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Side-channel attacks exploit information that leaks from a cryptographic

device due to a specific implementation. Two important examples of side-

channels are the power dissipation and the electromagnetic radiation. Though

each of these channels is being well studied, the question remains whether

combining multiple channels yields advantages such as faster exhibition of

sensitive data. Of course, the more independent the channels, the more

interesting combining them. Information theory not only presents us tools

to measure (in)dependence. It also tells us how badly a certain channel

is perturbed by noise. In calculating the entropy of our measurements per

clock cycle, a surprising pattern in the plots was found.

INTRODUCTION

The security of a cryptographic system depends not only on the mathemati-

cal analysis of the algorithm itself but also on the security of the implementation

[2]. The past seven years a lot of research is done towards so-called side-channel

attacks. These attacks are tailored at a specific implementation. They exploit

the fact that while a device is running a cryptographic algorithm, sensitive in-

formation may leak through physical quantities of the device (the side-channels).

Well-studied examples of side-channels are timing [5], power consumption [6, 7]

or electromagnetic (EM) radiation of the working device [1, 3].

The idea to use information theory on side-channel measurements originated from

the question whether it is possible to determine a lower bound on the number of

measurements we should take to have a succesful attack. Each measurement is

affected by noise; by using statistical tools one hopes to reduce the noise as far

as possible. Statistics however always imply assumptions such as Gaussian noise,



mean-zero noise, . . .We approached the question in the following way: noise in-

troduces uncertainty about the outcome of the measurements at each sample

time; let us try to catch this uncertainty in a mathematical way. The higher the

uncertainty, the more noise and the more measurements are required! Informa-

tion theory offers us a great tool to quantify this uncertainty: the entropy. At

the same time it allows us to detect moments of low respectively high entropy in

the running of the algorithm and to compare channels. We are still performing

experiments to explore what information theory can reveal to us; a few surprising

results however showed from the first tests.

EXPERIMENTAL SETUP

Elliptic curve cryptography (ECC) was proposed in the 1980’s [4]. When

compared with a classical cryptosystem as RSA, ECC offers advantages such as

lower power consumption and shorter keys. We expect ECC to be used more and

more in the future.

In a first setup we executed an EC point addition on a Xilinx Virtex FPGA

board that was hand-made at Cosic. This EC point addition is realized by al-

gorithm 1. The EC point addition requires fourteen states and six temporary

Algorithm 1 EC point addition

Require: P1 = (x, y, 1, a), P2 = (X2, Y2, Z2, aZ4
2
)

Ensure: P1 + P2 = P3 = (X3, Y3, Z3, aZ4
3
)

1. T1 ← Z2
2

2. T2 ← xT1

3. T1 ← T1Z2 T3 ← X2 − T2

4. T1 ← yT1

5. T4 ← T 2

3
T5 ← Y2 − T1

6. T2 ← T2T4

7. T4 ← T4T3 T6 ← 2T2

8. Z3 ← Z2T3 T6 ← T4 + T6

9. T3 ← T 2
5

10. T1 ← T1T4 X3 ← T3 − T6

11. aZ4
3
← Z2

3
T2 ← T2 −X3

12. T3 ← T5T2

13. aZ4

3
←

(

aZ4

3

)2
Y3 ← T3 − T1

14. aZ4

3
← a

(

aZ4

3

)

registers. We restrained ourselves however to states 9, 10 en 11 (the X3 regis-

ter update). Simultaneously, we recorded the power consumption of the device

and the electromagnetic radiation. While the power trace was registered fully, we
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Figure 1: Above: Typical EM (left) and power traces (right). Below: the mean measured
traces

only kept the above part of the EM signal because of the limited internal memory

of our scope (Tektronix TDS714L). Typical traces captured in this way can be

found in figures 1.

SIDE-CHANNEL EFFECTS AT FIXED TIME POINTS

Let Yem,i for 1 ≤ i ≤ 1200 be the electromagnetic radiation at clock cycle

i in the running of the cryptographic algorithm. Due to noise, these physical

quantities are random variables with respectively probability density functions

(pdfs) fi:

Yem , i ∼ fi ∈ F , (1)

where F is the family of pdfs for electromagnetic radiation. For each of the

1200 members of the family, we gathered 4527 observations as a sample from the

unknown pdf.

Analogously we define Ypow,j for 1 ≤ j ≤ 1200 to be the power consumption at

instant j in the running of the cryptographic algorithm:

Ypow , j ∼ gj ∈ G , (2)
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Figure 2: Histograms for the side-channel measurements in clock cycle 1005: the EM radiation
(left) and the power dissipation (right)

where G is the family of pdfs for power dissipation.

Remark that all pdfs are unknown and have to be estimated. The estimators of

fi and gj are denoted by f̂i and ĝj . The resulting entropy values are influenced

by the choice of estimator.

DENSITY ESTIMATION

We approximated the pdfs (1) and (2) of our continuous stochastic variables

by means of a histogram technique. Hence we discretize the side-channels pre-

tending we can only measure a finite number of discrete values per clock cycle.

For each cycle, we estimated the pdf at equally-spaced points starting from the

minimum measured value and choosing a fixed spacing δ. Consequently the bin-

width is the same in all histograms (thus for both channels and all clock cycles);

the number of bins increases with the range of measured values at a certain cycle.

In figure 2 for instance, we compare the histograms found for the EM radia-

tion respectively the power dissipation in clock cycle 1005 in the running of the

cryptographic algorithm.

ESTIMATING THE ENTROPY OF A CONTINUOUS RANDOM VARIABLE

Shannon entropy We discretized the side-channels; initially we can use the

estimated probabilities derived from the histogram to calculate the well-known

Shannon entropy :

H(Ŷem , i) = −

Mi
∑

k=1

f̂i(k) log2(f̂i(k)) 1 ≤ i ≤ 1200 (3)

H(Ŷpow , j) = −

Nj
∑

k=1

ĝj(k) log
2
(ĝj(k)) 1 ≤ j ≤ 1200 , (4)



where Mi and Nj denote the respective number of bins.

Differential entropy In a second scheme we respect the fact that the mea-

surements Yem,i and Ypow,j represent continuous variables. The entropy we would

like to calculate, is the continuous or differential entropy :

h(Ŷem , i) = −

∫

∞

−∞

f̂i(y) log2(f̂i(y))dy 1 ≤ i ≤ 1200 (5)

h(Ŷpow , j) = −

∫

∞

−∞

ĝj(y) log2(ĝj(y))dy 1 ≤ j ≤ 1200 . (6)

Because histograms only evaluate a discrete number of points, we use the following

straightforward approximation:

ĥ(Ŷem , i) = −
δem , i

2

{

S(1) + S(Mi) + 2

Mi−1
∑

k=2

S(k)
}

(7)

ĥ(Ŷpow , j) = −
δpow , j

2

{

T (1) + T (Nj) + 2

Nj−1
∑

k=2

T (k)
}

, (8)

where S(k) = f̂i(k) log2(f̂i(k)), T (k) = ĝj(k) log2(ĝj(k)) and δ denotes the space

between the equally-spaced points in which the density estimate was evaluated.

THE ESTIMATED ENTROPY OF THE SIDE-CHANNEL EFFECTS PER CLOCK

CYCLE

Finally we visualize the entropy calculations for our approximations: H(Ŷem , i)

and H(Ŷpow , j) in figure 3, ĥ(Ŷem , i) and ĥ(Ŷpow , j) in figure 4. As expected, the

estimations made by (7) and (8) are bigger than those based on the histogram

technique. It is well-known that when the quantization is made finer and finer

(i.e. smaller δ), the entropy keeps on increasing. In the limit (for δ → ∞), the

entropy becomes infinitely large. This is due to the fact that continuous variables

have an infinite number of possible outcomes. In practice, we can only use these

estimates to compare the entropy of two continuous random variables. We then

just have to make sure that the same discretization δ is used. What surprized us

were the clear patterns that popped up in the entropy traces; especially for the

power dissipation channel. An explanation may be that in states 10 and 11 of

algorithm 1 the same type of instructions are executed: a multiplication in par-

allel with an addition. These instructions would then induce a same amount of
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Figure 3: The histogram-based estimated entropy per clock cycle for both channels: EM (left)
and power (right)
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Figure 4: The approximated differential entropy per clock cycle for both channels: EM (left)
and power (right)

entropy and thus uncertainty. Consequently, making entropyplots of side-channel

measurements may present us with patterns in the plots enabling us to distin-

guish between the underlying instructions. Remark that no clear patterns were

present in the original measurements.

CONCLUSIONS AND FUTURE WORK

We proposed to use information theoretic measures such as entropy and mu-

tual information to quantify the uncertainty of side-channel measurements on the

one hand and to assess the dependence of the channels on the other hand. While

we are still busy interpreting the results, we surprisingly found clear patterns in

the entropy traces. Similar patterns appear when the device is executing ana-

logue instructions; thus making plots of the entropy per clock cycle may enable

us to visually recognize patterns and hence instructions in the algorithm. In the

original measurements no patterns could be found indicating the underlying in-

structions. Of course, prudence is called for as we have to test these suggestions



on more datasets. Currently, more experiments are done in order to confirm or

reject our hypothesis.

AKNOWLEDGEMENTS

Evelyne Dewitte is a research assistant with the I.W.T. (Flemish Institute for Scientific

and Technological Research in Industry). Dr. Bart De Moor and Dr. Bart Preneel are full pro-

fessors at the Katholieke Universiteit Leuven, Belgium. Research supported by Research Coun-

cil KUL: GOA-Mefisto 666, GOA-Ambiorics, several PhD/postdoc & fellow grants; Flemish

Government: FWO: PhD/postdoc grants, projects, G.0240.99 (multilinear algebra), G.0407.02

(support vector machines), G.0197.02 (power islands), G.0141.03 (Identification and cryptog-

raphy), G.0491.03 (control for intensive care glycemia), G.0120.03 (QIT), G.0452.04 (QC),

G.0499.04 (robust SVM), research communities (ICCoS, ANMMM, MLDM); AWI: Bil. Int.

Collaboration Hungary/ Poland; IWT: PhD Grants, GBOU (McKnow) Belgian Federal Gov-

ernment: Belgian Federal Science Policy Office: IUAP V-22 (Dynamical Systems and Control:

Computation, Identification and Modelling, 2002-2006), PODO-II (CP/01/40: TMS and Sus-

tainibility); EU: FP5-Quprodis; ERNSI; Eureka 2063-IMPACT; Eureka 2419-FliTE; Contract

Research/agreements: ISMC/IPCOS, Data4s, TML, Elia, LMS, IPCOS, Mastercard.

REFERENCES

[1] D. Agrawal, J.R. Rao, and P. Rohatgi, The EM side-channels, Cryptographic

Hardware and Embedded Systems (Burton S. Kaliski Jr., Çetin Kaya Koç,
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