
Chaskey: a MAC Algorithm for Microcontrollers

– Status Update and Proposal of Chaskey-12 –

Nicky Mouha1,2

1 Dept. Electrical Engineering-ESAT/COSIC, KU Leuven, Leuven and
iMinds, Ghent, Belgium.

2 Project-team SECRET, Inria, France.
xnicky@mouha.bex

Abstract. The Chaskey MAC algorithm was presented by Mouha et al.
at SAC 2014. It is designed for real-world applications where 128-bit keys
are required, but standard cryptographic algorithms cannot be imple-
mented because of stringent requirements on speed, energy consumption,
or code size. Shortly after its publication, Chaskey was considered for
standardization by ISO/IEC JTC 1/SC 27/WG 2. At the October 2015
meeting, the ISO/IEC committee decided to terminate the study period
on Chaskey, and to circulate a first working draft. Since Chaskey was
introduced, many follow-up results were published, including improved
cryptanalysis results, new security proofs and more efficient implemen-
tations. This paper gives a comprehensive overview of those results, and
introduces a twelve-round variant of Chaskey: Chaskey-12. Although the
original eight-round Chaskey remains unbroken, Chaskey-12 has a much
more conservative design, while reducing the performance by only 15%
to 30%, depending on the platform.

Keywords: Chaskey-12, Message Authentication Code, Microcontroller,
Permutation-Based, ARX.

1 Introduction

Since the AES block cipher [3] was standardized by NIST in 2001, it
has become the conventional choice for block-cipher-based constructions.
However, AES may be too slow or too large in very constrained environ-
ments.

The focus of this paper is on Message Authentication Code (MAC)
algorithms. MAC algorithms process a message and a secret key to pro-
duce a tag, in such a way that it is infeasible to construct a forgery: that
is, to generate a valid message-tag pair without knowledge of the secret
key.

At SAC 2014, Mouha et al. [12] proposed the Chaskey MAC algorithm
for microcontrollers. Its main design requirement was to be an order of

magnitude faster than AES-128-CMAC [5]. Recall that CMAC is a stan-
dardized variant of CBC-MAC that supports variable-length messages.
It was also designed to be a drop-in replacement for AES-128-CMAC.
More specifically, the key size should be 128 bits, speed for short inputs
is critical, and nonce values should not be required.

On the ARM Cortex-M4, Chaskey reaches 7.0 cycles/byte, compared
to 89.4 cycles/byte for AES-CMAC. Chaskey has a speed of 9.8 cy-
cles/byte on the ARM-Cortex-M0, whereas AES-CMAC requires 136.5
cycles/byte.

The intention of this paper is to provide a status update on Chaskey,
by giving an overview of the results since its publication. We will also
propose Chaskey-12, a variant of Chaskey with twelve rounds instead of
eight. Chaskey-12 has a much higher security margin than Chaskey, but
is nevertheless only 15% to 30% slower, depending on the target platform.

2 Description of Chaskey

First, we provide a brief, yet complete description of Chaskey. For addi-
tional cryptanalysis and benchmark results, as well as a security proof
based on an underlying Even-Mansour block cipher, we refer to the orig-
inal paper [12].

2.1 Notation

Table 1 summarizes the notation used in this paper. Throughout, n = 128
is both the key size and the block size in bits.

We interchangeably consider an element a of GF (2n) as an n-bit string
a[n−1]a[n−2] . . . a[0] and as the polynomial a(x) = a[n−1]xn−1+a[n−
2]xn−2 + . . . + a[0] with binary coefficients. Let f(x) be an irreducible
polynomial of degree n with binary coefficients. We choose f(x) = x128+
x7+x2+x+1. Then to multiply two elements a and b, we represent them
as two polynomials a(x) and b(x), and calculate a(x)b(x) mod f(x). For
example, we show how to multiply an element by x in Algorithm 1. Note
that x corresponds to bit string 012610, which is 2 in decimal notation.

When converting between bit strings and arrays of 32-bit words, we
always use little endian byte ordering. Inside every byte, bit numbering
starts with the least significant bit.

2.2 Mode of Operation

Chaskey takes a message m, and splits it into ℓ blocks m1,m2, . . . ,mℓ of
n bits each. Only the last block mℓ may be incomplete, or even empty

Table 1. Notation.

Notation Description

x‖y concatenation of bit strings x and y

|x| length of bit string x

x+ y addition of x and y modulo 232 (in text)
x⊞ y addition of x and y modulo 232 (in figures)
x ≪ s rotation of x to the left by s positions
x≪ s shift of x to the left by s positions
x⊕ y bitwise exclusive OR (XOR) of x and y

0a bit string consisting of a times 0
right

t
(a) select the t least significant bits of a

x[i] bit selection: bit at position i of word x,
where i = 0 is the least significant bit

in case |m| = 0. It also takes a 128-bit key K, which must be chosen
independently and uniformly at random from the entire key space. From
K, two 128-bit subkeys K1 and K2 are derived, each by means of a 128-
bit shift and a 128-bit conditional XOR. The generation of the subkeys
is defined in Algorithm 2.

To generate a tag τ of at most n bits, Chaskey iterates an n-bit per-
mutation π, as specified in Fig. 1.

K

m1

π

m2

π . . . π

mℓ

π τ

K1 K1

ri
g
h
t t

K

m1

π

m2

π . . . π

mℓ‖10
∗

π τ

K2 K2

ri
g
h
t t

Fig. 1. The Chaskey mode of operation when |mℓ| = n (top), and when 0 ≤ |mℓ| <
n (bottom). The round function of permutation π is shown in Fig. 2, the subkeys
K1 and K2 are generated according to Algorithm 2, and mℓ‖10

∗ is shorthand for
mℓ‖10

n−|mℓ |−1.

Algorithm 1 TimesTwo
1: procedure TimesTwo(a)
2: if a[127] = 0 then

3: return (a≪ 1)⊕ 0128

4: else

5: return (a≪ 1)⊕ 012010000111

Algorithm 2 SubKeys
1: procedure SubKeys(K)
2: K1 ← TimesTwo(K)
3: K2 ← TimesTwo(K1)
4: return (K1,K2)
5:

2.3 Permutation π

In Chaskey, the permutation π consists of r applications of a round func-
tion. This round function is specified in Fig. 2.

≪ 5

v1 v0 v2 v3

v1 v0 v2 v3

≪ 16

≪ 8

≪ 13≪ 7

≪ 16

Fig. 2. A round of the Chaskey permutation π, defined as: v0‖v1‖v2‖v3 ←
π(v0‖v1‖v2‖v3). We intentionally swapped v0 and v1, as this reduces the number of
crossing lines in the figure.

Chaskey was originally defined with r = 8 rounds. At this time of
writing, there are no attacks on the full-round Chaskey, and we are con-

fident that this construction will remain secure. However, Leurent [8] has
discovered an attack on a variant of Chaskey with r = 7. Due to con-
cerns that Chaskey may have a small margin of security, we now propose
Chaskey-12, a variant of Chaskey with r = 12.

The advantage of Chaskey-12 is that the security margin is greatly
increased, but it is only about 15% slower on ARM Cortex-M0 or -M3,
and about 30% slower on 16-bit Texas Instruments MSP430 and 8-bit
Atmel AVR ATmega128. These Cortex-M benchmarks were communi-
cated to us by Björn Haase, the MSP430 and AVR implementations were
constributions of Jason Smith for the FELICS project [4].

2.4 Security Claim

We refer to [12] for a security proof of Chaskey, based on the security of an
underlying Even-Mansour block cipher. It states that for any adversary
that queries D message blocks in total, attacking Chaskey with a non-
negligible probability requires about 2n/D queries to the permutation
π.

We should clarify that D is total number of message blocks under any
currently-used key. It is assumed that 2n/D off-line evaluations of π is
infeasible. To ensure this, Chaskey should be rekeyed before the security
drops below an acceptable level.

Chaskey should never use the same key for more thanD = 248 message
blocks, which corresponds to 4 petabytes of data. It is assumed that only
a small number of devices can be attacked at the same time, as this will
reduce the security of Chaskey (and many other MAC algorithms [2]),
even when the key is refreshed regularly.

To avoid tag guessing attacks, we recommend that the tag size |τ | ≥
64. Changing |τ | always requires selecting a new key K uniformly at
random. Although Chaskey with short tags is vulnerable to efficient tag
guessing attacks, it remains secure against all other attacks.3 Therefore,
shorter tags can be used for applications that can tolerate occasionally
accepting an inauthentic message.

3 Updates on Chaskey

In this section, we give an overview of Chaskey-related activity that is
known at the time of writing (December 2015).

3 This is a major advantage of Chaskey over the GCM authenticator. For GCM, there
is an efficient attack to recover the authentication key when short tags are used [6].

– August 15, 2014: Chaskey is introduced at the SAC 2014 conference
in Montreal, Canada. [12]

– November 6, 2014: ISO/IEC JTC 1/SC 27/WG 2 conducts a pre-
liminary study on the standardization of Chaskey, and ITU-T SG17
has added new work items related to IoT and ITS security, for which
Chaskey seems to be well-suited.

– January 15, 2015: At ESC 2015, Leurent presents the first exter-
nal cryptanalysis results on Chaskey [7]. He demonstrates a practi-
cally verified attack on 6 rounds with D = 225 and T = 229, and
sketches an attack on 7 rounds with D = 245 − 248. His attack is
based on differential-linear cryptanalysis with several state-of-the-art
improvements. Several novel ideas are introduced, which also lead to
an improved attack on FEAL [13].

– April 21, 2015: The underlying block cipher of Chaskey was bench-
marked by the FELICS project [4] of the University of Luxembourg
on a variety of microcontrollers. As the implementation results show,
the Chaskey block cipher performs very well on 8-bit, 16-bit and 32-
bit microcontrollers. It is nearly always the fastest block cipher, even
when compared to other ciphers with significantly smaller block and
key sizes.

– May 19, 2015: Mennink [10] gives a new security proof for Chaskey,
this time considering a strictly stronger fsetting: PRF instead of MAC
security. He also shows how Chaskey can easily be made secure against
related-key attacks.

– May 21, 2015: Bhaumik et al. [1] announce two new observations on
Chaskey. Their results do not have any practical impact, as they are
only small speed-ups of exhaustive search. However, interesting about
these observations is that their query complexity goes down when the
number of rounds of Chaskey is increased.

– July 16, 2015: An optimized implementation by Björn Haase reaches
9.8 cycles/byte on an ARM Cortex-M0.

– July 20, 2015: Chaskey is presented at the NIST Lightweight Cryp-
tography Workshop 2015 in Gaithersburg, Maryland, USA.

– August 13, 2015: At SAC 2015, Mavromati [9] presents several new
key-recovery attacks on Chaskey. The attacks consider both the single-
user and multi-user settings. As the attacks assume that Chaskey
uses an ideal permutation, they do not violate the security proof of
Chaskey, which can be extended to the multi-user setting using the
techniques of Mouha and Luykx [11].

– September 14, 2015: The FELICS benchmark results [4] of the
Chaskey block cipher have been improved significantly, in particular

for 8-bit and 16-bit microcontrollers. The improved implementations
are due to Jason Smith.

– October 8, 2015: The research paper of the currently best-known
cryptanalysis attack on Chaskey by Leurent is made available [8].

– October 31, 2015: ISO/IEC JTC 1/SC 27/WG 2 has decided to
terminate the study period, and to circulate a first working draft.

4 Conclusion

Chaskey is a MAC algorithm that is optimized for microcontrollers. It
reaches 9.8 cycles/byte on ARM Cortex-M0, and 7.0 cycles/byte on ARM
Cortex-M4, which is about order of magnitude faster than AES-CMAC.

Chaskey comes with a proof of security, based on the security of an
underlying Even-Mansour block cipher. The proof states that if an at-
tacker obtains D message blocks in total (under any currently-used key),
any attack with a non-negligible probability of success requires about
2128/D evaluations of the underlying block cipher. Originally only MAC
security was proven, but later Mennink provided a PRF security proof as
well. Mavromati introduced several key-recovery attacks that match the
security bound.

As of today, the full eight-round Chaskey remains secure. However,
Leurent showed how up to seven rounds can be attacked. To address
concerns about a seemingly small security margin of Chaskey, this paper
proposes Chaskey-12. This twelve-round variant has a very comfortable
security margin against the best-known attacks, but is only about 15%
slower on the 32-bit ARM Cortex-M microcontrollers, and 30% slower on
the 16-bit TI MSP430 and the 8-bit Atmel AVR ATmega128.

Acknowledgments. This work was supported in part by the Research
Council KU Leuven: GOA TENSE (GOA/11/007), by Research Fund KU
Leuven, OT/13/071, and by the French Agence Nationale de la Recherche
through the BLOC project under Contract ANR-11-INS-011, and the
BRUTUS project under Contract ANR-14-CE28-0015. Nicky Mouha is
supported by a Postdoctoral Fellowship from the Flemish Research Foun-
dation (FWO-Vlaanderen), and by FWO travel grant 12F9714N.

References

1. Bhaumik, R., Dutta, A., Guo, J., Jean, J., Mouha, N., Nikolić, I.: More Rounds,
Less Security? Cryptology ePrint Archive, Report 2015/484 (2015), http://

eprint.iacr.org/

2. Chatterjee, S., Menezes, A., Sarkar, P.: Another Look at Tightness. In: Miri, A.,
Vaudenay, S. (eds.) Selected Areas in Cryptography - 18th International Work-
shop, SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected
Papers. LNCS, vol. 7118, pp. 293–319. Springer (2011), http://dx.doi.org/10.
1007/978-3-642-28496-0_18

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

4. Dinu, D., Biryukov, A., Großschädl, J., Khovratovich, D., Corre, Y.L., Perrin, L.:
FELICS – Fair Evaluation of Lightweight Cryptographic Systems. https://www.
cryptolux.org/index.php/FELICS_Block_Ciphers_Brief_Results (2015)

5. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. NIST special publication 800-38b, National Insti-
tute of Standards and Technology (NIST) (May 2005), http://csrc.nist.gov/
publications/nistpubs/800-38B/SP_800-38B.pdf

6. Ferguson, N.: Authentication weaknesses in GCM. Comments submitted to NIST
Modes of Operation Process (May 2005)

7. Leurent, G.: On Chaskey - Work in progress... Talk at Early Symmetric Cryptog-
raphy - ESC 2015 (2015)

8. Leurent, G.: Differential and Linear Cryptanalysis of ARX with Partitioning –
Application to FEAL and Chaskey. Cryptology ePrint Archive, Report 2015/968
(2015), http://eprint.iacr.org/

9. Mavromati, C.: Key-recovery attacks against the MAC algorithm Chaskey. Cryp-
tology ePrint Archive, Report 2015/811 (2015), http://eprint.iacr.org/

10. Mennink, B.: XPX: Generalized Tweakable Even-Mansour with Improved Security
Guarantees. Cryptology ePrint Archive, Report 2015/476 (2015), http://eprint.
iacr.org/

11. Mouha, N., Luykx, A.: Multi-key Security: The Even-Mansour Construction Re-
visited. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I. LNCS, vol. 9215, pp. 209–223. Springer (2015),
http://dx.doi.org/10.1007/978-3-662-47989-6_10

12. Mouha, N., Mennink, B., Herrewege, A.V., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers.
In: Joux, A., Youssef, A. (eds.) Selected Areas in Cryptography - SAC 2014 -
21th International Conference, Montreal, QC, Canada, August 14-15, 2014, Re-
vised Selected Papers. LNCS, vol. 8781, pp. 1–18. Springer (2014), full version:
http://eprint.iacr.org/2014/386

13. Shimizu, A., Miyaguchi, S.: Fast Data Encipherment Algorithm FEAL. In: Chaum,
D., Price, W.L. (eds.) Advances in Cryptology - EUROCRYPT ’87, Workshop
on the Theory and Application of of Cryptographic Techniques, Amsterdam, The
Netherlands, April 13-15, 1987, Proceedings. LNCS, vol. 304, pp. 267–278. Springer
(1987), http://dx.doi.org/10.1007/3-540-39118-5_24

