
Lightweight Block Ciphers Revisited:
Cryptanalysis of Reduced Round PRESENT

and HIGHT

Onur Özen1, Kerem Varıcı2 ?, Cihangir Tezcan3, and Çelebi Kocair4

1 EPFL IC LACAL Station 14. CH-1015 Lausanne, Switzerland
onur.ozen@epfl.ch

2 K.U.Leuven, Dept. of Electrical Engineering, ESAT/SCD/COSIC and IBBT
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

kerem.varici@esat.kuleuven.be
3 METU, Institute of Applied Mathematics, Department of Cryptography. 06531

Ankara, Turkey
cihangir@metu.edu.tr

4 METU, Department of Computer Engineering. 06531 Ankara, Turkey
celebi@ceng.metu.edu.tr

Abstract. Design and analysis of lightweight block ciphers have become
more popular due to the fact that the future use of block ciphers in
ubiquitous devices is generally assumed to be extensive. In this respect,
several lightweight block ciphers are designed, of which Present and
Hight are two recently proposed ones by Bogdanov et al. and Hong
et al. respectively. In this paper, we propose new attacks on Present
and Hight. Firstly, we present the first related-key cryptanalysis of 128-
bit keyed Present by introducing 17-round related-key rectangle attack
with time complexity approximately 2104 memory accesses. Moreover, we
further analyze the resistance of Hight against impossible differential
attacks by mounting new 26-round impossible differential and 31-round
related-key impossible differential attacks where the former requires time
complexity of 2119.53 reduced round Hight evaluations and the latter is
slightly better than exhaustive search.

Keywords : Present, Hight, Related-Key Attack, Rectangle Attack, Impossible

Differential Attack.

1 Introduction

Lightweight cryptography has become very vital with the emerging needs in
sensitive applications like RFID (Radio-frequency identification) systems and
? This work was sponsored by the Research Fund K.U.Leuven, by the IAP Programme

P6/26 BCRYPT of the Belgian State (Belgian Science Policy) and by the Euro-
pean Commission through the ICT Programme under Contract ICT-2007-216676
(ECRYPT II). The information in this paper is provided as is, and no warranty
is given or implied that the information is fit for any particular purpose. The user
thereof uses the information at its sole risk and liability.



sensor networks. For these types of special purposes, there is a strong demand in
designing secure lightweight cryptographic modules. After the selection of AES
(Advanced Encryption Standard) [1], the research on efficient implementation
of AES, especially for such constrained environments, brought special attention
in research community. Even though it is highly convenient for such devices, the
research on designing and analyzing new lightweight block ciphers that are more
efficient than AES on these platforms poses huge challenges. For this purpose,
several block ciphers are designed as potential candidates such as Hight [2,3],
Present [4], mCrypton [5], SEA [6], CGEN [7], DES [8] and DESXL [8]5.

A recent portfolio6, which contains four software and three hardware ori-
ented stream ciphers [11], has been announced by ECRYPT as part of eSTREAM
project to identify new stream ciphers that might become suitable for widespread
adoption including lightweight platforms. As a result, stream ciphers are shown
to be highly efficient on both software and hardware implementations comparing
to block ciphers. To fill this efficiency gap, Present [4] was proposed by Bog-
danov et al. at CHES ’07 as an ultra-lightweight block cipher with 31 rounds
offering as good hardware and software performance as current modern stream
ciphers while it is more efficient than many known block ciphers.

Basic security analysis of Present is provided in [4] by showing resistance
against known attacks such as differential, linear cryptanalysis and their vari-
ants. Recent differential attacks [12,13] on 16 and 19 rounds of Present provide
similar results as in the original proposal with some practical evidence of applied
characteristics where the latter is an attempt to combine algebraic attacks with
differential cryptanalysis. Another type of an attack called bit-pattern based in-
tegral attack [14] is applicable up to seven rounds of Present. More recently, a
new type of attack, called statistical saturation attack was proposed in [15] and
shown to be applicable up to 24 rounds of Present. Previous results on the
analysis of Present are summarized in Table 1.

The security of Present against key schedule weaknesses is provided by
showing the resistance against slide [16] and related-key differential attacks [17]
where slide attacks are inapplicable because of the round dependent counters in
key scheduling algorithm. Related-key differential attacks, on the other hand,
are also believed to be inapplicable because of the sufficient non-linearity due to
key scheduling algorithm.

Hight [2,3] is a South Korean standard encryption algorithm enjoying the
use of a low-resource hardware implementation. It is a 32 round block cipher
proposed one year before Present at CHES ’06 by Hong et al. to be used for
ubiquitous computing devices. The prominent characteristic of Hight is that
it makes use of simple byte oriented operations such as exclusive-or, addition
modulo 256 and cyclic rotation which offers nice performance on hardware.

5 TEA [9] and XTEA [10] can also be given as lightweight block ciphers which were
designed before AES.

6 The original hardware-oriented portfolio of eSTREAM contains four hardware-
oriented stream ciphers. However, F-FSCR-H has recently been eliminated from
the eSTREAM portfolio.



Table 1. Summary of the attacks on Present and Hight (CP-Chosen Plain-
text, MA-Memory Accesses, PR-Reduced round Present evaluation, HE-
Reduced round Hight evaluation)

Cipher Rounds Key Attack Data Time Memory Reference
Size Type Complexity Complexity Complexity

Present 24 80 Stat. Sat. 260CP 220 PR 216 bytes [15]

24 80 Stat. Sat. 257CP 257 PR 232 bytes [15]

7 128 Bit-Pat. Int. 224.3CP 2100.1 MA 277 bytes [14]

17 128 Rel.-Key Rec. 263 CP 2104 MA 253 bytes §3.1
19 128 Alg.-Dif. 6× 262 CP 2113 MA not specified [13]

Hight 18 128 Imp. Dif. 246.8 CP 2109.2 HE not specified [2]

25 128 Imp. Dif. 260 CP 2126.78HE not specified [18]

26 128 Imp. Dif. 261 CP 2119.53HE 2109 bytes §4.1
26 128 Rel.-Key Rec. 251.2 CP 2120.41HE not specified [18]

28 128 Rel.-Key Imp. 260 CP 2125.54HE not specified [18]

31 128 Rel.-Key Imp. 264 CP 2127.28HE 2117 bytes §4.2

The security of Hight is investigated in [2] by showing resistance against
differential, linear, truncated differential, boomerang, rectangle, impossible dif-
ferential attacks and their related-key variants. In [2], the safety margin was
shown to be 13 rounds as the best attack covers 19 rounds. Recent serious at-
tacks [19] by Lu on reduced round Hight make use of 25, 26 and 28 round
impossible differential, related-key rectangle and related-key impossible differ-
ential attacks: the last attack is the best attack on Hight so far that reduced
the safety margin from 13 rounds to four rounds.

In this work, we present the first related-key cryptanalysis of Present.
For 128-bit keyed version, we introduce 17-round related-key rectangle attack
[20,21,22] which is not explicitly mentioned in the original proposal [4]. More-
over, we further analyze the resistance of Hight against impossible differential
attacks [23,24]. Firstly, we improve 25-round impossible differential attack of Lu
by introducing a new characteristic to 26 rounds and update 28-round related-
key impossible differential attack on 31 rounds. To the best of our knowledge,
these are the best cryptanalytic results on Hight. We provide a summary of our
results in Table 1.

The organization of the paper is as follows. In Section 2, we give a brief de-
scription of the block ciphers Present and Hight. Section 3 introduces the idea
behind the related-key attacks on Present and contains related-key rectangle
attack on 17-round. In Section 4, we introduce our improved impossible differ-
ential and related-key impossible differential attacks on reduced round Hight.
We conclude with Section 5 and provide supplementary details about the paper
in Appendices.

2 The Block Ciphers PRESENT and HIGHT

2.1 Notation

For Present and Hight, we use the same notation to denote the variables used
in this paper. For the sake of clarity and the parallelism with the previous work



[19], we use exactly the same notation for Hight which is provided in Table 2.
Throughout the paper, it is assumed that the rounds are numbered from zero
and the leftmost bit is the most significant bit in a byte or a word.

Table 2. Notation

⊕ Bitwise logical exclusive OR (XOR)
� Addition modulo 28

≪i Left cyclic rotation by i bits
Present-n-r Present reduced to r-rounds with n-bit secret key
Ki ith subkey of Present
Si ith S-Box of Present
ej1,...,jk

A word with zeros in all positions but bits j1, . . . , jk

Hight-r Hight reduced to r-rounds
ej A byte with zeros in all positions but bit j (0 6 j 6 7)
ej,∼ A byte that has zeros in bits 0 to j − 1, a one in bit j and indeterminate

values in bits (j + 1) to 7
ej̄,∼ A byte that has zeros in bits 0 to j and indeterminate values in bits (j+1)

to 7
? An arbitrary byte
Xi,j jth byte of state variable of round i of Hight, (0 6 j 6 7) (0 6 i 6 32)
MKi ith secret key byte of Hight
WKi ith whitening key byte of Hight
SKi ith subkey byte of Hight

2.2 PRESENT

Present is a 31-round (and an output whitening at the end) SPN (Substitution
Permutation Network) type block cipher with block size of 64 bits that supports
80 and 128-bit secret key. Round function of Present, which is depicted in
Figure 1, is same for both versions of Present and consists of standard op-
erations such as subkey XOR, substitution and permutation: At the beginning
of each round, 64-bit input of the round function is XORed with the subkey.
Just after the subkey XOR, 16 identical 4× 4-bit S-boxes are used in parallel as
a non-linear substitution layer and finally a permutation is performed so as to
provide diffusion.

S
15

S
14

S
13

S
12 11

S S
10

S S S S S S S S S S
89 7 6 5 4 3 2 1 0

K
i

Fig. 1. Round function of Present

The subkeys for each round are derived from the user-provided secret key by
the key scheduling algorithm. We provide only the details of the key scheduling
algorithm of Present-128 as it is the main target of this paper: 128-bit secret
key is stored in a key register K and represented as k127k126 . . . k0. The subkeys



Ki (0 ≤ i ≤ 31) consist of 64 leftmost bits of the actual content of register K.
After round key Ki is extracted, the key register K is rotated by 61 bit positions
to the left, then S-box is applied to the left-most eight bits of the key register
and finally the round counter value, which is a different constant for each round,
is XORed with bits k66k65k64k63k62. Further details about the specification of
Present are provided in [4].

2.3 HIGHT

Hight is a 32-round block cipher with 64-bit block size and 128-bit user key
that makes use of an unbalanced Feistel Network. The encryption function starts
with an Initial Transformation (IT) that is applied to plaintexts together with
input whitening keys WKs. At the end of 32 rounds, in order to obtain the
ciphertexts, a Final Transformation (FT) is applied to the output of the last
round together with an output whitening. The byte-oriented round function,
shown in Figure 2, uses modular addition, XOR and linear subround functions
F0 and F1; the latter can be described as follows:

F0(x) = (x ≪ 1) ⊕ (x ≪ 2) ⊕ (x ≪ 7)
F1(x) = (x ≪ 3) ⊕ (x ≪ 4) ⊕ (x ≪ 6)

X X X X X X X

XXXXXXXX

SK SK

X

SK SK

F FF
0 1 0

F
1

i, 6 i, 5 i, 4i, 7 i, 3 i, 2 i, 1 i, 0

i+1, 0i+1, 1i+1, 2i+1, 3i+1, 4i+1, 5i+1, 6i+1, 7

4(i+1)−1 4(i+1)−2 4(i+1)−3 4(i+1)−4

Fig. 2. ith round of Hight for i = 0, . . . , 31

Hight only works with 128-bit secret key MK which is treated as 16 bytes,
(MK15, . . . ,MK0). The key schedule of Hight uses additional constants to
avoid the self similarity in the key scheduling algorithm which prevents cipher
from slide attacks. Input-output whitening keys and round subkeys are obtained
by permuting the 16 bytes of the original key and using addition with constants.
Table 9 will be extensively used in this paper that shows the relations between
the original and the subkey bytes. Namely, each value in a row represents the



obtained whitening and subkey bytes once the corresponding byte in the first
column of the same row of the original key is known. Further details about the
specification of Hight are provided in [2,3].

3 The Related-Key Attacks on PRESENT

The idea behind the related-key attacks on Present is to benefit from the slow
mixing in the key scheduling algorithm which makes use of only one or two S-
box operations (depending on the version) during each iteration. To achieve this
goal, we made an efficient search for related-key differentials of Present which
was done by flipping at most two bits of the original key. The crucial part of the
key differentials is that we only consider the trivial differentials. More precisely,
all reduced round key differentials in our attacks work with probability one.

In the original proposal of Present [4], the resistance against differential and
linear attacks are given by the bounds provided by the minimum number of active
S-boxes. This approach also works for showing resistance against wide variety of
attacks. A recent differential attack [12] uses same idea to attack the cipher by
increasing the overall probability of the characteristics more effectively. Although
there is no contradiction with the security claims given in [4], the differential
attack in [12] provides a practical evidence. In this work, however, our aim is
quite different and simple in that we try to decrease the number of active S-boxes
(NAS). In order to do so, we cancel the intermediate differences with the subkey
differences and construct our differentials by activating at most five S-boxes
at the beginning. At the end, we are able to construct related-key differentials
having less active S-boxes than given in [12]. As an example, for Present-80, the
minimum number of active S-boxes for any five-round differential characteristic
is given to be ten in [4,12]. However, we found several five-round related-key
differentials with only three active S-boxes.

Although it seems quite promising, as the number of rounds increases, the
minimum number of active S-boxes gets closer to the one given in the original
proposal [12] and the overall probabilities of the characteristics are not optimal.
Still, for less number of rounds the related-key differentials are efficient and the
number of possible characteristics are quite high. So, attacks like the related-key
rectangle attack are easily applicable.

3.1 The Related-Key Rectangle Attack on PRESENT-128-17

The related-key rectangle attack is the clever extension of differential cryptanaly-
sis. In rectangle-boomerang style attacks, the attacker uses two short differential
characteristics instead of one long differential characteristic. The aim is to ben-
efit from the slow mixing in relatively reduced round versions of the attacked
cipher. We provide a brief description about the related-key rectangle attack in
Appendix A and follow the mounted attack on Present. Throughout the paper,
the related-key rectangle attack is assumed to be mounted by using four related
keys.



Let E denote the encryption function of Present-n-r. We treat E as a
cascade of four subciphers as E = Ef ◦ E1 ◦ E0 ◦ Eb where E is composed of
a core E′ = E1 ◦ E0 covered by additional rounds, Eb and Ef which are the
subciphers before and after the core function respectively.

For the related-key rectangle attack on Present-128-17, we use the following
decomposition: E0 starts with the first round and ends just after the subkey XOR
in round eight. E1, on the other hand, commences with the substitution layer
in round eight and stops at the end of round 147. Round 0 and round 15 − 16
serve as the round before and after the distinguisher respectively (Eb and Ef )8.

All the differentials used in E0 have the same input difference α = e0,1,3,4,5,7

and they all work with the key difference ∆K12 = e118,119. There are at least
343 such characteristics with varying differences at the beginning of the seventh
round: there exist one characteristics of probability p = 2−19, 18 characteristics
of probability p = 2−20, 108 characteristics of probability p = 2−21 and 216
characteristics of probability p = 2−22. Therefore the overall probability for E0

is p̂ =
√

1 · (2−19)2 + 18 · (2−20)2 + 108 · (2−21)2 + 216 · (2−22)2 ≈ 2−17. Table 3
shows one of the characteristics used for E0.

Table 3. An example of related-key differential used in E0

Input Key Output
r Difference Difference ∆(I)⊕∆(K) Difference NAS P

∆(I) ∆(K) ∆(O)

1 00000000000000bb 0000000000000000 00000000000000bb 0003000000000000 2 2−4

2 0003000000000000 0003000000000000 0000000000000000 0000000000000000 0 1
3 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1

4 0000000000000000 00000c0000000000 00000c0000000000 0000000004000000 1 2−3

5 0000000004000000 0000000000000000 0000000004000000 0000004000000040 1 2−2

6 0000004000000040 0000003000000000 0000007000000040 0000000200000202 2 2−4

7 0000000200000202 0000000000000000 0000000200000202 0000010500000105 3 2−6

8 0000010500000105 00000000c0000000 00000105c0000105 1

Given the α difference, the number of active S-boxes in Eb which lead to an
α difference in round 1 can be found by applying the inverse permutation to α
difference. This leads to six active S-boxes in the first round with varying output
differences after the substitution layer. These six S-boxes are used to create the
α difference before the core function. Since the output difference is known for all
active S-boxes in round 0, namely 1x, not all of the input differences are possible.
The number of possible input differences is only 215.5 instead of 224.

For the second subcipher E1, we use the fixed output difference δ = e11,15

under the key difference ∆K13 = e117,121. The most efficient characteristic is
provided in Table 4 with probability p = 2−12. As it can be seen from the table,
the overall probability for E1 is q̂ ≈ 2−12. Thus, the probability of the related-
key rectangle distinguisher is given by Pr = 2−64p̂2q̂2 ≈ 2−122. Similarly, the
subcipher Ef after the core function can be defined by letting δ propagate. In
7 This decomposition is not unique and can be done in various ways.
8 We exclude the output whitening in our attack



round 15, there exist two active S-boxes with input differences 8x each leading
to six output differences and these outputs are diffused to six different S-boxes
after key addition in round 16 which produce 221.22 possible output differences
in total out of 224.

Table 4. An example of related-key differential used in E1

Output Key

r Difference Difference ∆(I)⊕∆(K) P−1(S−1(I ⊕K)) NAS P
∆(O) ∆(K)

14 0000000000008800 0000000000008800 0000000000000000 0000000000000000 0 1
13 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1

12 0000000000000000 0000000000220000 0000000000220000 0000000000600060 2 2−6

11 0000000000600060 0000000000000000 0000000000600060 0000000008800000 2 2−6

10 0000000008800000 0000000008800000 0000000000000000 0000000000000000 0 1
9 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1
8 0000000000000000 0000000000000000

To attack 17 round Present, we request 239 structures of 224 plaintexts
each. The structures are chosen in such a way that each structure varies all over
the possible inputs to the active S-boxes in Eb, while the differences for the
other S-boxes are kept zero. Our aim is to get an α difference at the beginning
of E0. This technique for choosing plaintexts lets us 247 pairs in total for each
structure in which 223 of them satisfy α difference before E0. Thus, the total
number of pairs with an α difference before the core function is 262 that produce
approximately 2124 quartets of which 2124 · 2−64 · 2−58 = 22 = 4 are expected to
be right. The overall attack works as follows:

1. Generate 239 structures of 224 plaintexts and encrypt each structure of plain-
texts with K1,K2,K3 and K4 to obtain the corresponding pool of cipher-
texts Cj where 1 ≤ j ≤ 4.
– This step requires data complexity of 263 chosen plaintexts and time

complexity of 265 Present-128-17 encryptions.
2. Generate 224+8+24 = 256 counters each of which corresponds to a different

key guess in Eb and Ef respectively.
– Time complexity of this step is 256 memory accesses.

3. Insert 265 ciphertexts (C1, C3) and (C2, C4) into hash tables (T 1
13, T

3
13) and

(T 2
24, T

4
24) respectively indexed by 40 (expected inactive) bits. If a collision

occurs in the same bins of (T 1
13, T

3
13) and (T 2

24, T
4
24), check whether the dif-

ferences of the collided ciphertexts are one of the 221.22 expected ciphertext
differences.
– This step has time complexity of 265 memory accesses from inserting all

the ciphertext into hash tables. In the hash tables there exist 240 bins
and in each bin we expect to have 223 ciphertexts. Therefore, we can
form (223)2 = 246 pairs where one of the components from T 1

13(T
2
24) and

the other is from T 3
13(T

4
24). That makes 286 pairs in total for each pair

of tables (T 1
13, T

3
13) and (T 2

24, T
4
24). In order to check whether colliding



ciphertexts’ differences are one of the expected ciphertext differences we
have to make 287 memory accesses in total. The number of remaining
pairs is 286−2.78 = 283.22 for each of (T 1

13, T
3
13) and (T 2

24, T
4
24) since the

probability of having expected difference in the ciphertexts is 221.22−24 =
2−2.78.

4. For each surviving pair (C1, C3) (and (C2, C4)) from the previous step, find
the corresponding plaintext pairs (P1, P3) (and (P2, P4)) from the structures.
For each such pair, check whether P1⊕P2 satisfies the required difference in
Eb. If this check succeeds, examine the ciphertexts C3 and C4 that collided
with C1 and C2 respectively. If the difference between the corresponding
plaintexts P3 and P4 also satisfies the required difference in Eb, continue to
analyze the quartet ((P1, P2), (P3, P4)).
– The probability that P1⊕P2 satisfies the required difference is 215.5−24 =

2−8.5, if they are in the same structure. So, the probability that the
required difference is satisfied is 2−8.5−39 = 2−47.5 under the assumption
of uniform distribution of plaintexts and structures. This reduces the
number of pairs satisfying the condition in (T 1

13, T
3
13) to 283.22−47.5 =

235.72. Similarly, there exist 235.72 pairs in (T 2
24, T

4
24). Thus, we can form

(235.72)2 = 271.44 quartets satisfying the conditions in Eb and Ef . In
order to do this filtering we have to make 284.22 memory accesses.

5. For each remaining quartet ((P1, P2), (P3, P4)), ((C1, C2), (C3, C4)) and every
possible subkey value (kb and kf independently) of Eb and Ef test whether

Ebkb
(P1)⊕ Eb

k
′
b

(P2) = Eb
k
′′
b

(P3)⊕ Eb
k
′′′
b

(P4) = α where k
′
b = kb ⊕∆K12

and k
′′
b = k

′′′
b ⊕∆K12,

E−1
fkf

(C1)⊕ E−1
f

k
′′
f

(C3) = E−1
f

k
′
f

(C2)⊕ E−1
f

k
′′′
f

(P4) = δ where k
′′
f = kf ⊕∆K13

and k
′
f = k

′′′
f ⊕∆K13 hold.

If this is the case, increment the counters that correspond to kb, kf .
– In this step, every surviving quartet is partially encrypted (in Eb) and

decrypted (in Ef ) independently. As the number of subkeys guessed are
more in Ef than in Eb, the overall complexity of this step is 271.44+32 =
2103.44 memory accesses and half round decryptions (as eight S boxes
are affected in total); the latter is equivalent to 299 Present-128-17
evaluations.

6. Output the subkeys whose counters are maximal.
– This step requires 256 memory accesses.

Since α difference after Eb can be obtained from 215.5 input differences in step
5, the probability that the intermediate difference is α before the core function is
2−15.5 on average. Thus, each subkey is suggested by a quartet with probability
2−31. Similarly, the probability that the difference after the core function has an δ
difference is 2−21.22 on average leading to 2−42.44 of the subkeys by the quartets.



Each of the 271.44 quartets that enter step 5 suggests 256−2×15.5−2×21.22 = 2−17.44

subkeys, so the total number of suggested subkeys is about 254. As there are 256

subkeys, the expected number of times a wrong subkey is suggested is about
2−2. This means that we can find the right subkey or at least discard almost all
the wrong subkeys.

Thus, the overall attack has memory complexity of 253 bytes, time complex-
ity of 2104 memory accesses and data complexity of 263 chosen plaintexts. The
expected number of right quartets is taken to be four.

4 Impossible Differential Attacks on HIGHT

In this section, we introduce improved impossible differential attack on 26-round
and related-key impossible differential attack on 31-round Hight which utilize
16-round impossible differential and 22-round related-key impossible differen-
tial characteristics respectively. For impossible differential attack on 26-round
Hight, we use a similar characteristic as in [19] which enables us to attack 26-
round of Hight with a lower complexity. However, we use better characteristic
for related-key impossible differential attack.

The process of both attacks is similar. First, a data collection part is pro-
cessed for the generation of necessary plaintext-ciphertext pairs. Then, to guar-
antee the impossible differential characteristic, pairs are filtered by checking the
conditions at each intermediate rounds. At the end, the guessed key is eliminated
if any one of the remaining pairs satisfies the impossible differential characteris-
tic.

4.1 Impossible Differential Attack on HIGHT-26

We use the following 16-round impossible differential which is also given in Ta-
ble 5 in detail:

(e0,∼, 0, 0, 0, 0, 0, 0, 0) 9 (0, 80x, 0, 0, 0, 0, 0, 0)

In Table 5, the contradictory differences and the guessed subkey bytes in the
attack are labeled with gray background. The differences used here are considered
with respect to XOR operation and shown as hexadecimal. The propagation of
the differences can easily be checked by the properties of addition and linear
subround functions Fi. Contradiction is shown by miss in the middle manner
at values X13,7. This attack covers the rounds 0 - 25 and excludes the input
whitening as done in [19]. Overall attack on 26-round Hight works as follows:

1.) Data Collection

(i) Choose 213 structures of 248 plaintexts each where the bytes (1, 0) have
fixed values, bytes (7, 6, 5, 4, 3) and most significant 7 bits of the byte (2)
take all possible values.



Table 5. 26-Round impossible differential

∆Xi,7 ∆Xi,6 ∆Xi,5 ∆Xi,4 ∆Xi,3 ∆Xi,2 ∆Xi,1 ∆Xi,0 Subkeys
∆X0 ? ? ? ? ? e0,∼ 0 0 SK3 SK2 SK1 SK0
∆X1 ? ? ? ? e0,∼ 0 0 0 SK7 SK6 SK5 SK4
∆X2 ? ? ? e0,∼ 0 0 0 0 SK11 SK10 SK9 SK8
∆X3 ? ? e0,∼ 0 0 0 0 0 SK15 SK14 SK13 SK12
∆X4 ? e0,∼ 0 0 0 0 0 0 SK19 SK18 SK17 SK16

∆X5 e0,∼ 0 0 0 0 0 0 0 SK23 SK22 SK21 SK20
∆X6 0 0 0 0 0 0 0 e0,∼ SK27 SK26 SK25 SK24
∆X7 0 0 0 0 0 ? e0,∼ 0 SK31 SK30 SK29 SK28
∆X8 0 0 0 ? ? e0,∼ 0 0 SK35 SK34 SK33 SK32
∆X9 0 ? ? ? e0,∼ 0 0 0 SK39 SK38 SK37 SK36

∆X10 ? ? ? e0,∼ 0 0 0 ? SK43 SK42 SK41 SK40
∆X11 ? ? e0,∼ 0 0 ? ? ? SK47 SK46 SK45 SK44
∆X12 ? e0,∼ 0 ? ? ? ? ? SK51 SK50 SK49 SK48
∆X13 e0,∼ ? ? ? ? ? ? ? SK55 SK54 SK53 SK52

∆X13 e0̄,∼ 80x ? ? ? ? ? ? SK55 SK54 SK53 SK52
∆X14 80x 0 ? ? ? ? ? e0,∼ SK59 SK58 SK57 SK56
∆X15 0 0 ? ? ? ? e0,∼ 80x SK63 SK62 SK61 SK60
∆X16 0 0 ? ? ? e0,∼ 80x 0 SK67 SK66 SK65 SK64
∆X17 0 0 ? ? e0,∼ 80x 0 0 SK71 SK70 SK69 SK68
∆X18 0 0 ? e2,∼ 80x 0 0 0 SK75 SK74 SK73 SK72
∆X19 0 0 e2,∼ 80x 0 0 0 0 SK79 SK78 SK77 SK76
∆X20 0 0 80x 0 0 0 0 0 SK83 SK82 SK81 SK80
∆X21 0 80x 0 0 0 0 0 0 SK87 SK86 SK85 SK84
∆X22 80x 0 0 0 0 0 0 e0,∼ SK91 SK90 SK89 SK88
∆X23 0 0 0 0 0 ? e0,∼ 80x SK95 SK94 SK93 SK92
∆X24 0 0 0 ? ? e0,∼ 80x 0 SK99 SK98 SK97 SK96
∆X25 0 ? ? ? e0,∼ 80x 0 0 SK103 SK102 SK101 SK100
∆X26 ? ? ? e0̄,∼ 80x 0 0 ? W K7 W K6 W K5 W K4

F T ? ? ? ? e0̄,∼ 80x 0 0

– Such a structure of plaintexts propose 294 plaintext pairs and so we get
2107 pairs in total.

(ii) Obtain all the ciphertexts Ci of the plaintexts P i. Choose only the cipher-
text pairs satisfying the difference (?, ?, ?, ?, e0̄,∼, 80x, 0, 0).
– This step can be done by inserting all the ciphertexts into a hash table

indexed by expected inactive bits and choosing the colliding pairs which
satisfy the required difference. There is a 25-bit filtering condition over
the ciphertext pairs. Therefore, 282 pairs remain.

2.) Filtering and Key Elimination

We have 28 similar steps given in Table 6 to reach impossible differential char-
acteristic and eliminate the wrong key values.

Let us look at the first step as an example. Guess MK3 and partially encrypt
every plaintext pairs by using SK3 to obtain (7, 0)-th bytes of X1 (The relation
between the MK values and SK values are given in the Table 9). The expected
difference for the (7, 0)-th bytes is (?, 0) which comes up with an eight-bit condi-
tion. Therefore, the number of total pairs is decreased to 282−8 = 274 after this
step. In this step, we partially encrypt 282 pairs with the guessed eight-bit of the
secret key. Each partial encryption is equivalent to 1/4th of a round of Hight
and the overall attack is done on 26 rounds. Thus, the complexity of this step is
2 ·282 ·28 · 1

4 ·
1
26 ≈ 284.30 26-round Hight encryptions. Remaining steps given in

Table 6 follow similarly. Moreover, if the secret key byte MK is already guessed



and known for the required subkey SK, it is directly used and since most of the
previous conditions are preserved for the next rounds there does not exist too
much conditions on the evaluation process of intermediate rounds.

Table 6. 26-Round impossible differential attack

Guess Use Obtain Check Condition Remaining Time
Key Byte Difference (In terms of bits) Pairs Complexity(HE)

1 MK3 SK3 (7, 0) of X1 (?, 0) 8 274 ≈ 284.30

2 MK1 W K7, SK103 (7, 6) of X25 (0, ?) 8 266 ≈ 284.30

3 MK2 SK2 (6, 5) of X1 - - 266 ≈ 284.30

4 MK7 SK7 (7, 0) of X2 (?, 0) 8 258 ≈ 292.30

5 MK0 W K6, SK102 (5, 4) of X25 - - 258 ≈ 292.30

6 MK4 SK98 (5, 4) of X24 (0, ?) 8 250 ≈ 2100.30

7 - W K5, SK101 (3, 2) of X25 - - 250 ≈ 292.30

8 - SK97 (3, 2) of X24 - - 250 ≈ 292.30

9 MK8 SK93 (3, 2) of X23 (0, ?) 8 242 ≈ 2100.30

10 - SK1 (4, 3) of X1 - - 242 ≈ 292.30

11 MK6 SK6 (6, 5) of X2 - - 242 ≈ 2100.30

12 MK11 SK11 (7, 0) of X3 (?, 0) 8 234 ≈ 2108.30

13 - W K4, SK100 (1, 0) of X25 - - 234 ≈ 2100.30

14 - SK96 (1, 0) of X24 - - 234 ≈ 2100.30

15 MK15 SK92 (1, 0) of X23 - - 234 ≈ 2108.30

16 - SK88 (1, 0) of X22 (0, e0,∼) 8 226 ≈ 2108.30

17 - SK0 (2, 1) of X1 - - 226 ≈ 2100.30

18 MK5 SK5 (4, 3) of X2 - - 226 ≈ 2108.30

19 MK10 SK10 (6, 5) of X3 - - 226 ≈ 2116.30

20 - SK15 (7, 0) of X4 (?, 0) 8 218 ≈ 2116.30

21 - SK99 (7, 6) of X24 - - 218 ≈ 2108.30

22 - SK95 (7, 6) of X23 - - 218 ≈ 2108.30

23 MK14 SK91 (7, 6) of X22 - - 218 ≈ 2116.30

24 - SK87 (7, 6) of X21 (0, 80x) 7 211 ≈ 2116.30

25 - SK4 (2, 1) of X2 - - 211 ≈ 2109.30

26 MK9 SK9 (4, 3) of X3 - - 211 ≈ 2117.30

27 - SK14 (6, 5) of X4 - - 211 ≈ 2117.30

28 - SK19 (7, 0) of X5 (e0,∼, 0) 8 - ≈ 2114.30

In step 28, if a pair satisfies the impossible differential characteristic, we
eliminate that guessed key. Since there is an eight-bit condition, every pair elim-
inates 2−8 of the keys. Therefore after the first pair, there remain 2112 − 2104 =
2112 ·(1−2−8) keys. After the second pair, it is expected to have 2112 ·(1−2−8)−
2112 · (1− 2−8) · 2−8 = 2112 · (1− 2−8)2 remaining keys. Following that manner,
after the last pair, we have 2112(1− 2−8)2

11 ≈ 2100.46 remaining keys. Complex-
ity of this step is 2 · 2112

{
1 + (1− 2−8) + . . . + (1− 2−8)2

11−1
}
· 1

4 ·
1
26 ≈ 2114.30

Hight encryptions.

3.) Final Step

For every recorded 112 bit key at the end of Step 28, we obtain the remaining
16 bits and the original key itself with exhaustive search by checking over two
plaintext-ciphertext pairs. The probability that a wrong key is suggested is ap-
proximately 2−64×2 = 2−128. So, the expected number of wrong keys is about
2−128 · 2116.46 = 2−11.54. Thus, it is very likely that we can find the correct key.

The total complexity of the steps given in Table 6 is 2119.35. Since we have
approximately 2100.46 remaining keys before the final step, the complexity of the



final step is 2100.46+16 = 2116.46. Therefore, the overall complexity of the attack
is 2119.35 + 2116.46 = 2119.53 26-round Hight evaluations, 261 chosen plaintexts
of data and 2109 bytes of memory.

4.2 Related-Key Impossible Differential Attack on HIGHT-31

In this section, we introduce our related-key impossible differential attack on
31-round Hight which utilizes a new 22-round related-key impossible differen-
tial. The differences of this attack from [19] are the used related-key impossible
differential and the overall complexity which makes use of a related-key impos-
sible differential of three more rounds. We use the following 22-round impossible
differential which is given in Table 7 in detail:

(0, 0, 0, 0, 0, 0, 80x, 0) 9 (0, 0, 0, 80x, 0, 0, 0, 0)

Table 7. 31-Round related-key impossible differential

∆Xi,7 ∆Xi,6 ∆Xi,5 ∆Xi,4 ∆Xi,3 ∆Xi,2 ∆Xi,1 ∆Xi,0 Subkeys
∆X0 ? ? ? e0,∼ 80x 0 ? ? SK3 SK2 SK1 SK0
∆X1 ? ? e0,∼ 80x 0 0 ? ? SK7 SK6 SK5 SK4
∆X2 ? e0,∼ 80x 0 0 0 ? ? SK11 SK10 SK9 SK8
∆X3 e0,∼ 80x 0 0 0 0 ? ? SK15 SK14 SK13 SK12
∆X4 80x 0 0 0 0 0 ? e2,∼ SK19 SK18 SK17 SK16
∆X5 0 0 0 0 0 0 e2,∼ 80x SK23 SK22 SK21 SK20

∆X6 0 0 0 0 0 0 80x 0 SK27 SK26 SK25 SK24
∆X7 0 0 0 0 0 0 0 0 SK31 SK30 SK29 SK28
∆X8 0 0 0 0 0 0 0 0 SK35 SK34 SK33 SK32
∆X9 0 0 0 0 0 0 0 0 SK39 SK38 SK37 SK36

∆X10 0 0 0 0 0 0 0 0 SK43 SK42 SK41 SK40
∆X11 0 0 0 80x 0 0 0 0 SK47 SK46 SK45 SK44
∆X12 0 e2,∼ 80x 0 0 0 0 0 SK51 SK50 SK49 SK48
∆X13 e2,∼ 80x 0 0 0 0 0 ? SK55 SK54 SK53 SK52
∆X14 80x 0 0 0 0 ? ? e0,∼ SK59 SK58 SK57 SK56
∆X15 0 80x 0 ? ? ? e0,∼ 80x SK63 SK62 SK61 SK60
∆X16 80x ? ? ? ? e0,∼ 80x e0,∼ SK67 SK66 SK65 SK64
∆X17 ? ? ? ? e0,∼ ? e0,∼ ? SK71 SK70 SK69 SK68

∆X17 ? ? ? e0,∼ 80x 0 ? ? SK71 SK70 SK69 SK68
∆X18 ? ? e0,∼ 80x 0 0 ? ? SK75 SK74 SK73 SK72
∆X19 ? e0,∼ 80x 0 0 0 ? ? SK79 SK78 SK77 SK76
∆X20 e0,∼ 80x 0 0 0 0 ? ? SK83 SK82 SK81 SK80
∆X21 80x 0 0 0 0 0 ? e2,∼ SK87 SK86 SK85 SK84
∆X22 0 0 0 0 0 0 e2,∼ 80x SK91 SK90 SK89 SK88
∆X23 0 0 0 0 0 0 80x 0 SK95 SK94 SK93 SK92
∆X24 0 0 0 0 0 0 0 0 SK99 SK98 SK97 SK96
∆X25 0 0 0 0 0 0 0 0 SK103 SK102 SK101 SK100
∆X26 0 0 0 0 0 0 0 0 SK107 SK106 SK105 SK104
∆X27 0 0 0 0 0 0 0 0 SK111 SK110 SK109 SK108
∆X28 0 0 0 80x 0 0 0 0 SK115 SK114 SK113 SK112
∆X29 0 e2,∼ 80x 0 0 0 0 0 SK119 SK118 SK117 SK116
∆X30 e2,∼ 80x 0 0 0 0 0 ? SK123 SK122 SK121 SK120
∆X31 80x 0 0 0 0 ? ? e0,∼ W K7 W K6 W K5 W K4

F T e0,∼ 80x 0 0 0 0 ? ?

The related-key impossible differential occurs by using the key difference
(∆MK15,∆MK14, . . . ,∆MK0) = (80x, 0, . . . , 0). The contradiction occurs at
values X17,3 and can be shown similarly by miss in the middle manner which is
given in Table 7 where the contradictory differences and the subkey bytes having
nonzero differences are shown with gray background. The related-key impossible



differential was found by imposing the difference 80x to all 16 key bytes and
observing the impossibility at the differentials. It can be concluded that the best
related-key impossible differential is 22 rounds and it can not be extended by
the same technique9.

Using this related-key impossible differential, we can attack up to 31 rounds
of Hight. This attack covers the rounds 0 - 30 and excludes the input whitening
as done in 26-round impossible differential attack [19]. We use the related-key
impossible differential characteristic to attack 31-round of Hight which is de-
tailed in Table 7. The attack can be described as follows.

1.) Data Collection

(i) Choose 215 structures of 248 plaintexts each where the byte (2) and the
least significant seven bits of the byte (3) are fixed to certain values. The
bytes (7, 6, 5, 1, 0) and the most significant seven bits of the byte (7) contain
every possible values.
– There exist 2110 plaintext pairs in total which are encrypted by the

prescribed difference in the key.
(ii) Obtain all the ciphertexts Ci of the plaintexts P i encrypted with K1 and

ciphertext Ci′ of the plaintexts P i encrypted with K2 where K1 ⊕K2 =
(80x, 0, . . . , 0). Choose only the ciphertext pairs (Ci, Cj′) satisfying the
difference (e0,∼, 80x, 0, 0, 0, 0, ?, ?).
– This step can be done by inserting all the ciphertexts into a hash table

indexed by expected inactive bits and choosing the colliding pairs which
satisfy the required difference. There is 41-bit filtering condition over
the ciphertext pairs. Therefore 269 pairs remain.

2.) Filtering and Key Elimination

We follow the steps as in 26-round attack which is given in Table 8 to reach
impossible differential characteristic.

In step 24, if a pair satisfies the impossible differential characteristic, we
eliminate the corresponding guessed key. Since there is five-bit condition, each
pair eliminates 2−5 of the keys and after the last pair there remain 2120(1 −
2−5)2

4 ≈ 2119.27 keys.

3.) Final Step:

For every recorded 120 bit key (MK0, . . . ,MK12,MK14,MK15), obtain the
remaining eight bits of the key by exhaustive search by checking over three
plaintext-ciphertext pairs. The probability that a wrong key is suggested is ap-
proximately 2−64×3 = 2−192. So, the expected number of wrong keys is about
2−192 · 2127.27 = 2−64.73. It is very likely that we can find the correct key.

9 A similar attack with the same complexity can be mounted by imposing the difference
80x to MK9 instead of MK15



Table 8. 31-Round related key impossible differential attack

Guess Use Obtain Check Condition Remaining Time
Key Byte Difference (In terms of bits) Pairs Complexity(HE)

1 MK0 SK0 (2, 1) of X1 (0, ?) 8 bits 261 ≈ 271.05

2 MK3 SK3 (7, 0) of X1 - - 261 ≈ 271.05

3 MK4 SK4 (2, 1) of X2 (0, ?) 8 bits 253 ≈ 279.05

4 MK9 W K4, SK120 (1, 0) of X30 (0, ?) 8 bits 245 ≈ 279.05

5 MK12 W K7, SK123 (7, 6) of X30 (e2,∼, 80x) 2 bits 243 ≈ 279.05

6 - SK119 (7, 6) of X29 (0, e2,∼) 8 bits 235 ≈ 277.05

7 MK2 SK2 (6, 5) of X1 - - 235 ≈ 277.05

8 MK7 SK7 (7, 0) of X2 - - 235 ≈ 285.05

9 MK8 SK8 (2, 1) of X3 (0, ?) 8 bits 227 ≈ 293.05

10 MK11 W K6, SK122 (5, 4) of X30 - - 227 ≈ 293.05

11 - SK118 (5, 4) of X29 - - 227 ≈ 293.05

12 - SK114 (5, 4) of X28 (0, 80x) 5 bits 222 ≈ 293.05

13 MK1 SK1 (4, 3) of X1 - - 222 ≈ 296.05

14 MK6 SK6 (6, 5) of X2 - - 222 ≈ 2104.05

15 - SK11 (7, 0) of X3 - - 222 ≈ 2104.05

16 - SK12 (2, 1) of X4 (0, ?) 8 bits 214 ≈ 2104.05

17 MK5 SK5 (4, 3) of X2 - - 214 ≈ 2104.05

18 MK10 SK10 (6, 5) of X3 - - 214 ≈ 2112.05

19 MK15 SK15 (7, 0) of X4 (80x, e2,∼) 2 bits 212 ≈ 2120.05

20 - SK16 (2, 1) of X5 (0, e2,∼) 8 bits 24 ≈ 2118.05

21 - SK9 (4, 3) of X3 - - 24 ≈ 2110.05

22 MK14 SK14 (6, 5) of X4 - - 24 ≈ 2118.05

23 - SK19 (7, 0) of X5 - - 24 ≈ 2118.05

24 - SK20 (2, 1) of X6 (0, 80x) 5 bits - ≈ 2117.89

The total complexity of the steps given in Table 8 is approximately 2121.03.
Since there exists 2119.27 remaining keys, the complexity of the final step is
approximately 2127.27. Therefore, the complexity of this whole attack is 2127.28

31-round Hight computations. Even if this attack is not significant compared
to the exhaustive search, it is still an important result against Hight which
reduces the safety margin of Hight to one round.

5 Conclusion

In this paper, we present the first related-key cryptanalysis of Present and im-
prove the recent impossible differential attacks on Hight. Although our attacks
are totally theoretical and have no practical implications, they show new results
for both ciphers. The related-key attacks on Present can be seen as a new
approach to see the security of the cipher. Hight, on the other hand, was shown
to be secure up to 19 rounds in the original proposal and recently attacked up to
28 rounds. However, our results show that the security of Hight can be further
reduced up to one round.

Acknowledgements

The authors would like to thank anonymous reviewers of ACISP 2009 for point-
ing out recent results on Present and Jonsung Kim for the additional infor-
mation about Hight. We also like to thank Meltem Sönmez Turan, Shahram
Khazaei and Martijn Stam for reviewing the previous versions of the paper.



The simulations were run on the HPC Cluster of the Department of Computer
Engineering, Middle East Technical University.

References

1. Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2002.

2. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok Koo,
Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim, Jongsung
Kim, and Seongtaek Chee. HIGHT: A New Block Cipher Suitable for Low-Resource
Device. In Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249 of
Lecture Notes in Computer Science, pages 46–59. Springer, 2006.

3. South Korea Telecommunications Technology Associations (TTA). 64-bit Block
Cipher HIGHT. Standardization Number TTAS.KO-12.0040, 27 December 2006.

4. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 450–466. Springer, 2007.

5. Chae Hoon Lim and Tymur Korkishko. mCrypton - A Lightweight Block Cipher
for Security of Low-Cost RFID Tags and Sensors. In JooSeok Song, Taekyoung
Kwon, and Moti Yung, editors, WISA, volume 3786 of Lecture Notes in Computer
Science, pages 243–258. Springer, 2005.

6. François-Xavier Standaert, Gilles Piret, Neil Gershenfeld, and Jean-Jacques
Quisquater. SEA: A Scalable Encryption Algorithm for Small Embedded Ap-
plications. In Josep Domingo-Ferrer, Joachim Posegga, and Daniel Schreckling,
editors, CARDIS, volume 3928 of Lecture Notes in Computer Science, pages 222–
236. Springer, 2006.

7. Matthew J. B. Robshaw. Searching for Compact Algorithms: CGEN. In Phong Q.
Nguyen, editor, VIETCRYPT, volume 4341 of Lecture Notes in Computer Science,
pages 37–49. Springer, 2006.

8. Gregor Leander, Christof Paar, Axel Poschmann, and Kai Schramm. New
Lightweight DES Variants. In Alex Biryukov, editor, FSE, volume 4593 of Lecture
Notes in Computer Science, pages 196–210. Springer, 2007.

9. David J. Wheeler and Roger M. Needham. TEA, a Tiny Encryption Algorithm.
In Bart Preneel, editor, FSE, volume 1008 of Lecture Notes in Computer Science,
pages 363–366. Springer, 1994.

10. David J. Wheeler and Roger M. Needham. TEA Extensions. October 1997.

11. The eSTREAM Portfolio. The eSTREAM Project, http://www.ecrypt.eu.org/
stream/, September 2008.

12. Meiqin Wang. Differential Cryptanalysis of Reduced-Round PRESENT. In Serge
Vaudenay, editor, AFRICACRYPT, volume 5023 of Lecture Notes in Computer
Science, pages 40–49. Springer, 2008.

13. Martin Albrecht and Carlos Cid. Algebraic Techniques in Differential Cryptanal-
ysis. To appear in proceedings of FSE, 2009.

14. Muhammad Reza Z’aba, H̊avard Raddum, Matthew Henricksen, and Ed Dawson.
Bit-Pattern Based Integral Attack. In Kaisa Nyberg, editor, FSE, volume 5086 of
Lecture Notes in Computer Science, pages 363–381. Springer, 2008.

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/


15. Baudoin Collard and François-Xavier Standaert. A Statistical Saturation Attack
against the Block Cipher PRESENT . To appear in proceedings of CT-RSA, 2009.

16. Alex Biryukov and David Wagner. Slide Attacks. In Knudsen [26], pages 245–259.
17. Eli Biham. New Types of Cryptanalytic Attacks Using Related Keys. Journal of

Cryptology, 7(4):229–246, 1994.
18. Jiqiang Lu. Cryptanalysis of Block Ciphers. PhD thesis, Royal Holloway, University

of London, England, July 2008.
19. Jiqiang Lu. Cryptanalysis of Reduced Versions of the HIGHT Block Cipher from

CHES 2006. In Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC, volume 4817
of Lecture Notes in Computer Science, pages 11–26. Springer, 2007.

20. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Boomerang and
Rectangle Attacks. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of
Lecture Notes in Computer Science, pages 507–525. Springer, 2005.

21. Eli Biham, Orr Dunkelman, and Nathan Keller. New Combined Attacks on Block
Ciphers. In Henri Gilbert and Helena Handschuh, editors, FSE, volume 3557 of
Lecture Notes in Computer Science, pages 126–144. Springer, 2005.

22. Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rect-
angling the Serpent. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of
Lecture Notes in Computer Science, pages 340–357. Springer, 2001.

23. Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced to
31 Rounds Using Impossible Differentials. Journal of Cryptology, 18(4):291–311,
2005.

24. Eli Biham, Alex Biryukov, and Adi Shamir. Miss in the Middle Attacks on IDEA
and Khufu. In Knudsen [26], pages 124–138.

25. Orr Dunkelman. Techniques for Cryptanalysis of Block Ciphers. PhD thesis, Tech-
nion, Israel, February 2006.

26. Lars R. Knudsen, editor. Fast Software Encryption, 6th International Workshop,
FSE ’99, Rome, Italy, March 24-26, 1999, Proceedings, volume 1636 of Lecture
Notes in Computer Science. Springer, 1999.

A A Brief Description of Related-Key Rectangle Attack

Let E denote the encryption function of the attacked cipher which is treated as
a cascade of four subciphers as E = Ef ◦E1◦E0◦Eb where the core E′ = E1◦E0

is covered by additional rounds called Eb and Ef which are the subciphers before
and after the core function respectively to be used in key recovery. The related-
key differential is the quadruple (∆X,∆Y,∆K, p) satisfying following under the
nonlinear K-keyed function FK ,

Pr[FK(P )⊕ FK⊕∆K(P ⊕∆X) = ∆Y ] = p.

Here, ∆X and ∆Y are the corresponding input and output differences re-
spectively, ∆K the key difference and p is the corresponding probability. We say
the related-key differential characteristics ∆X

∆K→ ∆Y holds with probability
Pr = p.

Let α
∆K12

−−−−→ β with probability p be the first related-key differential used

for E0 and γ
∆K13

−−−−→ δ with probability q be the second differential used for



E1. Here, (α, β) and (γ, δ) stand for the input-output differences for E0 and E1

respectively. We define p̂ and q̂ as the probabilities related to α and δ respectively
as follows: p̂ =

√∑
β P 2

∆K12(α → β) and q̂ =
√∑

γ P 2
∆K13(γ → δ). Here, β and

γ are the possible differences at the end of E0 and at the beginning of E1. The
key differences ∆K12 = K1⊕K2 = K3⊕K4 and ∆K13 = K1⊕K3 = K2⊕K4

are the respective key differences for the subciphers E0 and E1. The subciphers
before and after the core function are formed according to the α and δ differences.
The basic related-key rectangle attack for the core function works as follows:

– Take a randomly chosen plaintext P1 and form P2 = P1 ⊕ α.
– Obtain the corresponding ciphertexts C1 = E′

K1(P1) and C2 = E′
K2(P2),

where K2 = K1 ⊕∆K12.
– Pick another randomly chosen plaintext P3 and form P4 = P3 ⊕ α.
– Obtain the corresponding ciphertexts C3 = E′

K3(P3) and C4 = E′
K4(P4),

where K3 = K1 ⊕∆K13 and K4 = K3 ⊕∆K12.
– Check C1 ⊕ C3 = C2 ⊕ C4 = δ.

The probability of the rectangle distinguisher is given by Pr = 2−np̂2q̂2

where n is the block size. If p̂ · q̂ is sufficiently high, the rectangle distinguisher
works. As shown in [25], if the expected number of right quartets is taken to
be four, then there is at least one right quartet in the data set with probability
0.982 since it is a Poisson distribution with expectation of four. Therefore, for
this success rate, the number of plaintext pairs needed is N = 2n/2+1/p̂q̂ that
consist of 2n+2/p̂2q̂2 quartets expecting four right quartets at a time. Further
details about rectangle and boomerang attacks can be found in [20,21,22,25].

B Key Schedule Properties of HIGHT

Table 9. Relations of the original key with whitening keys and subkeys

Original Whitening Subkeys
Key Keys

MK15 WK3 SK15 SK24 SK41 SK58 SK75 SK92 SK109 SK126
MK14 WK2 SK14 SK31 SK40 SK57 SK74 SK91 SK108 SK125
MK13 WK1 SK13 SK30 SK47 SK56 SK73 SK90 SK107 SK124
MK12 WK0 SK12 SK29 SK46 SK63 SK72 SK89 SK106 SK123
MK11 WK15 SK11 SK28 SK45 SK62 SK79 SK88 SK105 SK122
MK10 WK14 SK10 SK27 SK44 SK61 SK78 SK95 SK104 SK121
MK9 WK13 SK9 SK26 SK43 SK60 SK77 SK94 SK111 SK120
MK8 WK12 SK8 SK25 SK42 SK59 SK76 SK93 SK110 SK127
MK7 WK11 SK7 SK16 SK33 SK50 SK67 SK84 SK101 SK118
MK6 WK10 SK6 SK23 SK32 SK49 SK66 SK83 SK100 SK117
MK5 WK9 SK5 SK22 SK39 SK48 SK65 SK82 SK99 SK116
MK4 WK8 SK4 SK21 SK38 SK55 SK64 SK81 SK98 SK115
MK3 WK7 SK3 SK20 SK37 SK54 SK71 SK80 SK97 SK114
MK2 WK6 SK2 SK19 SK36 SK53 SK70 SK87 SK96 SK113
MK1 WK5 SK1 SK18 SK35 SK52 SK69 SK86 SK103 SK112
MK0 WK4 SK0 SK17 SK34 SK51 SK68 SK85 SK102 SK119


