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, pages 437–466, 2019.

[32] Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Permutation based edm: An
inverse free bbb secure prf. Cryptology ePrint Archive, Report 2021/679, 2021.

[33] Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudo-
random permutation. J. Cryptology, 10(3):151–162, 1997.

[34] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of lightweight
hash functions. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 222–239,
2011.

[35] Viet Tung Hoang and Stefano Tessaro. Key-alternating ciphers and key-length exten-
sion: Exact bounds and multi-user security. In Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part I, pages 3–32, 2016.

[36] Viet Tung Hoang and Stefano Tessaro. The multi-user security of double encryption. In
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30
- May 4, 2017, Proceedings, Part II, pages 381–411, 2017.

[37] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing multi-key security
degradation. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II, volume 10625 of Lecture Notes in Computer Science, pages
575–605. Springer, 2017.

[38] Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC mode for
lightweight block ciphers. In Fast Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, pages
43–59, 2016.

30 Multi-User BBB Security of Public Permutations Based MAC

[39] Kazuhiko Minematsu. How to thwart birthday attacks against macs via small ran-
domness. In Fast Software Encryption, FSE 2010, pages 230–249, 2010.

[40] Kazuhiko Minematsu and Tetsu Iwata. Building blockcipher from tweakable block-
cipher: Extending FSE 2009 proposal. In Cryptography and Coding - 13th IMA
International Conference, IMACC 2011, Oxford, UK, December 12-15, 2011. Proceed-
ings, pages 391–412, 2011.

[41] Andrew Morgan, Rafael Pass, and Elaine Shi. On the adaptive security of macs
and prfs. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology -
ASIACRYPT 2020 - 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part I, volume 12491 of Lecture Notes in Computer Science, pages
724–753. Springer, 2020.

[42] Nicky Mouha and Atul Luykx. Multi-key security: The even-mansour construction
revisited. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 209–223. Springer, 2015.

[43] Mridul Nandi. Mind the composition: Birthday bound attacks on EWCDMD and
sokac21. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EURO-
CRYPT 2020 - 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I,
volume 12105 of Lecture Notes in Computer Science, pages 203–220. Springer, 2020.

[44] Mridul Nandi and Avradip Mandal. Improved security analysis of PMAC. J. Math.
Cryptol., 2(2):149–162, 2008.

[45] Jacques Patarin. The "coefficients h" technique. In Selected Areas in Cryptography,
15th International Workshop, SAC 2008, Sackville, New Brunswick, Canada, August
14-15, Revised Selected Papers, pages 328–345, 2008.

[46] John P. Steinberger. Counting solutions to additive equations in random sets. CoRR,
abs/1309.5582, 2013.

[47] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

[48] Yaobin Shen; Lei Wang; Jian Weng. Revisiting the security of dbhts macs: Beyond-
birthday-bound in the multi-user setting. Cryptology ePrint Archive, Report
2020/1523, 2020.

Supplementary Materials

A Univariate Affine Non-Equations For (1), (2) and (3)
A.1 Univariate Affine Non-Equations For (1)
(a) νi ⊕ k = x̂0

α, ν
′
a = νi, ν

′
a ⊕ k ⊕ H′a = νj ⊕ k ⊕ Hj

(b) νi ⊕ k = x̂0
α, ν
′
a = νj , ν

′
a ⊕ k ⊕ H′a = νi ⊕ k ⊕ Hi (symmetric to (a))

(c) νi ⊕ k ⊕ Hi = x̂1
α, ν
′
a = νj , ν

′
a ⊕ k ⊕ H′a = νi ⊕ k ⊕ Hi

Yu Long Chen and Avijit Dutta and Mridul Nandi 31

(d) νi ⊕ k ⊕ Hi = x̂1
α, ν
′
a = νi, ν

′
a ⊕ k ⊕ H′a = νj ⊕ k ⊕ Hj (symmetric to (d))

Note that the above conditions give rise to the following non-equations:

(a) π(1‖vj) 6= t′a ⊕ y0
α, π(0‖uj) 6= t′a ⊕ y0

α ⊕ tj

(b) π(1‖vj) 6= t′a ⊕ y0
α ⊕ ti ⊕ tj , π(0‖uj) 6= t′a ⊕ y0

α ⊕ ti

(c) π(1‖vj) 6= t′a ⊕ y1
α ⊕ tj , π(0‖uj) 6= t′a ⊕ y1

α

(d) π(1‖vj) 6= t′a ⊕ y1
α ⊕ ti, π(0‖uj) 6= t′a ⊕ y1

α ⊕ ti ⊕ tj

A.2 Univariate Affine Non-Equations For (2)
(a) ν` ⊕ k = x̂0

α, ν
′
a = ν`, ν

′
a ⊕ k ⊕ H′a = νi1 ⊕ k ⊕ Hi1

(b) ν` ⊕ k = x̂0
α, ν
′
a = νi1 = νi2 = . . . = νip , ν

′
a ⊕ H′a = ν` ⊕ H`

(c) ν` ⊕ k ⊕ H` = x̂1
α, ν
′
a = ν`, ν

′
a ⊕ k ⊕ H′a = νi1 ⊕ k ⊕ Hi1

(d) ν` ⊕ k ⊕ H` = x̂1
α, ν
′
a = νi1 = νi2 = . . . = νip , ν

′
a ⊕ k ⊕ H′a = ν` ⊕ k ⊕ H`

(e) νi1 ⊕ k = νi2 ⊕ k = . . . = νip ⊕ k = x̂0
α, ν
′
a = ν`, ν

′
a ⊕ k ⊕ H′a = νi1 ⊕ k ⊕ Hi1

(f) νi1 ⊕ k = νi2 ⊕ k = . . . = νip ⊕ k = x̂0
α, ν
′
a = νi1 = νi2 = . . . = νip , ν

′
a ⊕ k ⊕ H′a =

ν` ⊕ k ⊕ H`

Note that the above conditions give rise to the following non-equations:

(a) π(1‖vi1) 6= t′a ⊕ y0
α, π(0‖ui1) = π(0‖ui2) = . . . = π(0‖uip) 6= t′a ⊕ y0

α ⊕ ti1 , π(1‖uij) 6=
t′a ⊕ y0

α ⊕ ti1 ⊕ tij ,∀j ∈ {2, . . . , p}

(b) π(0‖u′a) = π(0‖ui1) = π(0‖ui2) = . . . = π(0‖uip) 6= t′a⊕ y0
α⊕ t`, π(1‖uij) 6= t′a⊕ y0

α⊕
tij ⊕ t`,∀j ∈ {1, . . . , p}

(c) π(1‖vi1) 6= t′a ⊕ y1
α ⊕ t`, π(0‖ui1) = π(0‖ui2) = . . . = π(0‖uip) 6= t′a ⊕ y1

α ⊕ t` ⊕
ti1 , π(1‖uij) 6= t′a ⊕ y1

α ⊕ ti1 ⊕ tij ,∀j ∈ {2, . . . , p}

(d) π(0‖u′a) = π(0‖ui1) = π(0‖ui2) = . . . = π(0‖uip) 6= t′a ⊕ y1
α, π(1‖uij) 6= t′a ⊕ y1

α ⊕
tij ,∀j ∈ {1, . . . , p}

(e) π(0‖u`) 6= t′a ⊕ y0
α ⊕ ti1 , π(1‖v`) 6= t′a ⊕ y0

α ⊕ t` ⊕ ti1

(f) π(0‖u`) 6= t′a ⊕ y0
α ⊕ t`, π(1‖v`) 6= t′a ⊕ y0

α

A.3 Univariate Affine Non-Equations For (3)
(a) νi1⊕k = νi2⊕k = . . . = νip⊕k = x̂0

α, ν
′
a = νi1 = . . . = νip , ν

′
a⊕k⊕H′a = νj1⊕k⊕Hj1

(b) νi1⊕k = νi2⊕k = . . . = νip⊕k = x̂0
α, ν
′
a = νj1 = . . . = νjs , ν

′
a⊕k⊕H′a = νi1⊕k⊕Hi1

(c) νj1⊕k = νj2⊕k = . . . = νjs⊕k = x̂0
α, ν
′
a = νi1 = . . . = νip , ν

′
a⊕k⊕H′a = νj1⊕k⊕Hj1

(d) νj1⊕k = νj2⊕k = . . . = νjs⊕k = x̂0
α, ν
′
a = νj1 = . . . = νjs , ν

′
a⊕k⊕H′a = νi1⊕k⊕Hi1

(e) νi1 ⊕ k ⊕ Hi1 = νi2 ⊕ k ⊕ Hi2 = . . . = νip ⊕ k ⊕ Hip = x̂1
α, ν
′
a = νj1 , ν

′
a ⊕ k ⊕ H′a =

νi1 ⊕ k ⊕ Hi1 = . . . = νip ⊕ k ⊕ Hip

32 Multi-User BBB Security of Public Permutations Based MAC

(f) νi1 ⊕ k ⊕ Hi1 = νi2 ⊕ k ⊕ Hi2 = . . . = νip ⊕ k ⊕ Hip = x̂1
α, ν
′
a = νi1 , ν

′
a ⊕ k ⊕ H′a =

νj1 ⊕ k ⊕ Hj1 = . . . = νis ⊕ k ⊕ His

(g) νj1 ⊕ k ⊕ Hj1 = νj2 ⊕ k ⊕ Hj2 = . . . = νjs ⊕ k ⊕ Hjs = x̂1
α, ν
′
a = νj1 , ν

′
a ⊕ k ⊕ H′a =

νi1 ⊕ k ⊕ Hi1 = . . . = νip ⊕ k ⊕ Hip

(h) νj1 ⊕ k ⊕ Hj1 = νj2 ⊕ k ⊕ Hj2 = . . . = νjs ⊕ k ⊕ Hjs = x̂1
α, ν
′
a = νi1 , ν

′
a ⊕ k ⊕ H′a =

νj1 ⊕ k ⊕ Hj1 = . . . = νjs ⊕ k ⊕ Hjs

(i) νi1 = νi2 = . . . = νip = x̂0
α, ν
′
a = νj1 , ν

′
a ⊕ k ⊕ H′a = νi1 ⊕ k ⊕ Hi1

(j) νi1 = νi2 = . . . = νip = x̂0
α, ν
′
a = νi1 , ν

′
a⊕k⊕H′a = νj1⊕k⊕Hj1 = . . . = νjs⊕k⊕Hjs

(k) νj1 ⊕ k ⊕ Hj1 = νj2 ⊕ k ⊕ Hj2 = . . . = νjs ⊕ k ⊕ Hjs = x̂1
α, ν
′
a = νj1 , ν

′
a ⊕ k ⊕ H′a =

νi1 ⊕ k ⊕ Hi1

(l) νj1 ⊕ k ⊕ Hj1 = νj2 ⊕ k ⊕ Hj2 = . . . = νjs ⊕ k ⊕ Hjs = x̂1
α, ν
′
a = νi1 = . . . =

νip , ν
′
a ⊕ k ⊕ H′a = νj1 ⊕ k ⊕ Hj1 = . . . = νjs ⊕ k ⊕ Hjs

Note that the above conditions give rise to the following non-equations:

(a) π(1‖v′a) = π(1‖vj1) 6= t′a ⊕ y0
α, π(0‖uj`) 6= t′a ⊕ y0

α ⊕ tj1 ,∀` ∈ {1, . . . , s}, π(1‖vj`) 6=
t′a ⊕ y0

α ⊕ tj1 ⊕ tj` ,∀` ∈ {2, . . . , s}

(b) π(0‖u′a) = π(0‖uj`) 6= t′a ⊕ y0
α ⊕ ti1 , π(1‖vj`) 6= t′a ⊕ y0

α ⊕ ti1 ⊕ tj` ,∀` ∈ {1, . . . , s}

(c) π(0‖u′a) = π(0‖ui`) 6= t′a ⊕ y1
α ⊕ tj1 , π(1‖vi`) 6= t′a ⊕ y1

α ⊕ tj1 ⊕ ti` ,∀` ∈ {1, . . . , p}

(d) π(1‖v′a) = π(1‖vi1) 6= t′a ⊕ y0
α, π(0‖ui`) 6= t′a ⊕ y0

α ⊕ ti1 ,∀` ∈ {1, . . . , p}, π(1‖vi`) 6=
t′a ⊕ y0

α ⊕ ti1 ⊕ ti` ,∀` ∈ {2, . . . , p}

(e) π(0‖u′a) = π(0‖uj1) 6= t′a ⊕ y1
α, π(1‖vj`) 6= t′a ⊕ y1

α ⊕ tj1 ,∀` ∈ {1, . . . , s}, π(0‖uj`) 6=
t′a ⊕ y1

α ⊕ tj1 ⊕ tj` ,∀` ∈ {2, . . . , s}

(f) π(1‖v′a) = π(1‖vj`) 6= t′a ⊕ y1
α ⊕ ti1 , π(0‖uj`) 6= t′a ⊕ y1

α ⊕ ti1 ⊕ tj` ,∀` ∈ {1, . . . , s}

(g) π(1‖v′a) = π(1‖vi`) 6= t′a ⊕ y1
α ⊕ tj1 , π(0‖uj`) 6= t′a ⊕ y1

α ⊕ tj1 ⊕ ti` ,∀` ∈ {1, . . . , p}

(h) π(0‖u′a) = π(0‖ui1) 6= t′a ⊕ y1
α, π(1‖vi`) 6= t′a ⊕ y1

α ⊕ ti1 ,∀` ∈ {1, . . . , p}, π(0‖ui`) 6=
t′a ⊕ y1

α ⊕ ti1 ⊕ ti` ,∀` ∈ {2, . . . , p}

(i) π(0‖u′a) = π(0‖uj1) 6= t′a⊕y0
α⊕ti1 , π(1‖vj`) 6= t′a⊕y0

α⊕ti1⊕tj1 ,∀` ∈ {1, . . . , s}, π(0‖uj`) 6=
t′a ⊕ y0

α ⊕ ti1 ⊕ tj1 ⊕ tj` ,∀` ∈ {2, . . . , s}

(j) π(1‖v′a) = π(1‖vj`) 6= t′a ⊕ y0
α, π(0‖uj`) 6= t′a ⊕ y0

α ⊕ tj` ,∀` ∈ {1, . . . , s}

(k) π(1‖v′a) = π(1‖ui1) 6= t′a⊕y1
α⊕tj1 , π(0‖ui`) 6= t′a⊕y1

α⊕tj1⊕ti1 ,∀` ∈ {1, . . . , p}, π(1‖vi`) 6=
t′a ⊕ y1

α ⊕ tj1 ⊕ ti1 ⊕ ti` ,∀` ∈ {2, . . . , p}

(l) π(0‖u′a) = π(0‖ui`) 6= t′a ⊕ y1
α, π(1‖ui`) 6= t′a ⊕ y1

α ⊕ ti` ,∀` ∈ {1, . . . , p}

Yu Long Chen and Avijit Dutta and Mridul Nandi 33

B Univariate Affine Non-Equations For (4), (5) and (6)
(a) νi ⊕ k = x̂0

α, ν
′
a = νi ⇒ π(1‖v′a) 6= t′a ⊕ y0

α

(b) νi ⊕ k = x̂0
α, ν
′
a ⊕ k ⊕ H′a = νi ⊕ k ⊕ Hi ⇒ π(0‖u′a) 6= t′a ⊕ ti ⊕ y0

α

(c) νi ⊕ k ⊕ Hi = x̂1
α, ν
′
a = νi ⇒ π(1‖v′a) 6= t′a ⊕ ti ⊕ y1

α

(d) νi ⊕ k ⊕ Hi = x̂1
α, ν
′
a ⊕ k ⊕ H′a = νi ⊕ k ⊕ Hi ⇒ π(0‖u′a) 6= t′a ⊕ y1

α

Note that the above conditions give rise to the following non-equations:

(a) νi1 = νi2 = . . . = νip = x̂0
α, ν
′
a = νi1 ⇒ π(1‖v′a) 6= t′a ⊕ y0

α

(b) νi1 = νi2 = . . . = νip = x̂0
α, ν
′
a ⊕ k ⊕ H′a = νi1 ⊕ k ⊕ Hi1 ⇒ π(0‖u′a) 6= t′a ⊕ y0

α ⊕ ti1

(c) νi1 ⊕ k ⊕ Hi1 = νi2 ⊕ k ⊕ Hi2 = . . . = νip ⊕ k ⊕ Hip = x̂1
α, ν
′
a = νi1 ⇒ π(1‖v′a) 6=

t′a ⊕ y1
α ⊕ ti1

(d) νi1⊕k⊕Hi1 = νi2⊕k⊕Hi2 = . . . = νip⊕k⊕Hip = x̂1
α, ν
′
a⊕k⊕H′a = νi1⊕k⊕Hi1 ⇒

π(0‖u′a) 6= t′a ⊕ y1
α

C Proof of Lemma 2
In the following, we bound the probabilities of all the bad events individually. The lemma
will follow by adding the individual bounds using the union bound.
Before that, we state the following basic result which we will repeatedly use in bounding
the following bad events.

Proposition 1. Let L1 be a set of elements of {0, 1}n having size q1 and L2, L3 and L4
be the multisets of {0, 1}n such that the number of elements in Li (includes repetition of
elements) is qi, for i = 2, 3, 4. Then, we have

∣∣ {(a, b, c, d) ∈ L1 × L2 × L3 × L4 : a⊕ b⊕ c⊕ d = 0}
∣∣≤ 4∏

i=2
qi.

Proof. For each choice of elements (b, c, d) ∈ L2⊕L3⊕L3, there can be at most one a ∈ L1
such that a = b⊕ c⊕ d. As the number of choices of triplets (b, c, d) is q2q3q4, the result
follows.

Bounding B.1. For any possible MAC query (ui, νi,mi, ti) ∈ τm and a pair of any
possible primitive queries (x̂0, ŷ0) ∈ τ (0)

p and (x̂1, ŷ1) ∈ τ (1)
p , we rely on the randomness

of kui in the equation νi ⊕ kui = x̂0
j , and on the randomness of the hash key kuih in the

equation νi ⊕ kui ⊕ Huii = x̂1
` . In the ideal world, kui and kuih are dummy keys sampled

uniformly and independently from their respective space. Therefore, for a fixed choice of
i, (x̂0, ŷ0) and (x̂1, ŷ1), the probability of the event is ε/2n−1. Summing over all possible
choices of i, (x̂0, ŷ0) and (x̂1, ŷ1), we have

Pr[B.1] ≤ 2p2qmε

2n . (21)

Bounding B.2. For this bad event, we need to consider the following cases, namely when
(a) ui = uj (the i-th and the j-th query are made to the same user oracle), and when (b)
ui 6= uj (the i-th and the j-th query are made to the different user oracles).

34 Multi-User BBB Security of Public Permutations Based MAC

1. For case (a), since the i-th and the j-th user are the same, we have kui = kuj , and
the first equation becomes νi = νj . Let N be the set of all MAC query indices pairs
(i, j) such that νi = νj . Event B.2 occurs if νj ⊕ kuj ⊕Hujj = ν`⊕ ku` ⊕Hu`` for some
` 6= j. For any such fixed i, j, `, the probability of the event is at most ε (using the
randomness of the hash key kujh (or ku`h)). The number of such choices of (i, j, `) is
at most (η + 1)2. Hence,

Pr[B.2(a)] ≤ η2ε. (22)

2. For case (b), the keys kui and kuj are generated independently of each other. For MAC
queries (ui, νi,mi, ti) 6= (uj , νj ,mj , tj) ∈ τm and (uj , νj ,mj , tj) 6= (u`, ν`,m`, t`) ∈
τm such that ui 6= uj , we rely on the randomness of kui (or kuj) in the equation
νi⊕kui = νj ⊕kuj , and on the randomness of kujh (or ku`h) in the equation νj ⊕kuj ⊕
Hujj = ν` ⊕ ku` ⊕ Hu`` . In the ideal world, kui (or kuj) and kujh (or ku`h) are dummy
keys sampled uniformly and independently from their respective space. Therefore,
for a fixed choice of (i, j, `), the probability of the event is at most ε/2n−1. The
number of such choices of (i, j, `) is at most q3

m. Hence,

Pr[B.2(b)] ≤ 2q3
mε

2n . (23)

Putting (22) and (23) together, we have

Pr[B.2] ≤ η2ε+ 2q3
mε

2n . (24)

Bounding B.3. For any two MAC queries (ui, νi,mi, ti) 6= (uj , νj ,mj , tj) ∈ τm and
a primitive query (x̂0, ŷ0) ∈ τ

(0)
p , we rely on the randomness of kui in the equation

νi ⊕ kui = x̂1
` , and on the randomness of the hash key kuih (or kujh) in the equation

νi ⊕ kui ⊕Huii = νj ⊕ kuj ⊕Hujj . In the ideal world, kui and kuih (or kujh) are dummy keys,
sampled uniformly and independently from their respective space. Therefore, for a fixed
choice of i, j and (x̂0, ŷ0), the probability of the event is ε/2n−1. Summing over all possible
choices of i, j and (x̂0, ŷ0) we have

Pr[B.3] ≤ pq2
mε

2n . (25)

Bounding B.4. For this bad event, we need to consider the following cases, namely when
(a) ui = uj (the i-th and the j-th query are made to the same user oracle), and when (b)
ui 6= uj (the i-th and the j-th query are made to the different user oracles).

1. For case (a), since the i-th and the j-th user are the same, we have kui = kuj ,
and the first equation becomes νi = νj . For any two MAC queries (ui, νi,mi, ti) 6=
(uj , νj ,mj , tj) ∈ τm and a primitive query (x̂1, ŷ1) ∈ τ (1)

p , the randomness in the
equation νi ⊕ kui ⊕ Huii = x̂1 is kuih . Therefore, for a fixed choice of i, j and (x̂1, ŷ1),
the probability of the event is ε. The number of choices of i 6= j ∈ [qm] such that
νi = νj is at most 2η and the number of choices of (x̂1, ŷ1) is at most p. Hence

Pr[B.4(a)] ≤ 2ηpε. (26)

2. For case (b), the keys kui and kuj are generated independently of each other. For
any two MAC queries (ui, νi,mi, ti) 6= (uj , νj ,mj , tj) ∈ τm such that ui 6= uj , and
a primitive query (x̂1, ŷ1) ∈ τ

(1)
p , we rely on the randomness of kui (or kuj) in

the equation νi ⊕ kui = νj ⊕ kuj , and on the randomness of kuih in the equation
νi ⊕ kui ⊕ Huii = x̂1. In the ideal world, kui (or kuj) and kuih are dummy keys,

Yu Long Chen and Avijit Dutta and Mridul Nandi 35

sampled uniformly and independently from their respective space. Therefore, for a
fixed choice of i, j and (x̂1, ŷ1), the probability of the event is ε/2n−1. The number
of choices of i, j and (x̂1, ŷ1) is at most pq2

m. Hence,

Pr[B.4(b)] ≤ 2pq2
mε

2n . (27)

Putting (26) and (27) together, we have

Pr[B.4] ≤ 2ηpε+ 2pq2
mε

2n . (28)

Bounding B.5. For this bad event, we need to consider the following cases, namely when
(a) ui = uj (the i-th and the j-th query are made to the same user oracle), and when (b)
ui 6= uj (the i-th and the j-th query are made to the different user oracles).

1. For case (a), since the i-th and the j-th user are the same, we have kui = kuj , and the
first equation becomes νi = νj . For a fixed choice of indices i and j, the probability
of the event ti = tj is at most 1/2n. Number of choices of i and j such that νi = νj
is at most 2η. Summing over all possible choices of i and j, we have

Pr[B.5(a)] ≤ 2η
2n . (29)

2. For case (b), the keys kui and kuj are generated independently of each other. For
any two MAC queries (ui, νi,mi, ti) 6= (uj , νj ,mj , tj) ∈ τm such that ui 6= uj , the
probability that the event happens for a fixed choice of indices i and j is at most
2/22n, as νi ⊕ kui = νj ⊕ kuj is independent of ti = tj . The number of choices of
(i, j) is at most q2

m/2. Hence,

Pr[B.5(b)] ≤ q2
m

22n . (30)

Putting (29) and (30) together, we have

Pr[B.5] ≤ 2η
2n + q2

m

22n . (31)

Bounding B.6. Similar to B.5(b), for a fixed choice of indices i and j, the probability
that the event happens is at most ε/2n, as the event νi ⊕ kui ⊕ Huii = νj ⊕ kuj ⊕ Hujj is
independent over ti = tj . The number of choices of (i, j) is at most q2

m/2. Hence,

Pr[B.6] ≤ q2
mε

2n+1 . (32)

Bounding B.7. To deal with this event, we define the following event:

E0
∆= #{(ti, ŷ0, δ) ∈ T × Y0 × (Y0 ∪ Y1) : ti ⊕ ŷ0 = δ} ≥ 2p2qm/2n + p

√
6nqm.

Note that, the cardinality of Y0 ∪ Y1 is 2p and the event E0 is bounded using Lemma 1,
where we take A = Y0 and B = Y0∪Y1. Therefore, from Lemma 1, we have Pr[E0] ≤ 2/2n.
Now, we write the probability of the event B.7 as follows:

Pr[B.7] ≤ Pr[B.7 | E0] + 2
2n .

36 Multi-User BBB Security of Public Permutations Based MAC

Now, it remains to bound the first term of the above equation. Note that, for a fixed
choice of indices i, (x̂0, ŷ0), and δ such that

νi ⊕ kui = x̂0, ti ⊕ ŷ0 = δ

holds with probability at most 2/2n, using the randomness of kui . However, the number
of choices of i, (x̂0, ŷ0), and δ is restricted to at most 2p2qm/2n + p

√
6nqm. Therefore, by

summing over all possible choices of i, (x̂0, ŷ0), and δ, we have

Pr[B.7] ≤ 4p2qm
22n + 2p

√
6nqm

2n + 2
2n . (33)

Bounding B.8. Bounding B.8 is identical to that of B.7. As before, where we define

E1
∆= #{(ti, ŷ1, δ) ∈ T × Y1 × (Y0 ∪ Y1) : ti ⊕ ŷ1 = δ} ≥ 2p2qm/2n + p

√
6nqm,

and using Lemma 1, we bound the probability of the event E1 to 2/2n. As a result, using
the similar manner, we have

Pr[B.8] ≤ Pr[B.8 | E1] + 2
2n ≤

2p2qmε

2n + pε
√

6nqm + 2
2n . (34)

Bounding B.9. For a fixed choice of indices, the event can be expressed as the following
three linear equations:

kui = νi ⊕ x̂0

kuj = νj ⊕ x̂′0

ti ⊕ ŷ0 = tj ⊕ ŷ′0.
We bound this event under the following cases: (a) when one of the MAC queries (i, j)
appears after the primitive queries (x̂0, ŷ0), (x̂′0, ŷ′0), and (b) when one of the primitive
queries (x̂0, ŷ0), (x̂′0, ŷ′0) appears after the MAC queries (i, j).

1. For case (a), assume without loss of generality that i > j, we first consider the subcase
when kui = kuj (the i-th and the j-th query are made to the same user oracle). Then
till the point of making the i-th query but before observing the response, we can
condition all the random variables obtained so far and thus define the following set:

I1 = {(i, j, (x̂0, ŷ0), (x̂′0, ŷ′0)) | i > j ∧ (x̂0, ŷ0) 6= (x̂′0, ŷ′0) ∧ νi ⊕ νj = x̂0 ⊕ x̂′0}.

Note that |I1| ≤ q2
mp due to Proposition 1, as we can freely choose (i, j) in at most

q2
m ways and (x̂0, ŷ0) in at most p ways. This choice of i, j and (x̂0, ŷ0) uniquely
determines the choice of (x̂′0, ŷ′0) to be at most 1. Now, to bound the probability of
the event B.9, it is enough to bound the probability of the following event:

∃(i, j, (x̂0, ŷ0), (x̂′0, ŷ′0)) ∈ I1 : kui = νi ⊕ x̂0, ti = tj ⊕ ŷ0 ⊕ ŷ′0.

For a fixed choice of such indices, the probability that the above event holds is 2/22n,
using the randomness of kui and ti. Therefore, by varying over all possible such of
indices of I1, this subcase happens with probability at most 2q2

mp/22n.
However, for the subcase when kui 6= kuj (the i-th and the j-th query are made to
the different user oracles), the probability that the event holds for a fixed choice
of indices is 4/23n. Since the randomness of the first equation comes from kui , the
randomness of the second equation comes from kuj , and the randomness of the third
equations comes from ti. Therefore, by varying over all possible indices, this subcase
happens with probability at most 4q2

mp
2/23n.

Hence for case (a), we have

Pr[B.9(a)] ≤ 2q2
mp

22n + 4q2
mp

2

23n . (35)

Yu Long Chen and Avijit Dutta and Mridul Nandi 37

2. For case (b), assume without loss of generality that (x̂0, ŷ0) appears after (x̂′0, ŷ′0).
We first consider the case when (x̂0, ŷ0) is the forward query. The analysis is the
same as for case (a), but here we use the randomness ŷ0 for our third equation.
Therefore, we have

Pr[B.9(b, forward)] ≤ 4q2
mp

22n + 6q2
mp

2

23n . (36)

However, if the primitive query (x̂0, ŷ0) is backward, then till the point of making
the backward primitive query (x̂0, ŷ0) but before observing the response, we can
condition all the random variables obtained so far and thus define the following set:

I2 = {(i, j, (x̂0, ŷ0), (x̂′0, ŷ′0)) | i 6= j ∧ (x̂0, ŷ0) 6= (x̂′0, ŷ′0) ∧ ti ⊕ tj = ŷ0 ⊕ ŷ′0}.

Note that |I2| ≤ q2
mp due to Proposition 1, as the number of choices for (i, j) is at

most q2
m and the number of choices for (x̂′0, ŷ′0) is at most p. Then, the number

of choices for (x̂0, ŷ0) is 1 as it has to satisfy tj = ŷ0 ⊕ ŷ′0. Now, to bound the
probability of the event B.9, it is enough to bound the probability of the following
event:

∃(i, j, (x̂0, ŷ0), (x̂′0, ŷ′0)) ∈ I2 : x̂0
α = νi ⊕ k, k = νj ⊕ x̂0

β .

For a fixed choice of such indices, the probability that the above event holds is
2/22n, using the independent randomness of kuj and x̂0 (Note that for this particular
subcase, we can also use the independent randomness of kui and kuj when ui 6= uj).
Therefore, by varying over all possible such of indices of I2, we have

Pr[B.9(b, backward)] ≤ 2q2
mp

22n . (37)

Therefore, by combining Eqn. (35), Eqn. (36) and Eqn. (37), we have

Pr[B.9] ≤ 4q2
mp

22n + 6q2
mp

2

23n . (38)

Bounding B.10. For a fixed choice of indices, the event can be expressed as the following
three linear equations:

Huii ⊕ kui = νi ⊕ x̂1

Hujj ⊕ kuj = νj ⊕ x̂′1

ti ⊕ ŷ1 = tj ⊕ ŷ′1.

We bound this event in a similar way as we bounded B.9. We again split the analysis
in two cases: (a) when one of the MAC queries (i, j) appears after the primitive queries
(x̂1, ŷ1), (x̂′1, ŷ′1), and (b) when one of the primitive queries (x̂1, ŷ1), (x̂′1, ŷ′1) appears after
the MAC queries (i, j). The analysis of these cases are exactly the same as that of B.9,
except that we now rely on the randomness of the hash keys huih and hujh in the first two
equations, instead of hui and huj (ε instead of 2/2n). Therefore, we have

Pr[B.10] ≤ 2q2
mpε

2n + 4q2
mp

2ε2

2n . (39)

However, for the particular subcase when ui = uj and mi 6= mj , the variables in the left
hand side of the first two equations are not supposed to be identical. Hence it differs
slightly from the rest of the analysis, that is the main reason for the modification in the
construction.

38 Multi-User BBB Security of Public Permutations Based MAC

1. For case (a), assume without loss of generality that i > j, Till the point of making
the i-th query but before observing the response, we can condition all the random
variables obtained so far. Now, for a fixed choice of indices, the probability of the
equations hold is 2ε/22n. Since the randomness of the first equation comes from
the hash key kuih , the randomness of the second equation comes from kui , and the
randomness of the third equations comes from ti. Therefore, this particular subcase
happens with probability at most 2q2

mp
2ε/22n.

2. For case (b), assume without loss of generality that (x̂0, ŷ0) appears after (x̂′0, ŷ′0).
We only consider the case that when (x̂0, ŷ0) is the forward query, since the case of
backward query is identical to the analysis of B.10. As done for case (a), here we
use the randomness ŷ0 for our third equation. Therefore, this particular subcase
happens with probability at most 4q2

mp
2ε/22n.

Therefore, by combining Eqn. (39) with the subcases when ui = uj and mi 6= mj , we have

Pr[B.10] ≤ 2q2
mpε

2n + 4q2
mp

2ε2

2n . (40)

Bounding B.11. This event can be bounded in the similarly way as B.9 or B.10. For a
fixed choice of indices, the event can be expressed as the following three linear equations:

kui = νi ⊕ x̂0

Hujj ⊕ kuj = νj ⊕ x̂1

ti ⊕ ŷ0 = tj ⊕ ŷ1.

Using the similar analysis, we bound the event (a) when one of the MAC queries (i, j)
appears after the primitive queries (x̂0, ŷ0), (x̂′0, ŷ′0), and (b) when one of the primitive
queries (x̂0, ŷ0), (x̂′0, ŷ′0) appears after the MAC queries (i, j).

1. For case (a), assume without loss of generality that i > j. Till the point of making
the i-th query but before observing the response, we can condition all the random
variables obtained so far. Then, for a fixed choice of indices, we bound the probability
of the event to 2ε/22n as the randomness of the first equation comes from kui , the
randomness of the second equation comes from the hash key kuih , and the randomness
of the third equations comes from ti. Moreover, the number of possible choices of
i, j, (x̂0, ŷ0), and (x̂1, ŷ1) is at most q2

mp
2. Hence

Pr[B.11(a)] ≤ 2q2
mp

2ε

22n . (41)

2. For case (b), assume without loss of generality that (x̂0, ŷ0) appears after (x̂1, ŷ1).
We first consider the case that when (x̂0, ŷ0) is the forward query. The analysis is
the same as for case (a), but here the randomness of the third equations comes from
ŷ0. Hence

Pr[B.11(b, forward)] ≤ 4q2
mp

2ε

22n . (42)

The analysis of subcase when the primitive query (x̂0, ŷ0) is a backward query can
be performed in the similarly way as that of B.9 or B.10. Hence, we have

Pr[B.11(b, backward)] ≤ 2q2
mpε

2n . (43)

Yu Long Chen and Avijit Dutta and Mridul Nandi 39

Therefore, by combining Eqn. (41), Eqn. (42) and Eqn. (43), we have

Pr[B.11] ≤ 4q2
mp

2ε

22n + 2q2
mpε

2n . (44)

Bounding B.12. For any possible verification query (u′a, ν′a,m′a, t′a) ∈ τv and a pair of any
possible primitive queries (x̂0, ŷ0) ∈ τ (0)

p and (x̂1, ŷ1) ∈ τ (1)
p , we rely on the randomness

of ku′a in the equation ν′a ⊕ ku
′
a = x̂0, and on the randomness of the hash key ku

′
a

h in the
equation ν′a ⊕ ku

′
a ⊕ H′u

′
a

a = x̂1. In the ideal world, ku′a and ku
′
a

h are dummy keys, sampled
uniformly and independently from their respective spaces. Therefore, for a fixed choice of
a, (x̂0, ŷ0) and (x̂1, ŷ1), the probability of the event is ε/2n−1. The number of choices of a
is qv, and the choice for (x0

j , y
0
j) ∈ τ (0)

p and (x̂1, ŷ1) ∈ τ (1)
p is p2. Hence,

Pr[B.12] ≤ 2qvp2ε

2n . (45)

Bounding B.13. For this bad event, we need to consider the following cases, namely
when (a) ui = u′a (the i-th MAC query and the a-th verification query are made to the
same), and when (b) ui 6= u′a (the i-th MAC query and the a-th verification query are
made to the different users).

1. For case (a), we have kui = ku
′
a , and the first equation becomes νi = ν′a. For some

a ∈ [qv] and i ∈ [qm], if νi = ν′a, νi ⊕ Huii = ν′a ⊕ H′u
′
a

a and ti = t′a, then we must
have mi 6= m′a (as the distinguisher is non-trivial). Now, for a fixed choice of a, the
number of choices for i is at most 1 due to B.5. Therefore, for such choice of (i, a),
the probability that νi ⊕Huii = ν′a ⊕H′u

′
a

a holds is ε. The number of choices of a is at
most qv. Hence,

Pr[B.13(a)] ≤ qvε. (46)

2. For case (b), the keys kui and ku′a are generated independently of each other. For
any MAC query (ui, νi,mi, ti) ∈ τm and verification query (u′a, ν′a,m′a, t′a) ∈ τv
such that ui 6= u′a, we rely on the randomness of kui (or ku′a) in the equation
νi ⊕ kui = ν′a ⊕ ku

′
a , and on the randomness of the hash key kuih (or ku

′
a

h) in the
equation νi ⊕ kui ⊕ Huii = ν′a ⊕ ku

′
a ⊕ H′u

′
a

a . In the ideal world, kui (or ku′a) and kuih
(or ku

′
a

h) are dummy keys, sampled uniformly and independently from their respective
space. Therefore, for a fixed choice of (i, a), the probability that the event happens
is ε/2n−1. The number of choices of i is at most qm, and the number of choices of a
is at most qv. Hence

Pr[B.13] ≤ 2qmqvε
2n . (47)

Putting (46) and (47) together, we have

Pr[B.13] ≤ qvε+ 2qmqvε
2n . (48)

Bounding B.14. For a fixed choice of indices, the event can be expressed as the following
linear equations:

kui = νi ⊕ x̂0

ku
′
a = ν′a ⊕ x̂′0

Huii ⊕ H′u
′
a

a ⊕ kui ⊕ ku′a = νi ⊕ ν′a
ti ⊕ t′a = ŷ0 ⊕ ŷ′0.

40 Multi-User BBB Security of Public Permutations Based MAC

Note that since our goal is the prove 2n/3-bit security, it is sufficient the only focus on the
first and the third equations. Hence we define the following event:

S ∆= ∃i ∈ [qm], a ∈ [qv], (x̂0, ŷ0) : kui = νi ⊕ x̂0,Huii ⊕ H′u
′
a

a ⊕ kui ⊕ ku
′
a = νi ⊕ ν′a.

Now, we bound the probability of the event B.14 as follows:

Pr[B.14] ≤ Pr[B.14 | S] + Pr[S].

Note that the probability of the event B.14 | S is zero. It is easy to see that for a fixed choice
of indices, the probability that the event S happens is 2ε/2n, by using the randomness of
the secret key kui and the hash key kuih . Number of choices for (i, a) and (x̂0, ŷ0) is at
most pqmqv. Hence, we have

Pr[B.14] ≤ pqmqvε

2n . (49)

Bounding B.15. For a fixed choice of indices, the event can be expressed as the following
linear equations:

νi ⊕ kui = ν′a ⊕ ku
′
a

Huii ⊕ kui = νi ⊕ x̂1

H′u
′
a

a ⊕ ku′a = ν′a ⊕ x̂′1

t′a ⊕ ti = ŷ1 ⊕ ŷ′1.

For this bad event, we need to consider the following cases, namely when (a) ui = u′a (the
i-th MAC query and the a-th verification query belong to the same user), and when (b)
ui 6= u′a (the i-th MAC query and the a-th verification query belong to the different users).

1. For case (a), we have kui = ku
′
a and kuih = k

u′a
h , the first equation becomes νi = ν′a.

We bound this event under the assumption that an adversary makes the verification
attempt after all MAC and primitive queries. This assumption is sound in the sense
that the forging advantage of an adversary who is making verification attempts after
all MAC and primitive queries is identical to the forging advantage of an adversary
who is making verification attempts interleaved with MAC and primitive queries.
This assumption leads us to analyze this event when the verification query is the
latest. Let us define the following random variable: let zj` be the random variable
representing the sum of y1

j ⊕ y1
` , where y1

j (resp. y1
`) be the response of the primitive

query x1
j (resp. x1

`), for j ∈ [p], ` ∈ [p]. Now, we consider a tuple Z̃ = (zj`)j,`∈[p] of
length p2 and define multi-collision of the tuple Z̃ as follows: an r-multicollision is
said to occur in the tuple Z̃ if there exist a finite set {i1, i2, . . . , ir} ⊆ [p2] such that
zi1 = zi2 = . . . = zir . Thus, at most r multicollisions occur in Z̃, denoted as mc(Z̃),
if for any subset of indices {i1, i2, . . . , ir, ir+1} of [p2], zi1 = zi2 = . . . = zir = zir+1

implies there exist j 6= k in [r + 1] such that ij = ik. Let E denotes the event that
mc(Z̃) ≥ ρ, where ρ ∆= max

{
n, 12p2

2n

}
. Then, from [18] we have

Pr[mc(Z̃) ≥ ρ] ≤
(
p2

ρ

)
2n(ρ−1)

(1)
≤ 2n p2ρ

2nρρ!
(2)
≤ 2n

(
p2e

2nρ

)ρ
≤ 2n

(
3p2

2nρ

)n (3)
≤ 1

2n ,

where (1) follows as
(
q
ρ

)
≤ qρ/ρ!. (2) follows as eρ ≥ ρρ/ρ! and finally (3) follows as

ρ = max{n, 12p2/2n}. Now, we write the event B.15 as follows:

Pr[B.15] ≤ Pr[B.15 | E] + Pr[E]. (50)

To bound the first term of Eqn. (50), we use the randomness of kui from the second
equation and the randomness of the hash key ku

′
a

h from the third equation. However,

Yu Long Chen and Avijit Dutta and Mridul Nandi 41

the number of choices of the verification query is at most qv and for each such choices,
number of choice of i is η. Therefore, by varying over all possible choice of indices,
we have

Pr[B.15] ≤ 24ηqvp2ε

22n + 1
2n . (51)

2. For case (b), the keys kui , ku′a , kuih , and ku
′
a

h are generated independently of each other.
For any MAC query (ui, νi,mi, ti) ∈ τm and verification query (u′a, ν′a,m′a, t′a) ∈ τv
such that ui 6= u′a, we rely on the randomness of kui (or ku′a) in the equation νi⊕kui =
ν′a⊕ ku

′
a , on the randomness of the hash key kuih in the equation Huii ⊕ kui = νi⊕ x̂1,

and on the randomness of the hash key ku
′
a

h in the equation H′u
′
a

a ⊕ ku′a = ν′a ⊕ x̂′1.
In the ideal world, kui (or ku′a), kuih , and ku

′
a

h are dummy keys, sampled uniformly
and independently from their respective space. Therefore, for a fixed choice of
i, a, (x̂1, ŷ1), and (x̂′1, ŷ′1), the probability of the event is ε2/2n−1 . The number of
choice of i is at most qm, the number of choice of a is at most qv, the number of
choice of (x̂1, ŷ1) and (x̂′1, ŷ′1) is at most p(p− 1)/2. Hence

Pr[B.15(b)] ≤ qmqvp
2ε2

2n . (52)

Putting (51) and (52) together, we have

Pr[B.15] ≤ 24ηqvp2ε

22n + qmqvp
2ε2

2n + 1
2n . (53)

Bounding B.16. For a fixed choice of indices, the event can be expressed as the following
linear equations:

kui = νi ⊕ x̂0

kui ⊕ ku′a = νj ⊕ ν′a
Hujj ⊕ kuj = νj ⊕ x̂1

Huii ⊕ H′u
′
a

a ⊕ kui ⊕ ku′a = νi ⊕ ν′a
t′a ⊕ ti ⊕ tj = ŷ0 ⊕ ŷ1.

Note that since our goal is the prove 2n/3-bit security, it is sufficient the only focus on the
first and the fourth equations. Hence we define the following event:

S ∆= ∃i ∈ [qm], a ∈ [qv], (x̂0, ŷ0) : kui = νi ⊕ x̂0,Huii ⊕ H′u
′
a

a ⊕ kui ⊕ ku
′
a = νi ⊕ ν′a.

We bound the probability of the event B.16 as follows:

Pr[B.16] ≤ Pr[B.16 | S] + Pr[S].

Note that the probability of the event B.16 | S is zero. It is easy to see that for a fixed
choice of indices, the probability that the event S happens is at most 2ε/2n, by using the
randomness of the secret key kui and the hash key kuih . Number of choices for (i, a) and
(x̂0, ŷ0) is at most pqmqv. Hence, we have

Pr[B.16] ≤ pqmqvε

2n . (54)

Bounding B.17. Note that since the keys for different users are generated independently of
each other, it is sufficient to consider the single user case when ki1 = ki2 = . . . = kiξ+1 . Then,
the event B.17 occurs if there exist ξ+1 distinct signing query indices {i1, . . . , iξ+1} ⊆ [qm]
such that νi1 ⊕ Hi1 = . . . = νiξ+1 ⊕ Hiξ+1 . This event is thus a (ξ + 1)-multicollision on

42 Multi-User BBB Security of Public Permutations Based MAC

the ε-universal hash function 5 mapping (ν,m) to ν ⊕ Hkh(m) (as Hkh is an ε-almost-xor
universal). Therefore, by applying the multicollision theorem of universal hash function
(Theorem 1) of [31], we have

Pr[B.17] ≤ q2
mε/2ξ. (55)

Bounding B.18. For a fixed choice of i, the probability that ti = 0n is exactly 2−n.
Summing over all possible choices of i we have

Pr[B.18] ≤ qm
2n . (56)

The proof follows from Eqn. (21)-Eqn. (56).

5A hash function Hkh is said to be an ε-universal hash function if for all x 6= x′, Pr[Hkh (x) = Hkh (x′)] ≤
ε.

	Introduction
	Nonce Based MAC and Resilience to Faulty Nonce
	Public Permutation Based MAC
	Public Permutation Based PRF
	Comparison with Keyed Sponge Construction
	Single-User vs Multi-user Security
	Our Contribution

	Preliminaries
	Public Permutation Based MAC in Multi-User Setting
	Almost Xor Universal and Almost Regular Hash Function
	Pairwise Independent Hash Function
	Sum-Capture Lemma

	Solving a System of Affine (Non)-Equations
	Multi-User Security of nEHtM*p
	Security Theorem of nEHtM*p
	Instantiation of nEHtM*p with PolyHash Function

	Proof of Theorem 2
	Definition of Bad Transcripts
	Analysis of Good Transcripts
	Lower Bounding Z.2

	Conclusion and Future Works
	Univariate Affine Non-Equations For (1), (2) and (3)
	Univariate Affine Non-Equations For (1)
	Univariate Affine Non-Equations For (2)
	Univariate Affine Non-Equations For (3)

	Univariate Affine Non-Equations For (4), (5) and (6)
	Proof of Lemma 2

