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This paper gives a survey of MAC algorithms

and hash functions. It describes the main prop-

erties, summarizes the most important con-

structions and reports on their security.

Introduction

While secrecy protection and encryption
are as old as writing itself, information
authentication is a problem of the infor-
mation age, created by the decoupling of
information and its physical bearer; elec-
tronic information cannot be protected by
seals or manual signatures. During the
last twenty years cryptology has created a
number of tools to address this problem;
the most important ones are digital signa-
tures based on public-key algorithms2 such
as RSA, ElGamal, and DSA.

While there is no doubt that digital sig-
natures and certificates are the cornerstone
for applications such as electronic com-
merce, there has been also a strong need for
conventional (or symmetric) algorithms for
information authentication. The main rea-
son is that digital signatures are too com-
putation intensive to apply them to bulk
data (documents of 100 Kbyte or more) or
to each packet of a packet-switched net-

1F.W.O. postdoctoral researcher, sponsored by
the National Fund for Scientific Research – Flan-
ders (Belgium).

2W. Diffie, M.E. Hellman, “New directions in
cryptography,” IEEE Trans. on Information The-
ory, Vol. IT–22, No. 6, 1976, pp. 644–654.

work such as the Internet. For the latter
application, the signature size (between 40
and 128 bytes) poses problems as well.

The need to digitally sign large amounts
of information has led to the inven-
tion of cryptographic hash functions (also
known as MDCs or Manipulation Detec-
tion Codes). Hash functions reduce an in-
put document of arbitrary size to a short
string (typically 8 to 20 bytes), which is
the ‘fingerprint’ or ‘digest’ of this docu-
ment. There are of course many inputs cor-
responding to a single output string, but
hash functions are constructed in such a
way that it is computationally infeasible
to find one or more such inputs. The dig-
ital signature is then applied to the short
hash result, rather than to the large in-
put document. This results in an improved
performance, as hashing is typically much
faster than signing. Other advantages are
that signatures are shorter and harder to
forge. For some recent signature schemes
the hash function has even become an in-
tegral part of the construction. Hash func-
tions have been used as a building block
in many other applications, such as com-
mitment to information without revealing
it, protecting of pass-phrases, tick pay-
ments, key derivation, and key agreement.
It should be pointed out that hash func-
tions have often been used in applications
that require new security properties, for
which they have not been evaluated.

For some applications, both the com-
putational overhead and the size of a
digital signature are too large; examples
are packet-switched networks (e.g., IP se-
curity) and inexpensive electronic purses
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(e.g., Mondex and Proton). In that case
signatures can be replaced by Message Au-
thentication Codes or MACs. A MAC al-
gorithm computes a short string (typically
4 to 16 bytes) as a function of the input
and a secret key. The sender appends the
MAC to the information; the receiver re-
computes the MAC and compares it to the
transmitted version (see also Figure 1). He
accepts the information as authentic only
if both values are equal. The eavesdrop-
per can modify the message, but does not
know how the update the MAC accord-
ingly. This procedure requires that sender
and receiver are privy to the same se-
cret key. MACs provide weaker guarantees
than signatures, as they can only be used
in a symmetric setting, where the parties
trust each other. In technical terms, they
do not provide non-repudiation of origin.
On the other hand, MACs are much more
efficient than digital signatures in terms of
computation, storage, and key size.
The rest of this paper is organised as fol-

lows. First definitions are given for hash
functions, attacks on hash functions are
discussed, and a survey is presented of
the most important constructions. Then
MACs are treated in a similar way. Finally
some concluding remarks are formulated.

Definitions of hash functions

Hash functions were introduced in cryp-
tography by W. Diffie and M. Hellman to-
gether with the concept of digital signa-
tures. A hash function is a function that
takes an input of arbitrary size and reduces
it to an output of fixed length (m bits).
Moreover, this computation should be ‘ef-
ficient’. One also requires that the hash
function is publicly known and does not
require any secret parameter. For cryp-
tographic applications, one imposes three
security requirements, which can be stated
informally as follows:

preimage resistance: for essentially all

outputs, it is ‘computationally infeasi-
ble’ to find any input hashing to that
output;

2nd-preimage resistance: it is ‘compu-
tationally infeasible’ to find a second
(distinct) input hashing to the same
output as any given input;

collision resistance: it is ‘computation-
ally infeasible’ to find two colliding in-
puts, i.e., x and x′ 6= x with h(x) =
h(x′).

A hash function that is preimage resis-
tant and 2nd-preimage resistant is called
one-way ; a hash function that satisfies the
three security properties is called collision

resistant. Note that for one-way functions
(as opposed to one-way hash functions),
one typically requires only preimage resis-
tance.

Collision resistance is required for dig-
ital signature to avoid the following sce-
nario: Bob creates two messages with the
same hash value, one of which says ‘Alice
owes Bob 100£’ and the other one ‘Alice
owes Bob 100 000£’. Then Bob asks Alice
to sign the first message. Later he claims
that Alice has signed the 2nd message in-
stead (which has the same hash value and
thus the same signature). Alice could pre-
clude this attack by randomising the mes-
sage before signing it, but this is not al-
ways a solution (for example, Alice could
still attack her own signature).

Not all applications need collision resis-
tance; loosening the requirements results
in savings in terms of computation and
storage (cf. infra). However, most design-
ers aim for this property to have a tool that
can be used in all the applications, and to
be on the safe side. It is important to note
that some applications need different prop-
erties, for example that it is computation-
ally infeasible to find x from h(x‖y) and y
(here ‖ denotes concatenation).
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Figure 1: Using a Message Authentication Code for data integrity.

Security of hash functions

This section discusses attacks that depend
only on the size of the parameters of the
hash functions, and not on their internal
structure.

Brute force (2nd) preimage search

In order to find (2nd) preimages, on can
just pick an arbitrary input and evaluate
h. The success probability of a single trial
is 1/2m, with m the number of bits in the
hash result, which implies that on average
2m−1 attempts are required. This attack
can be applied off-line and in parallel. If
it is sufficient to find a (2nd) preimage for
one out of t given values, the success prob-
ability is increased with a factor of t. This
can be avoided by parameterising the hash
function for each input. This attack can be
precluded by choosing values of m between
64 bits (marginally secure) to 128 bits (se-
curity for 20 years or more even against a
determined opponent).

Brute force collision search

Surprisingly, finding collisions is much eas-
ier than finding preimages: one needs only
about

√
2m = 2m/2 evaluations of the

hash function (as this results in about 2m

pairs of hash values). This phenomenon
is related to the ‘birthday paradox,’ which
states that in a group of 23 people, the
odds are 1:2 that there are two people
with the same birthday. Note that it is
easy to impose that the colliding message
are restricted to a small set with a pre-
scribed format, and that one can imple-
ment this attack in parallel with mini-
mal storage requirements3. Collision resis-
tance requires that m is between 128 bits
(marginally secure) and 160 bits (20 years
or more).

Constructions for hash functions

Almost all hash functions are iterative pro-
cesses, that repeatedly apply a simple com-

3P.C. van Oorschot, M.J. Wiener, “Parallel col-
lision search with application to hash functions
and discrete logarithms,” Proc. 2nd ACM Confer-
ence on Computer and Communications Security,
ACM, 1994, pp. 210–218

Appeared in Information Security Technical Report 2(2), pp. 33–43, 1997.
c©1997 Elsevier Science Ltd.



4

pression function f . The input x is padded
to a multiple of the block size, and is then
divided into t blocks denoted x1 through
xt. The intermediate result is stored in an
n-bit (n ≥ m) chaining variable denoted
with Hi:

H0 = IV

Hi = f(Hi−1, xi), 1 ≤ i ≤ t

h(x) = g(Ht) .

Here g denotes the output transformation.

The goal of the designer is to derive the
security properties of the hash function h
from those of the compression function f .
In order to exclude trivial attacks, it is
important to fix the value of IV and to
precode the message. The simplest way
of coding is to append an extra block at
the end with the length of the input in
bits. R. Merkle and I. Damg̊ard showed
that under these conditions, collision re-
sistance of f is sufficient for collision re-
sistant of h. Note that it is not a neces-
sary condition, i.e., collisions for the com-
pression function do not necessarily lead
to collisions for the hash function. X. Lai
and J. Massey proved a similar property
for (2nd) preimage resistance; in this case
the converse holds (in a weaker form).

The large number of broken hash func-
tions serves as a warning to users to be
careful in adopting a hash function, and
to allow for a modular design such that
hash functions can be replaced whenever
necessary. In the remainder of this sec-
tion, an overview is given of constructions
for hash functions based on block ciphers,
hash functions using algebraic structure,
and custom-designed hash functions.

Hash functions based on block ci-
phers

The popularity of these constructions is in
part historical, as designers tried to use the
DES also for hashing. This can lead to

compact implementations and to a trans-
fer of the trust in the block cipher to the
hash function. However, the use of a block
cipher in this application requires slightly
stronger properties from the block cipher,
and this construction is only efficient if the
key scheduling of the block cipher is not
too slow. In this section it will be assumed
that the block cipher has block length and
key length of m bits.
The earlier constructions are single block

length hash functions, i.e., the size of the
hash result is equal to the block size of
the block cipher. The first secure con-
structions were the scheme by Matyas,
Meyer, and Oseas, which has been in-
cluded in ISO/IEC 10118-2:1994, and its
dual, widely known as the Davies-Meyer
scheme4. The Davies-Meyer scheme has
the following compression function:

Hi = Exi
(Hi−1)⊕Hi−1 .

Here EK(x) denotes the encryption of
plaintext x using the key K. It was shown
that 12 ‘secure’ schemes exist of this type,
which can be derived by an affine transfor-
mation of variables on two basic schemes.5

It is conjectured that for these schemes
no shortcut attacks exist, which implies
that collisions require about 2m/2 opera-
tions and a (2nd) preimage about 2m oper-
ations. However, since most current block
ciphers have a block length of m = 64 bits,
collisions can be found in only 232 opera-
tions and hash functions with a larger hash
result are needed.
The aim of double block length hash func-

tions is to achieve a higher security level
against collision attacks. The hash rate of
a hash function based on anm-bit block ci-
pher is the number ofm-bit message blocks

4The real inventors are probably S.M. Matyas
and C.H. Meyer.

5B. Preneel, R. Govaerts, J. Vandewalle, “Hash
functions based on block ciphers: a synthetic ap-
proach,” Advances in Cryptology, Proc. Crypto’93,
LNCS 773, D. Stinson, Ed., Springer-Verlag, 1994,
pp. 368–378.
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hashed per encryption. For all construc-
tions with rate 1 of a large class it was
shown that collisions for the hash function
can be found in at most 23m/4 operations6.
Well known constructions are MDC-2 and
MDC-4; they have hash rates 1/2 and 1/4
respectively. MDC-2 has been included
in ISO/IEC 10118-2:1994. For both hash
functions a collision attack is believed to
require at least 2m operations (for DES this
corresponds to 255 encryptions). MDC-2
and MDC-4 do not have a collision resis-
tant compression function. Two construc-
tions have a ‘proof of security’ for the colli-
sion resistance of the compression function:

• the constructions by R. Merkle7

achieve a security level of 256 for DES
and rates up to 0.27;

• the
constructions proposed by L.R. Knud-
sen and B. Preneel,8 which offer bet-
ter trade-offs between rate and secu-
rity level; moreover the security level
can be higher than 2m.

Hash functions based on algebraic
structures

Another natural construction for hash
functions uses modular arithmetic which
has proved very useful for public-key cryp-
tography. Certain applications have a fast
processor for such operations, and could
make an optimal use for this by employing
it also for hashing. For performance rea-
sons, one prefers modular squaring as ba-
sic operation. Moreover, computing square

6L.R. Knudsen, X. Lai, B. Preneel, “Attacks on
fast double block length hash functions,” Journal
of Cryptology, in print.

7R. Merkle, “One way hash functions and
DES,” Advances in Cryptology, Proc. Crypto’89,
LNCS 435, G. Brassard, Ed., Springer-Verlag,
1990, pp. 428–446.

8L.R. Knudsen, B. Preneel “Fast and secure
hashing based on codes,” Advances in Cryptol-
ogy, Proc. Crypto’97, LNCS 1294, B. Kaliski, Ed.,
pp. 485–498.

roots modulo an RSA modulus N (the
product of two large primes) is equivalent
to factoring. Note that recently an effi-
cient way has been developed to construct
an RSA modulus between three or more
parties in such a way that none of the
parties knows its factors; this is particu-
larly useful for hashing applications. How-
ever, it seems to be quite hard to construct
a hash function based on modular squar-
ing. This has been illustrated by the many
failed attempts (including the informative
Annex D of the 1989 edition of CCITT
X.509, which is the same as ISO/IEC 9594-
8:1989).

The most promising approach is based
on the following function:

Hi = (x̃i ⊕Hi−1)
2 mod N ⊕Hi .

Some modifications are required to avoid
several attacks. In the current draft pro-
posal (ISO/IEC CD 10118-4, July ’97), m
denotes the length of the modulus, and n
denotes the largest multiple of 16 strictly
larger than n; Hi and x̃i are strings of
length n, and xi has length n/2. The first
four of the n bits that are input to the mod-
ular squaring are set to 1, and after the
squaring only the least significant n bits
are kept. The bytes of x̃i consist of four
1-bits followed by four consecutive bits of
xi. At the end, an output transformation
is defined that requires an additional eight
iterations. The above proposal is denoted
MASH-1; MASH-2 replaces the exponent
2 by 257.

While it is possible to construct hash
functions for which finding collisions is as
hard as solving a number-theoretic prob-
lem believed to be difficult (factoring, dis-
crete logarithm), most of these are not
practical. M. Bellare and D. Micciancio
proposed the following construction:9 hash

9M. Bellare, D. Micciancio, “A new paradigm
for collision-free hashing: incrementality at re-
duced cost,” Advances in Cryptology, Proc. Eu-
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individual parts of a message, represent the
hash results as elements over a group of
large prime order, and combine them to
one hash result by multiplication in the
group. They show that, under certain as-
sumptions, breaking the larger hash func-
tion is equivalent to solving the discrete
logarithm problem in this group. More-
over, the hash function is incremental: if
only part of the message is changed, re-
computing the hash function requires very
little effort.

Many attempts have been made to con-
struct efficient hash functions based on ad-
ditive and multiplicative knapsacks. This
research is supported by interesting the-
oretical perspectives. However, it seems
that for practical parameters, most of these
hash functions have been broken.

Custom designed hash functions

Also in this class there is no lack of propos-
als and attacks. Hash functions for which
collisions have been found (or at least for
the compression function) include Snefru
by R. Merkle (with less than 8 rounds),
FFT-Hash I and II by C.P. Schnorr, and
MD2, MD4, extended-MD4, and MD5 by
R.Rivest. As noted above, collisions for
the compression function by itself are not
sufficient to discredit a hash function, as
they might be easier to find than collisions
for the hash function. However, a collision
resistant compression function is a useful
design criterion. A second aspect is that
applications sometimes have highly redun-
dant messages, which makes finding colli-
sions in this set much harder. Neverthe-
less, some of the attacks leave room for
further improvement, and it is prudent to
take that into account.

The MD4-family seems to make opti-
mal use of current 32-bit microprocessors,

rocrypt’97, LNCS 1233, W. Fumy, Ed., Springer-
Verlag, 1997, pp. 163–192.

which makes it very popular for applica-
tions. The powerful attack by H. Dob-
bertin on MD410 suggest that it should
no longer be used. MD5 is very fast,
but randomly looking collisions have been
found for the compression function (again
by H. Dobbertin). One can expect that
it is currently feasible to extend this at-
tack to the complete hash function, and to
find more realistic colliding messages. The
protection offered against brute force colli-
sion search is only marginal. It seems thus
prudent to upgrade current applications of
MD5.

Because of an undisclosed attack (which
was claimed to be not very serious), the
US FIPS 186 standard SHA has been re-
placed by SHA-1 (FIPS 186-1). Both ver-
sions have a 160-bit result. A partial at-
tack (two rounds out of three) has led
to an upgrade of RIPEMD (proposed by
the European Consortium RIPE). Its suc-
cessors are RIPEMD-128 (with a 128-bit
result) and RIPEMD-160 (with a 160-bit
result).11 The latter two schemes, to-
gether with SHA-1 have been included in
ISO/IEC 10118-3:1997. On a 90 MHz
Pentium, RIPEMD-160 and SHA-1 run at
about 50 Mbit/s, while RIPEMD achieves
75 Mbit/s. This should be compared to
DES, which runs at 17 Mbit/s (with a fixed
key).

For the future, there is certainly a need
for hash functions optimised for 64-bit
architectures, and for fast parameterised
one-way hash functions with a result of 80,
96 or 112 bits. None of the known hash
functions is really suited for the 8-bit and
16-bit processors found in smart cards.

10H. Dobbertin, “Cryptanalysis of MD4,” Fast
Software Encryption, LNCS 809, R. Anderson,
Ed., Springer-Verlag, 1994, pp. 53–69.

11H. Dobbertin, A. Bosselaers, B. Preneel,
“RIPEMD-160, a strengthened version of
RIPEMD,” Fast Software Encryption, LNCS 809,
R. Anderson, Ed., Springer-Verlag, 1994, pp. 71–
82.
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Definitions of MACs

The banking world used MACs already in
the seventies. A MAC is a hash function
that takes as input a second parameter, the
secret key. The main security property is
that for someone who does not know the
key, it should be computationally infeasible
to predict the MAC value corresponding to
a given message.

The attack model is as follows: an op-
ponent can choose a number of inputs xi,
and obtain the corresponding MAC value
hK(xi) (his choice of xi might depend on
the outcome of previous queries, i.e., the
attack may be adaptive). Next he has to
come up with an input x (6= xi, ∀i) and the
value hK(x), which has to be correct with
probability significantly larger than 1/2m,
with m the number of bits in the MAC re-
sult. If the opponent succeeds in finding
such a value, he is said to be capable of
an existential forgery . If the opponent can
choose the value of x, he is said to be ca-
pable of a selective forgery . If the success
probability of the attack is close to 1, the
forgery is called verifiable. An alternative
strategy is to try to recover the secret key
K from a number of message/MAC pairs.
A key recovery is more devastating than a
forgery, since it allows for arbitrary selec-
tive forgeries.

A MAC is said to be secure if it is com-
putationally infeasible to perform an ex-
istential forgery under an adaptive chosen
text attack. Note that in many applica-
tions only known text attacks are feasible.
For example, in a wholesale banking appli-
cation one could gain a substantial profit if
one could choose a single message and ob-
tain its MAC. Nevertheless, it seems pru-
dent to work with a strong definition.

Security of MACs

The attacks discussed in this section de-
pend only on the size of the parameters of

the MACs, and not on their internal struc-
ture: brute force key search, guessing of
the MAC, and a birthday forgery attack.

Brute force key search

This attack consists of running through
the key space and checking whether a key
corresponds to the known message-MAC
pairs. About k/m values are sufficient to
determine the key uniquely; for most ap-
plications this value lies between 1 and 4.
The expected computational effort is 2k−1

MAC evaluations, where k is the number
of (effective) key bits.

Brute force key search can be precluded
by choosing a sufficiently large key. A
value of 56 bits offers only marginal secu-
rity, while 75 to 90 bits is sufficient for 15
years or more. Currently finding a 56-bit
key in a period of 1 year requires an in-
vestment of 50 000$, and it can be done in
a few months by using idle cycles on the In-
ternet, as was demonstrated in the Spring
of 1997; with a 1 million US$ investment,
the search time can be reduced to a few
hours. Moreover, one also has to take into
account the empirical observation that the
computing power for a given cost is multi-
plied by four every 3 years (Moore’s ‘Law’).

It is important to recover a MAC key
within its active lifetime, which can be
very short in communications applications.
Outside that period, the key is completely
useless. However, one can mount the at-
tack during the complete lifetime of the
system; it is sufficient to feed to the search
machine the current text/MAC pairs. In
order to assess the feasibility of this at-
tack, one has to compare the cost of an
attack with the profit which can be made
by recovering one or more keys during the
lifetime of the system.
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Guessing the MAC

Another attack strategy is to pick an arbi-
trary input and guess the MAC value by
choosing an m-bit string uniformly at ran-
dom. For a good MAC algorithm, one ex-
pects that the success probability equals
1/2m (here the probability is taken over all
keys). A related strategy consists in guess-
ing the value of the key, and computing the
MAC value. Its success probability is 1/2k.
The success probability of the combined
attacks is equal to 1/2min(k,m). The value
of k is typically larger than that of m to
preclude a brute force key search. Strictly
speaking this is not a forgery attack, as
the success probability is very small (the
forgery is certainly not verifiable). How-
ever, one should take this attack into ac-
count when selecting a MAC algorithm.
The value of m depends on the expected
profit of a successful attempt, as well as
on the number of trials that are allowed
by the system, i.e., the way the system re-
acts to false alarms. For most applications
m = 32 . . . 64 is sufficient to render this
attack uneconomical.

Birthday forgery attack

Similar to hash functions, MACs are often
built using an iterated compression func-
tion (cf. supra). The secret key may be
introduced in the IV , in the compression
function f , and/or in the output transfor-
mation g.

B. Preneel and P.C. van Oorschot de-
scribe a generic forgery attack that applies
to all iterated MACs.12 The basic idea
behind the attack is the birthday para-
dox. Its feasibility depends on the bitsizes
n of the chaining variable and m of the
MAC result, and the nature of the output

12B. Preneel, P.C. van Oorschot, “MDx-MAC
and building fast MACs from hash functions,” Ad-
vances in Cryptology, Proc. Crypto’95, LNCS 963,
D. Coppersmith, Ed., Springer-Verlag, 1995,
pp. 1–14.

transformation g. If n = m, and g is a
permutation, the attack requires 1 chosen
text and about 2m/2 known message-MAC
pairs. If n > m, an additional number of
about 2n−m chosen message-MAC pairs is
required. The attack requires at least one
chosen text. Hence in applications where
any access to the MAC algorithm with the
correct key is precluded, it should not be
considered a problem. Also, the forged
message is of a special form: if the MAC is
known for three messages of the form x, x′,
and x‖y, one can forge the MAC for x′‖y.
This attack motivates the use of a MAC

result which is smaller than the size of the
internal memory n. It can be precluded by
appending a sequence number at the end
of every message. Such a sequence number
if useful to prevent replay attacks as well13.
Alternatives are prepending the length or
randomising the output transformation.
For the simplest case where n = m, the

attack goes as follows. After observing
2m/2 text-MAC pairs, an opponent expects
to find two texts (say x and x′) with the
same MAC result (cf. the birthday para-
dox). If g is a permutation, this implies
that Ht = H ′

t. If the MAC algorithm is
deterministic, it follows that hK(x ‖ y) =
hK(x

′ ‖ y) for any string y. Hence, if an
opponent obtains hK(x ‖ y) with a chosen
text attack, he can perform a forgery on
x′ ‖ y.
Note that further optimisations of the

attack are possible, which reduce the num-
ber of known texts. A more serious con-
cern is that for certain MAC algorithms,
the forgery attack can be extended to a
key recovery attack.

Constructions for MACs

Compared to the number of block ciphers
and hash functions, relatively few MAC al-
gorithms have been proposed. The main

13D. Davies, W. Price, Security for Computer
Networks, 2nd ed., Wiley, 1989.
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reason is that MACs have been derived
from other primitives (initially from block
ciphers and currently from hash func-
tions), which reduces the need for cus-
tom designed proposals. During the last
years, remarkable improvements have been
achieved by information-theoretic secure
MACs; the progress in this area is briefly
discussed.

MAC algorithms based on block ci-
phers

The most popular MAC algorithm is
certainly CBC-MAC; it has been in-
cluded in several standards including
ANSI X9.9:1986, ANSI X9.19:1986, ISO
8731:1987, and ISO/IEC 9797:1993. It
is widely used with DES as the underly-
ing block cipher. CBC-MAC is an iter-
ated MAC, with the following compression
function:

Hi = EK(Hi−1 ⊕ xi) , 1 ≤ i ≤ t ,

with H0 = 0. An output transforma-
tion is needed to preclude the following
simple forgery: given hK(x), hK(x‖y),
and hK(x

′), one knows that hK(x
′‖y′) =

hK(x‖y) if y′ = y ⊕ hK(x)⊕ hK(x
′).

One approach is for g to select the left-
most m bits. However, L.R. Knudsen has
shown that the simple attack can be ex-
tended to this case14; it requires then ap-
proximately 2(n−m)/2 chosen texts and 2
known texts.

A stronger and widely used alternative is
to replace the processing of the last block
by a two-key triple encryption (with keys
K1 = K and K2); this is commonly known
as the ANSI retail MAC, since it first ap-
peared in ANSI X9.19:

g(Ht) = EK1
(DK2

(Ht)) .

14L.R. Knudsen, “Chosen-text attack on CBC-
MAC,” Electronics Letters, Vol. 33, No. 1, 1997,
pp. 48–49.

Here D denotes decryption. This mapping
requires little overhead, and has the ad-
ditional advantage that it precludes an ex-
haustive search against the 56-bit DES key.
All these variants are vulnerable to the

birthday forgery attack, which requires a
single chosen message and about 232 known
messages (if DES is used with m = 64).
If m = 32, an additional 232 chosen mes-
sages are required. Note that with a fast
DES implementation on a PC, this num-
ber of texts can be collected in a single
day. Bellare et al. provide a proof of se-
curity for CBC-MAC, i.e., they establish
a lower bound to break the system under
certain assumptions on the block cipher. It
almost matches the upper bound provided
by the birthday forgery attack.
For the ANSI retail MAC, 232 known

texts are sufficient for a key recovery re-
quiring 3 · 2k encryptions, compared to
22k encryptions for exhaustive search15. If
DES is used, this implies that key recovery
may become feasible. Another key recov-
ery attack needs only a single known text,
but requires about 2k MAC verifications.
Moreover, it reduces the effective MAC size
from min(m, 2k) to min(m, k).
An alternative to CBC-MAC is RIPE-

MAC, which adds a feedforward16:

Hi = EK(Hi−1 ⊕ xi)⊕ xi , 1 ≤ i ≤ t .

It has the advantage that the round func-
tion is harder to invert (even for someone
who knows the secret key). An output
transformation is needed as well.
XOR-MAC is another scheme based on

a block cipher17. It is a randomized algo-
rithm and its security can again be reduced

15B. Preneel, P.C. van Oorschot, “A key recovery
attack on the ANSI X9.19 retail MAC,” Electronics
Letters, Vol. 32, No. 17, 1996, pp. 1568–1569.

16RIPE, “Integrity Primitives for Secure Infor-
mation Systems. Final Report of RACE Integrity
Primitives Evaluation (RIPE-RACE 1040),”
LNCS 1007, A. Bosselaers and B. Preneel, Eds.,
Springer-Verlag, 1995.

17M. Bellare, R. Guérin, P. Rogaway, “XOR
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to that of the block cipher. It has the ad-
vantage that it is parallellisable and that
it is incremental, i.e., small modifications
to the message (and to the MAC) can be
made at very low cost. The use of ran-
dom bits clearly helps to improve security,
but it has a cost in practical implementa-
tions. Also, the performance is typically
50% slower than CBC-MAC.

Note that cryptanalysis of the under-
lying block cipher can often be extended
to an attack on CBC-MAC, where an at-
tacker typically obtains less information
than in conventional cryptanalysis on the
ECB mode. Examples can be found in the
literature for linear and differential crypt-
analysis of DES.

MAC algorithms based on hash func-
tions

The availability of fast dedicated hash
functions (mainly of the MD4-family) has
prompted several proposals for MAC al-
gorithms based on these functions. The
first proposed constructions are the secret
prefix and secret suffix methods which can
be described as follows: hK(x) = h(K‖x),
hK(x) = h(x‖K). However, the first one
allows for extension attacks, and the sec-
ond one opens the possibility of off-line
attacks12.

The next proposal is the secret enve-
lope method, which can be described as
hK(x) = h(K1‖x‖K2) (for example Inter-
net RFC 1828). For this method, Bellare
et al. provide a security proof based on the
assumption that the compression function
of the hash function is pseudo-random18.

MACs: new methods for message authentica-
tion using block ciphers,” Advances in Cryptology,
Proc. Crypto’95, LNCS 963, D. Coppersmith, Ed.,
Springer-Verlag, 1995, pp. 15–28.

18M. Bellare, R. Canetti, H. Krawczyk, “Pseudo-
random functions revisited: the cascade construc-
tion and its concrete security,” Proc. 37th Sympo-
sium on Foundations of Computer Science,” IEEE,
1996.

While this is an interesting result, it should
be pointed out that the compression func-
tion of most hash functions has not been
evaluated with respect to this property.
It was shown that the birthday forgery
attack, which requires about 2n/2 known
texts, can be extended to a key recovery
attack19. MDx-MAC, presented by B. Pre-
neel and P.C. van Oorschot12 extends the
envelope method by also introducing se-
cret key material into every iteration. This
makes the pseudo-randomness assumption
more plausible. Moreover, it precludes the
key recovery attack by extending the keys
to complete blocks.

HMAC is yet another variant, which
uses a nested construction (also with
padded keys)20:

hK(x) = h(K2‖h(x‖K1)) .

HMAC will be used for providing mes-
sage authentication in the Internet Proto-
col. The security of HMAC is guaranteed
if the hash function is collision resistant for
a secret value H0, and if the compression
function itself is a secure MAC for 1 block
(with the secret key in theHi input and the
message in the xi input). While these as-
sumptions are weaker, we believe that the
the latter one still requires further valida-
tion for existing hash functions.

Custom designed MACs

The most important dedicated MAC al-
gorithm is certainly the Message Authen-
ticator Algorithm (MAA). MAA was de-
signed by D. Davies in 1984 and became an

19B. Preneel, P.C. van Oorschot, “On the secu-
rity of two MAC algorithms,” Advances in Cryptol-
ogy, Proc. Eurocrypt’96, LNCS 1070, U. Maurer,
Ed., Springer-Verlag, 1996, pp. 19–32.

20M. Bellare, R. Canetti, H. Krawczyk, “Key-
ing hash functions for message authentica-
tion,” Advances in Cryptology, Proc. Crypto’96,
LNCS 1109, N. Koblitz, Ed., Springer-Verlag,
1996, pp. 1–15.
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ISO banking standard in 1987 (ISO 8731-
2). Recently several weaknesses of MAA
have been exposed21. The birthday forgery
attack can be optimized; it requires only
224 messages of 1 Kbyte; a corresponding
key recovery attack needs 232 chosen texts
consisting of a single message block. The
number of off-line multiplications for this
attack varies between 244 for one key in
1000 to about 251 for one key in 50. This
should be compared to about 3 · 265 multi-
plications for an exhaustive key search. Fi-
nally, several classes of weak keys of MAA
have been identified.

Several MAC algorithms in use have not
been published, such as the S.W.I.F.T.
authenticator, and the Swedish algorithm
Data Seal. Proprietary MAC algorithms
which can process only short messages
include Telepass 1, the DECT standard
authentication algorithm, and the Sky
Videocrypt system of British Sky Broad-
casting.

Information-theoretic secure MACs

Information-theoretic secure MACs (also
known as authentication codes or A-codes)
have been introduced by Simmons in the
seventies. In the eighties a large amount of
research has been devoted to study these
MACs from a theoretical viewpoint. Al-
ready in 1981 Carter and Wegman pro-
vide a more practical approach, which al-
lows to reduce the key size almost indepen-
dent of the message size. Building on this
approach, major improvements have been
found both in terms of speed of computa-
tion and the key size. Part of this has been
driven by the establishment of connec-
tions between error-correcting codes and
A-codes. Examples include the work of

21B. Preneel, V. Rijmen, P.C. van Oorschot,
“A security analysis of the Message Autentica-
tor Algorithm (MAA),” European Transactions on
Telecommunications, Vol. 8, No. 5, 1997, in print.

Halevi and Krawczyk22 and Johansson23.
Both constructions achieve speeds which
are two to three times faster than any
known hash function or MAC algorithm,
and require only relatively short keys.

For practical applications, one still has
to deal with the problem that the keys can
be used only once. This can be avoided by
generating the keys using a cryptograph-
ically strong pseudo-random string gener-
ator; the price paid is that the construc-
tion becomes only computationally secure,
but the security model is well understood.
For the same security level against forgery
attacks, the MAC will be about twice as
long. Both elements indicate that this ap-
proach will mainly be suited for high speed
applications with long messages.

Concluding remarks

During the last five years significant
progress has been made both in the crypt-
analysis and in the design of secure and
efficient hash functions and MAC algo-
rithms. For many applications, these prim-
itives will remain a key building block to
achieve high performance at a reasonable
cost.

When selecting these primitives, it is im-
portant to take into account the progress
in cryptanalysis and the increasing poten-
tial of brute force attacks. For long term
security (10 years or more), a collision re-
sistant hash function should have a result
of at least 160 bits, and the key size for a
MAC algorithm should be at least 80 bits.
For present day processors (with the ex-
ception of the low-end smart cards), the

22S. Halevi, H. Krawczyk, “MMH: Software mes-
sage authentication in the Gbit/second rates,” Fast
Software Encryption, LNCS 1267, E. Biham, Ed.,
Springer-Verlag, 1997, pp. 172–189.

23T. Johansson, “Bucket hashing with a small
key size,” Advances in Cryptology, Proc. Euro-
crypt’97, LNCS 1233, W. Fumy, Ed., Springer-
Verlag, 1997, pp. 149–162.
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added cost for these parameters is certainly
acceptable.
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